"This document is the Accepted Manuscript version of a Published Work that appeared in final form in [JournalTitle], copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see [insert ACS Articles on Request authordirectedlink to Published Work, see http://pubs.acs.org/doi/abs/10.1021/cs5018997

Recent Advances in the Catalytic Preparation of

Cyclic Organic Carbonates

Carmen Martín,[†] Giulia Fiorani[†] and Arjan W. Kleij^{*, †,‡}

[†]Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007

Tarragona, Spain

[‡]Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23,

08010 Barcelona, Spain

ABSTRACT: The catalytic formation of cyclic organic carbonates (COCs) using carbon dioxide (CO₂) as a renewable carbon feed stock is a highly vibrant area of research with an increasing amount of researchers focusing on this thematic investigation. These organic carbonates are highly useful building blocks and nontoxic reagents, and are most commonly derived from CO₂ coupling reactions with oxirane and di-alcohol precursors using homogeneous catalysis methodologies. The activation of suitable reaction partners using catalysis as a key technology is a requisite for efficient CO₂ conversion as its high kinetic stability poses a barrier to access functional organic molecules with added value in both academic and industrial laboratories. Though this area of science has been flourishing for at least a decade, in the last 2-3 years significant advancements have been made to address the general reactivity and selectivity issues that are associated with the formation of COCs. Here we present a concise overview of these activities with a primary focus to highlight the most important progress made and the opportunities that catalysis can bring about when the synthesis of these intermediates is optimized to a higher level of sophistication. The attention will be limited to those cases where homogeneous metal-containing systems have been employed as they possess the highest potential for directed organic synthesis using CO₂ as molecular building block. This review discusses examples of exceptional reactivity and selectivity taking into account the challenging nature of the substrates that were involved, and mechanistic understanding guiding the optimization of these protocols is also highlighted.

KEYWORDS: carbon dioxide, homogeneous catalysis, organic carbonates, reactivity, selectivity

1. INTRODUCTION

The use of carbon dioxide (CO_2) as a renewable carbon feed stock in organic synthesis has become an important goal for academic and industrial scientists.¹⁻⁹ Of particular interest is the development of chemical methodologies that can convert CO₂ to useful products: for example, it can be used in combination with water (or hydrogen) as a building block to produce chemicals and fuels.¹⁰ Moreover, direct coupling with more complex chemicals (i.e. oxiranes and oxetanes) provides methodology towards value-added plastics and other products.^{1,2,6} Despite the disadvantage of CO₂ having sluggish reactivity, recent work has unambiguously demonstrated that new opportunities may become available when proper catalytic methods are designed that help to improve the reactivity, selectivity and/or sustainability profiles of such processes. Among the most widely studied reactions in CO₂ catalysis is the formation of cyclic organic carbonates (COCs)¹¹⁻¹⁸ apart from their analogous and related linear carbonates¹⁹ and poly(carbonates).²⁰⁻²² These COCs have been frequently associated with numerous applications involving them as non-protic solvents, precursors for poly(carbonate) synthesis, electrolyte solvents and more recently as useful intermediates in organic synthesis.²³⁻²⁵ It is for these reasons, among others, that the interest in COC synthesis has slowly but surely shifted attention towards the preparation of more sophisticated synthetic intermediates, providing new catalytic processes that show increased reactivity behavior, improved enantio- and chemo-selectivity and amplified substrate scope with excellent functional group tolerance. These endeavors can ultimate lead to the creation of secondary products derived from COC intermediates with applications in (bio)polymer synthesis²⁶ and pharmaceuticals.²⁷

Direct coupling between CO_2 and oxiranes or oxetanes has become one of the focal points in CO_2 catalysis representing an atom-efficient transformation to selectively access COC and polycarbonates from cheap and readily available starting materials. An appropriate catalytic system is required to perform these reactions, since the metal-free direct coupling of CO_2 and oxiranes is kinetically highly unfavorable due to extremely high barriers that are associated with this transformation. For example, the free energy barriers for the uncatalyzed reaction between propylene oxide (PO) and CO_2 in the gas phase was calculated by DFT and found to be 53 and 58 kcal·mol⁻¹ for the two possible isomeric transition states, respectively.^{28,29}

The most widely employed catalysts are homogeneous metal based catalysts. Different activation mechanisms have been proposed relying on the activation of the oxirane/oxetane moiety and/or CO₂. Oxiranes/oxetanes are typically activated by interaction with a Lewis acid through M–O coordination patterns, followed by a nucleophilic attack and subsequent ring-opening, while CO₂ activation can occur both through nucleophilic and electrophilic attack. Regardless the catalytic system employed, in all cases oxirane or oxetane activation requires a nucleophile. Although the nucleophile itself can be employed as catalyst, generally (sub)stoichiometric amounts are required and elevated operating temperatures. Binary/bifunctional catalytic systems usually combine a Lewis acid and a suitable nucleophile (most often a halide), making the ring-opening procedure energetically less demanding and the subsequent CO_2 insertion easier (*i.e.*, attack of the metal alkoxide intermediate on the carbon center of the CO_2 molecule). COC formation by metal-catalyzed coupling of CO_2 and oxiranes progresses according to a generally accepted sequence of steps as depicted in Scheme $1_1^{11,12,13,17,18}$

Scheme 1. Key steps for the coupling of CO_2 and oxiranes to yield polycarbonates (below) or COCs (top). Abbreviations: M = metal complex, Nu = nucleophile.

Selectivity towards the formation of COCs arises from a specific balance between the components of the catalytic mixture including the choice of substrate, metal catalyst, co-catalyst (nucleophilic additive), type of solvent and temperature. In particular the nature of the co-catalyst and its ratio with respect to the metal catalyst affect may dramatically influence the outcome of these coupling reactions. As will be highlighted throughout the text, homogenous metal catalysts for efficient oxirane/CO₂ coupling reactions include mono- and bi-metallic species as well as bifunctional systems that embed both the Lewis acid and the nucleophile within a single molecular entity.^{13,17}

In this review article we wish to highlight the most recent developments in the field of catalytic cyclic organic carbonate (COC) synthesis with a primary focus on those contributions that have helped to amplify the field of COCs having potential towards

organic synthetic applications. Attention will therefore be given to the catalytic processes that have disclosed new reactivity patterns, improved activity profiles and unusual selectivity. Homogeneous catalyst systems have proven to be superior in terms of their synthetic prospective and therefore this review will be limited to catalytic technologies based on this class of systems only. Further to this, a major focus will go to those reactions that are based on effective CO_2 /epoxide couplings; epoxides and their precursors (alkenes) are abundant and their structural variety and accessibility allows in principle the preparation of a large collection of functional COC scaffolds.³⁰ The use of computation tools will also be emphasized where appropriate, to highlight the use of theoretical analysis of metal-mediated conversion of CO_2 as to support the experimental efforts and to help to design improved and more active/selective catalyst systems for COC synthesis.³¹ Finally, future directions are identified where the formation of COCs (possibly derived from natural sources)^{32,33} may help to advance the further valorization of a waste, carbon feedstock such as CO_2 and converting it into value-added organic matter of academic and industrial interest.

2. DEVELOPMENT OF IMPROVED REACTIVITY IN COC SYNTHESIS

2.1 COC synthesis under mild reaction conditions. In an effort to develop efficient chemical processes based on the exploitation of CO_2 as a renewable and cheap C_1 building block, its use has grown tremendously in recent years and currently includes both coupling reactions (for example to prepare COCs and oxazolidinones) and reductive processes leading to products including methanol, formic acid and methane. Limiting our discussion to COC synthesis, a truly sustainable process for the preparation of cyclic carbonates should preferably employ a catalyst that shows high activity under mild reaction conditions (*i.e.*, at low temperatures and CO_2 pressures) and

potentially in waste gases such as flue gas.³⁴ However, to date only a handful of the reported homogenous catalysts show useful activity at low CO₂ pressures ($p(CO_2) =$ below 1.0 MPa) and temperatures below 100 °C; these limitations therefore have spurred catalysis research towards the development of more energy efficient procedures and new catalyst structures for COC synthesis (Figure 1; **1-5**).

Figure 1. Homogeneous metal catalysts 1-5 active towards CO_2 coupling with terminal epoxides under mild reaction conditions.

Among the different homogeneous catalytic systems active for cyclic carbonate formation under mild conditions, salen and salphen metal complexes were extensively studied as active catalysts for direct CO_2 coupling with epoxides to form cyclic or polycarbonates. Salen and salphen ligands provide complexes with a rather planar geometry exerting a tetradentate coordination around the metal center and easy modulation of electronic and steric effects. Depending on the nature of the metal center, these complexes can also accommodate two labile ligands in two axial positions. Therefore, the nucleophile can be embedded or weakly coordinated to the catalyst resulting a in a dual effect: it can act as a nucleophile in the ring-opening of the epoxide and/or favor the coordination of the oxirane to the metal center by a *trans* ligand effect.¹³ Salen and salphen catalysts are characterized by an easy preparation, allowing for large-scale synthesis and potential commercial applications. They can also be fine-tuned from a reactivity point of view, by ad hoc structure modifications; the possibility of direct inclusion of a nucleophilic co-catalyst, variation in the type of active metal center, and formation of mono- and multinuclear catalysts. Among the reported salen and salphen catalysts active towards CO₂ coupling with (terminal) epoxides, the group of North communicated a dinuclear μ -oxo-bridged Al(salen) complex (Figure 1; 1) catalytically active at room temperature and atmospheric pressure of CO2 for the formation of cyclic carbonates from terminal aliphatic and aromatic epoxides (Entries 1 and 2, Table 1). The improved catalytic activity observed when compared to mono-metallic salen complexes has been ascribed to the presence of two neighboring metal centers capable of simultaneous activation of both oxirane and CO₂ by promoting an intramolecular nucleophilic attack of the alkoxide to the carbon atom of the activated CO_2 molecule.³⁵⁻³⁷ Shortly hereafter, the group of Kleij reported on a mononuclear Zn(salphen) complex (Figure 1; 2) active towards CO_2 coupling with terminal epoxides under moderate CO_2 pressures $[p(CO_2) = 0.2-1 \text{ MPa}]$ and mild operating temperatures (T = 25-45 °C).^{38,39} The high activity of the Zn(salphen) complex was ascribed to its constrained geometry imposed by the ligand scaffold, which imparts increased Lewis-acid character to the catalytically active Zn ion. Moreover, the presence of bulky substituents (R = tBu) in

the *ortho*-positions of the two iminiphenol donors prevents undesired dimerization and thus inactivation of the Zn(salphen) catalyst.⁴⁰ Although efficient, these Zn(salphen) systems suffer some limitations, requiring relatively high catalyst loadings (2.5 mol%) and a scope limited to terminal epoxides. In a search for new catalytic systems capable of operating under mild reaction conditions, Williams and co-workers developed a novel dinuclear, macrocyclic Fe(III) complex (Figure 1; **3**) active for the selective formation of cyclic and polycarbonates depending on the addition of a nucleophilic additive.⁴¹ This system was active towards the formation of cyclohexene carbonate (CHC), propylene carbonate (PC) and styrene carbonate (SC) under mild conditions (T = 25 °C, $p(CO_2) = 0.1$ MPa, t = 24–48 h, Entries 12 and 13, Table 1); differently from the dinuclear Al(III)salen system developed by North and co-workers, this Fe-catalyst only required one equivalent of nucleophilic co-catalyst to achieve quantitative cyclic carbonate formation under these conditions.

The group of Kleij developed novel homogenous catalytic systems based on Lewis acidic and abundant metals, reporting new class of accessible on а Al(III)amino(triphenolate) catalysts (Figure 1, 4a-d) characterized by high activity (vide *infra*) combined with a wide substrate scope and functional group tolerance.⁴² Different from the salen/salphen based systems, the aminotriphenolate ligands impose a trigonal bipyrimidal coordination geometry around the Al(III) center and likely allows for more sterically congested substrates (cf., internal epoxides) to be coordinated/activated and converted into their respective COCs. Particularly, in the case of a binary catalyst, the presence of fewer donor atoms in the plane of the metal would be beneficial for sterically more congested substrates and more easily accommodate an incoming nucleophile approaching the substrate and entering the coordination sphere of the metal. The catalytic potential of catalysts 4a and 4d was evaluated by comparison with reported catalysts **1** and **2** using 1,2-epoxyhexane as a benchmark substrate under mild conditions (T = 30 °C, $p(CO_2) = 1.0$ MPa, t = 2 h). When compared to Al(III)(aminotrisphenolate) catalysts **4a** and **4b**, both the bimetallic Al(III)salen **1** and the Zn(salphen) complex **2** proved to be less effective, observing roughly half of the activity of the Al complex **4d** when employed under similar experimental conditions (Entries 14-17, Table 1).⁴³ This example actually reports one of the very few benchmarking experiments done under similar reaction conditions and application of an identical reactor set up, allowing for a direct comparison between the catalytic efficiencies of various catalyst structures in the formation of COCs.

Apart from changing the catalyst coordination mode, some research groups have explored the reactivity of other metals of the periodic table. For example, Kühn and Cokoja reported on the high catalytic activity of a commercially available Nb(V) salt (Figure 1; NbCl₅ **5**) in the coupling of CO₂ with terminal and internal epoxides.⁴⁴ When employed with an appropriate co-catalyst such as tetrabutylammonium bromide (TBABr) or dimethylaminopyridine (DMAP), this Nb(V) catalyst showed high catalytic activity under mild conditions (T = 25 °C) and at low concentrations of CO₂, thereby mimicking the waste gas stream of production plants by working with Ar/CO₂ mixtures (Entries 18 and 19, Table 1).

Minakata and co-workers reported on an original approach to form COCs starting from unsaturated alcohols and *tert*-butyl hypoidite (*t*BuOI). This methodology takes advantage of the acidic character of the alkylcarbonic acid generated from CO₂ and an unsaturated alcohol, in which iodination of the carbonic acid with *t*BuOI is the key reaction, which shifts the equilibrium to the cyclization product (Scheme 2). Thus, the desired CO₂ conversion reaction does not require the use of strong bases, nor environmentally unfriendly metal reagents or pressurized conditions. Both homo-allylic and propargylic alcohols were successfully converted to their corresponding 5membered COCs (18 examples, yields: 64–94 %) under extremely mild reaction conditions [$p(CO_2) = 0.1$ MPa, T = -20 °C].⁴⁵ Although this is not a metal-catalyzed methodology, it readily gives access to functional COCs containing an iodomethyl group representing synthetically valuable building blocks as they can be readily converted into epoxy alcohols and triols.

$$CO_2 + H^{-O} \longrightarrow \left[\begin{array}{c} 0 \\ 0 \\ H \end{array} \right] \xrightarrow{tBuOI} - tBuOH \left[\begin{array}{c} 0 \\ 0 \\ H \end{array} \right] \xrightarrow{0} 0 \xrightarrow{0} 0$$

Scheme 2. A CO_2 conversion strategy developed by Minakata *et al*. to trap an elusive carbonic acid intermediate with *t*BuOI.

Recently, Buckley and co-workers have studied the effect of several transition metal catalysts and electrode materials on the conversion of epoxides into COCs under a CO_2 flow using applied potential at atmospheric pressure and ambient temperature.⁴⁶ Initially, these studies involved the use of 1 equiv. of Ni(II) catalyst [Ni(BF₄)₂] which in the presence of excess TBAB (which acts as both the nucleophile and the supporting electrolyte) gave, in most cases, quantitative yields of the corresponding COC starting from terminal epoxides (7 examples, yields: 49–93 %, Scheme 3). Then a cheaper and less toxic Cu(I) catalyst, Cu(CH₃CN)₄(BF₄), was employed in the same experimental condition and found to be active in catalytic quantities for the conversion of terminal epoxides to the corresponding cyclic carbonates (cat. = 10 mol%, 7 examples, yields:

70–97 %). Quite surprisingly, electro-carboxylation of epoxides without added metal catalyst also led to the formation of the target COCs in poor to excellent conversion [7 examples, conversions: 33-91% using conditions under (2) in Scheme 3], developing a system that obviates the use of a potentially toxic or expensive metal complex. Although the reaction times are rather long and the reaction set up is quite laborious, the equipment required to perform this CO₂ incorporation reaction is fairly cheap and should be readily available.

Scheme 3. Electro-carboxylation of terminal epoxides (SS = stainless steel cathode, Mg = magnesium anode).

Table 1. Metal catalyzed CO₂ coupling with terminal epoxides.^a

Entry ^b	R	Cat. (mol%)	Co-cat. (mol%)	Solv.	T (°C)	t (h)	P (MPa)	Conv. (%)	Sel. (%)
127	C_6H_5	1 (2.5)	TBAB (2.5)	neat	25	24	0.1	98	n.d
2 ²⁹	nC_4H_9	1 (2.5)	TBAB (2.5)	neat	25	24	0.1	87	n.d.
329	CH ₃	1 (2.5)	TBAB (2.5)	neat	0	3	0.1	77	n.d
4 ³⁰	C_6H_5	2 (2.5)	TBAI (2.5)	CH_2Cl_2	45	18	1	80	n.d.
5 ³⁰	nC_4H_9	2 (2.5)	TBAI (2.5)	CH_2Cl_2	45	18	1	66	n.d.
6 ³¹	CH_3	2 (2.5)	TBAI (2.5)	CH_2Cl_2	45	18	1	90	n.d.
7 ³¹	nC_4H_9	2 (2.5)	TBAI (2.5)	MEK	45	18	1	>99	n.d.
8 ³¹	nC_4H_9	2 (2.5)	TBAI (2.5)	MEK	45	18	0.5	87	n.d.
9 ³¹	C_6H_5	2 (2.5)	TBAI (2.5)	MEK	25	18	0.2	89	n.d.
10 ³¹	nC_4H_9	2 (2.5)	TBAI (2.5)	MEK	25	18	0.2	86	n.d.
11 ³¹	CH_3	2 (2.5)	TBAI (2.5)	MEK	25	18	0.2	73	n.d.
12 ³²	C_6H_5	3 (0.5)	PPN-Cl (1)	neat	25	25	0.1	17	n.d.
13 ³²	CH_3	3 (0.5)	PPN-Cl (1)	neat	25	48	0.1	91	n.d.
14 ³⁴	nC_4H_9	4a (0.5)	TBAI (2.5)	neat	30	2	1	74	> 99
15 ³⁴	nC_4H_9	4d (0.5)	TBAI (2.5)	neat	30	2	1	91	> 99
16 ³⁴	nC_4H_9	2 (0.5)	TBAI (2.5)	neat	30	2	1	46	> 99
17 ³⁴	nC_4H_9	1 (0.5)	TBAB (2.5)	neat	30	2	1	50	> 99
18 ³⁵	C_6H_5	5 (0.005)	TBAB (0.01)	neat	45	12	0.1 ^c	91	n.d.
19 ³⁵	CH_3	5 (0.005)	TBAB (0.01)	neat	25	14	0.05 ^c	99	n.d.

^{*a*} Abbreviations used: TBAB = tetrabutylammonium bromide, TBAI = tetrabutylammonium iodide, PPN-Cl = bis(triphenylphosphine)iminium chloride, MEK = methyl ethyl ketone. N.d. stands for not determined/reported. ^{*b*} References given. ^{*c*} Partial pressure of CO₂ measured in the CO₂/Ar mixture.

2.2 High reactivity – Catalysts with high TONs and/or initial TOFs. As stated before, a variety of different metal based-catalyst systems (including binary and bifunctional ones) has been described in the literature for COC formation. Nonetheless, most of them require high catalyst loadings and only a limited amount of examples exhibit very high activities and a broad substrate scope. In this context, the development of highly efficient catalytic systems has been recently reported in the literature, obtained by careful design of new ligand scaffolds/structures in order to improve the CO₂ coupling to epoxides with high turnover numbers (TONs) and (initial) turnover frequencies (TOFs).

For example, Ghosh *et al.*⁴⁷ discovered a highly active, easily accessible Co(III) catalysts based on bisamido-bisamine ligands (**8**; Scheme 4). In an attempt to enhance the catalytic activity of this system, electron withdrawing groups were installed in the ligand framework, increasing thereby the Lewis acidity of the metal center. These air and thermally stable Co(III) complexes display good activity and selectivity towards COC formation, displaying linear proportionality between the experimentally derived TOF and the electron-withdrawing nature of the ligands. Specifically, the most active (Lewis acid) catalyst was the one based on the dichlorinated ligand (Scheme 4), employed in conjunction with DMAP as co-catalyst in 1:2 molar ratio. With this binary catalyst, propylene oxide was converted to the corresponding COC in 3 h, measuring an

average TOF of 662 h⁻¹ (conditions: cat = 0.05 mol%, DMAP = 0.1 mol%, $p(CO_2) = 2.0$ MPa, T = 130 °C). Moreover, this catalytic system exhibits a broad substrate scope, including aromatic an aliphatic terminal epoxides as well as some internal epoxides (*vide infra*) though these latter were converted at a relatively high reaction temperature of 150°C.

Scheme 4. Structures of successful metal complexes exhibiting high catalytic activity for COC synthesis.

Another interesting example was described by Capacchione and co-workers⁴⁸ who developed a catalytic system based on an abundant and non-toxic metal (Fe). A dinuclear Fe(III) complex coordinated by dithioether-triphenolate based ligands (9; Scheme 4) was devised, relying on the soft donor properties of the sulfur ligands to increase the Lewis acidity of the metal centers in comparison with catalysts based on N-and O- ligands, which have been extensively described in the literature. These labile Fe-S coordination patterns facilitate the coordination of the epoxide to the hard Fe (III) metal centers promoting the formation of COC by a subsequent ring-opening step of the coordinated substrate by the nucleophilic co-catalyst. Thus, by combining this binuclear Fe(III) complex with TBAB as nucleophilic additive, an active catalytic system for the conversion of propylene oxide to the corresponding COC observing TON and TOF values of 3480 and 580 h⁻¹, respectively (conditions: **9** = 0.025 mol%, TBAB = 0.1 mol%, $p(CO_2) = 2.0$ MPa, t = 24 h, T = 100 °C). So far, this is the highest reported TOF reported for an iron-based catalyst.

The use of amino-phenolate ligands can be considered of prominent importance in the field of CO_2 coupling catalyst development, as a result of their flexible coordination behavior. The coordination geometry around the metal center is different from the observed salphen planar geometry,¹³ notably changing the number of donor atoms in the plane of the metal and the ability to activate more sterically congested substrates.^{25,43} To date several amino(triphenolate) complexes have been reported and employed as catalysts for the CO_2 coupling to epoxides. For instance, recent work carried out by Yao and co-workers describes the synthesis and catalytic application of ethylenediamino bridged lanthanide phenolate complexes (M = Yb, Y, Sm, Nb (7); Scheme 4).⁴⁹ Propylene oxide was selected as a benchmark substrate to optimize the catalytic activity of **7** choosing TBAI as the nucleophilic co-catalyst, affording a maximum TOF of 4000

h⁻¹ (conditions: 7 = 0.01 mol%, TBAI = 0.04 mol%, T = 85 ° C, $p(CO_2) = 0.7$ MPa, t = 1 h).

The contributions from Kleij *et al.*^{42,43} are prominent examples of amino(triphenolate) based catalysts, in particular the results obtained for Al-based catalysts. This earth abundant, non-toxic Lewis acidic metal allowed the preparation of several robust amino(triphenolate) catalysts (Figure 1, **4a-d**). When tested as catalysts for CO₂ coupling to terminal epoxides in the presence of an appropriate co-catalyst, complex **4d**, having a double chloro-substitution on each phenolate unit, turned out to be the most active species. Notably, for CO₂ coupling reactions carried out with 1,2-epoxyhexane, the synergic effect between **4d** and PPN-Br, gave quantitative conversion to the corresponding cyclic carbonate (conditions: **4d** = 0.0005 mol%, PPN-Br = 0.05 mol%, $p(CO_2) = 1.0$ MPa, T = 90° C, t = 2 h), measuring an initial TOF of 36000 h⁻¹ (TON >100000 after t = 18 h), which is the highest reported to date for a single-site Al(III) based catalyst. Interestingly, when tested under the same conditions, Al(III) amino(triphenolate) complex **4d** (0.0005 mol%; co-catalyst 0.05 mol%) exhibited higher activity (TOF = 24000 h⁻¹) than the bimetallic Al(III) complex **1** published by North (TOF = 15000 h⁻¹), employed using here TBAI as the nucleophilic co-catalyst.⁴²

Porphyrin-based catalysts are another class of powerful catalytic systems towards CO₂ coupling with oxiranes. These catalysts are characterized by a planar geometry, which is beneficial for the coordination of terminal epoxides. Moreover, they can be used for the development of bifunctional molecular catalyst, to evaluate the effect of the type of central metal atom and of the embedded co-catalyst. The most noticeable example is the work of Ema and co-workers.⁵⁰⁻⁵² Initially, utilizing bifunctional metalloporphyrins complexes containing both a Lewis acid (LA) centre and nucleophilic peripherical pendants (1:4 LA/co-cat site ratio) within the same molecular structure (**6**; Scheme 4),

they have measured one of the highest TON for homogeneous metal based catalysts.⁵⁰ In particular, a TON of 103000 (after t = 24 h) and initial TOF of 12000 h^{-1} (measured after t = 1 h; conditions: 6 = 0.0008 mol%, T = 120° C and $p(CO_2) = 1.7 \text{ MPa}$) were observed for a Mg(II) based bifunctional catalyst 6, obtained after careful optimization of the porphyrin structure in terms of the type of the Lewis acidic metal center and nucleophilic co-catalyst. To further enhance the catalytic activity of these bifunctional Mg(II) porphyrin systems, a Mg(II) porphyrin complex ligated to eight tetraalkylammonium bromide groups (*i.e.*, a 1:8 LA/co-cat site ratio) was prepared.⁵¹ Consequently, owing to the increased number of anionic nucleophilic centers tightly coordinated to the cationic catalyst molecule, higher TON were achieved after t = 24 h (TON = 138000) and an increased initial TOF of 19000 h^{-1} (conditions: cat = 0.0005 mol%, $p(CO_2) = 1.7$ MPa, T = 120 °C). For these bifunctional Mg(porphyrin) based catalysts, the authors suggested a cooperative effect of embedding the nucleophilic moiety (Br) and the Lewis acidic metal center in a tight coordination sphere, leading to a simultaneous epoxide activation/nucleophile attack. It was indeed observed that by increasing the number of nucleophilic centers associated through ionic interactions to the same porphyrin framework the measured TONs and TOFs were higher.

In order to further address the activity profiles of bifunctional metalloporphyrin catalysts, the same authors initiated the development of binuclear and trinuclear versions of these bifunctional catalytic systems with the aim to further increase the observed TONs and TOFs.⁵² The overall catalytic activity of the trinuclear porphyrin **11** (TOF = 6500 h⁻¹) is indeed higher than observed for dinuclear Mg(porphyrin) **10** (Figure 2; TOF = 5100 h⁻¹) and the corresponding mononuclear species **6** (TOF = 2500 h⁻¹) when employed in the same experimental conditions (cat = 0.0003 mol%, T = 120° C, $p(CO_2) = 1.7$ MPa, t = 24 h) for the conversion of 1,2-epoxyhexane to the

corresponding COC. The activity on a per active site basis (*i.e.*, per Mg center) shows that the metal sites in the dinuclear and trinuclear complexes **10** and **11** act virtually independently with slightly lower TOF/Mg center values and no observable cooperativity between the individual metal sites (Figure 2). The lower TOF value per active center observed for trinuclear complex **11** may be ascribed to the reduced LA/co-cat ratio (1:3 for **11** compared to 1:4 for **6**). Also, the observed solubility of complex **11** in neat epoxide was lower than for **10** and **6**, possibly affecting the overall system activity.

The maximum TOF observed for the trinuclear Mg(porphyrin) **11** complex was 46000 h^{-1} (Figure 2) and maximum TON being 220000 (0.0003 mol% **11**, 72 h, 120°C) with a normalized TOF/Mg center of 15333 h^{-1} . Unfortunately, the separate influence of the metal center on the catalytic turnover was not reported (*i.e.*, the activity of the non-metalated porphyrin scaffold) although Caló and co-workers previously demonstrated that bromide and iodide nucleophiles are also efficient catalysts in particular at high reaction temperatures (T > 100 °C).⁵³

Figure 2. Mononuclear, binuclear and trinuclear Mg(porphyrin) based catalysts used for CO_2 /epoxide coupling reaction. Conditions: 1,2-epoxyhexane as substrate, 120°C, 1.7 MPa of CO_2 , 24 h, cat = 0.0003 mol%.

The same study was extended to less Lewis acidic Zn(II)porphyrin based catalysts.⁵² Although the bifunctional Zn(II) catalysts demonstrate somewhat lower initial activity than the corresponding Mg(II)porphyrin, they have shown to be more robust at higher temperature. The trinuclear Zn(II) based catalytic system was active for 5 days, displaying a TON of 310000 and an average TOF of 2580 h⁻¹ (conditions: cat = 0.0003 mol%, $p(CO_2) = 1.7$ MPa, T = 120 °C). Its robustness was further proved by employing this catalyst for t = 5 days at T = 160 °C, observing no appreciable catalyst decomposition whereas under the same experimental conditions the trinuclear Mg-based catalyst **11** decomposed. Further investigations focused on mononuclear species **13** comprising of two covalently bonded porphyrin rings (cf. **12** and **13**, Figure 3). Complex **13** displays an expected higher activity than the corresponding mononuclear mono-porphyrin species **12**, indicating the importance of a higher local concentration of bromide nucleophile supported by the observed TOFs (8500 h⁻¹ for **13** *vs.* 5700 h⁻¹ for **12**; conditions: cat = 0.0003 mol%, $p(CO_2) = 1.7$ MPa, T = 120 °C, t = 3 h).

Figure 3. Zn(porphyrin) 12 and Zn-bis(porphyrin) 13 based complexes used for comparative reasons. $R = -O(CH_2)_6 NBu_3Br$.

3. CONVERSION OF INTERNAL EPOXIDES AND OXETANES

While formation of COCs starting from activated and unactivated terminal epoxides has been extensively covered in the literature over the past ten years, synthetically challenging di- and trisubstituted epoxides have been seldom addressed as CO₂ coupling partners. Nevertheless, the preparation of COCs from internal epoxides represents an ambitious target for the development of CO₂ based protocols starting from synthetically accessible epoxides that are easily prepared using standard epoxidation methodology from (renewable) olefinic compounds, e.g. unsaturated fatty acids⁵⁴ and terpenes.²⁶ Not only these naturally occurring compounds can be used without or with minimal prior purification, other promising substrates can be also be obtained as a by-product of the biorefinery industry. For example, 1,4-cyclohexadiene is a common by-product of unsaturated fatty acid metathesis derived from the oleochemical supply chain. This simple bis-alkene can be readily converted to the corresponding mono- and di-epoxide or partially reduced to give CHO in a sustainable fashion. The unsaturated epoxides have been employed with some success for the preparation of unsaturated polycarbonates which can easily undergo post-polymerization functionalization.^{32,33} Moreover, the corresponding cyclic carbonate product, cis-cyclohexadiene carbonate is the simplest organic carbonate obtained from microbial/fungi methabolism. Interestingly, a recent review from Yue et al.²⁷ has nicely covered the occurrence of many natural COCs of which the larger part involves di- and tri-substituted carbonate patterns, providing further motivation for the development of catalytic procedures for internal epoxide/CO₂ couplings.

These internal epoxides have so far proven to be mostly unreactive when employing salen and salphen based metal catalyst (with the notable exception of CHO, *vide infra*). In particular, the Zn(salphen) system **2** (Figure 1) reported by Kleij and co-workers showed a limited catalytic activity towards the conversion of internal epoxides^{38,39} observing some degree of success when working with a CO₂-rich or supercritical CO₂ reaction medium.⁵⁵ The bimetallic μ -oxo Al(salen) complex **1** (Figure 1) reported by

North *et al.* also exhibited some success when employed as CO_2 coupling catalyst with internal epoxides, observing quantitative formation of the corresponding cyclic carbonates starting from 1,2-diphenyloxirane and 1,2-dimethyloxirane. Although carried out under rather mild reaction conditions ($\mathbf{1} = 2.5 \text{ mol}\%$, TBAB = 2.5 mol%, T = 60 °C, $p(CO_2) = 1.0$ MPa, t = 72 h, Entries 1-2 of Table 2), these reactions require relative long reaction times.⁵⁶

Figure 4. Homogeneous metal based catalysts active towards formation of cyclic carbonates from internal epoxides.

Homogenous metal catalysts characterized by a more flexible structure have also been tested in the context of CO₂ fixation on internal epoxides. Amino(trisphenolate) based catalytic systems, in particular, have shown to be more active towards internal epoxides conversion than salen and salphen based catalysts. Kleij and co-workers have shown that differently substituted Fe(III)amino(trisphenolate) catalysts were active catalysts for the conversion of 2,3-epoxybutane (2,3-dimethyloxirane) to the corresponding COC $(14c \text{ or } 15 = TBAB = 0.5 \text{ mol}\%, T = 85 ^{\circ}C, p(CO_2) = 1.0 \text{ MPa}, t = 18 \text{ h}, \text{Entries } 3-4,$ Table 2).⁵⁷ In an attempt to broaden the scope of these Fe(III)amino(trisphenolate) catalysts, the same group reported on the conversion of different internal epoxides to the corresponding COCs using 14a as catalyst:⁵⁸ despite the relatively low applied CO₂ pressure, in all cases moderate to good yields were observed (yield: 39-69 %, 14a = TBAB = 0.5 mol%, T = 85 °C, $p(CO_2) = 0.2$ MPa, t = 18 h, Entries 5-7, Table 2). Differently from what previously was reported for terminal epoxides, TBAB is the preferred co-catalyst for these internal epoxides as a probable result of its reduced size of bromide compared to iodide. The use of an iodide based nucleophile significantly reduced the observed yields of the COC products.

As mentioned previously, the use of Al(III)amino(triphenolate) catalysts improved the overall catalytic system activity while broadening the substrate scope including internal epoxides (Entries 8-9, Table 2). Most internal epoxides were quantitatively converted to the corresponding COCs at low catalyst loadings, although higher reaction temperatures were required to achieve quantitative conversions (4 examples, yields: 55-98 %, **4d** = TBAB = 0.5 mol%, T = 90 °C, $p(CO_2) = 1.0$ MPa, t = 42 h).⁴² Nevertheless, this catalytic system is not only one of the most active reported to date, but also one of the most versatile in terms of substrate scope.

Recently, Muralidharan and co-workers reported on the synthesis of Zn(II) (**16a**) and Cu(II) (**16b**) complexes based on 2,5-bis{N-(2,6-diisopropylphenyl)iminomethyl}-pyrrole ligands among others.⁵⁹ These complexes have shown activity towards conversion of internal epoxides to their corresponding COCs under mild conditions (2 examples, yields: 36-42 %, cat. = 2.5 mol%, TBAB = 5 mol%, T = 25 °C, $p(CO_2) = 0.1$ MPa, t = 24 h, Entries 10-11, Table 2). Although the reported yields are not quantitative, the attractive feature of these catalysts is that they are active at r.t. and at low CO₂ pressure.

More flexible lanthanide bridged (polyphenolate) catalysts such as 7 have been employed with limited success as catalyst for CO₂ fixation on internal epoxides. In particular, 2,3-epoxybutane (mixture of isomers, 22:78 *cis/trans*) was converted in 66 % yield to the corresponding COC with overall retention of configuration (19:81 *cis/trans*; 7 = 0.2 mol%, TBAB = 0.8 mol%, T = 85 °C, $p(\text{CO}_2) = 1.0 \text{ MPa}$, t = 45 h, Entry 12, Table 2).⁴⁹

The bisamino-bisamide Co(III) complex **17** was also active towards the formation of COCs from internal epoxides. Although the reported scope is limited to a few cyclic scaffolds and the operating temperature is rather high (150 °C), they were able to obtain cyclooctene carbonate in quantitative yield (Entry 13, Table 2).⁴⁷ This can be considered as the first example cyclooctene carbonate synthesis *via* direct CO₂ coupling, as this compound is generally obtained in only moderate yields *via* Pd(II) catalyzed oxidative coupling of CO with diols.⁶⁰

Table 2. Metal catalyzed conversion of internal epoxides to the corresponding cycliccarbonates via CO_2 coupling.^a

Entrv ^b	\mathbf{R}^1	\mathbf{R}^2	cat.	co-cat	Solv	Т	t	<i>p</i> (CO ₂)	Conv
Linu y	N	N	(mol%)	(mol%)	50171	(°C)	(h)	(MPa)	(%)
1^{47}	CH	C.H.	1	TBAB	neat	85	72	1	>99
1	06115	06115	(2.5)	(2.5)	neut	05	12		
2^{47}	CH ₃	CH.	1	TBAB	neat	85	24	1	49
-		CHI3	(2.5)	(2.5)		05	2 .	1	12
348	CH	CH_3	15	TBAB	MFK	85	18	1	83
5	CHI3	(trans)	(0.5)	(5)		05	10	1	
A^{48}	CH.	CH_3	14c	TBAB	MEK	85	18	1	82
	CHI3	(trans)	(0.5)	(5)		05	10	1	
5 ⁴⁹	CH	CH	14 a	TBAB	MEK	85	18	0.2	53
2	CHI3	CHI3	(0.5)	(5)		05	10	0.2	50
6 ⁴⁹	CH.	CH_3	14a	TBAB	MEK	85	18	0.2	39
0	CHI3	(cis)	(0.5)	(5)		05	10	••	07
7^{49}	CH	CH_3	14 a	TBAI	MEK	85	18	0.2	69
1	CII3	(trans)	(0.5)	(5)		05	10	0.2	07
8 ³³	CH	CH	4d	TBAB	MEK	90	42	1	84
0	06115	06115	(0.5)	(5)		70			$(82)^{c}$
9 ³³	CH.	CH_3	4d	TBAB	MEK	90	42	1	99
,	0113	(trans)	(0.5)	(5)		20	12	1	$(98)^{c}$
10^{50}	CH	CH_3	16 a	TBAB	neat	25	24	0.1	42^d
10	CII3	(cis)	(2.5)	(5.0)	neut	25	21	0.1	12
11^{50}	CH.	CH_3	16b	TBAB	neat	25	24	0.1	36^d
11		(cis)	(2.5)	(5.0)	neat	<u> </u>	2 .	0.1	50
40		CH_3	7	TBAB		84	45		66 ^e
12^{40}	CH_3	(78%	(0,2)	(0.8)	neat			1	
		trans)	(0.2)	(0.0)					
13 ³⁸	-(('H_)	17	DMAP	neat	150	5	2	83 ^f
	(0		(10-3)	$(2 \cdot 10^{-3})$	nout	150	~	-	00
a A	Abbreviat	tions use	d: TBAB	= tetrabu	tylammon	ium br	omide,	, DMAP	=

dimethylaminopyridine, MEK = methyl ethyl ketone. N.d. stands for not determined/reported. ^{*b*} References given. ^{*c*} Isolated yields in brackets. ^{*d*} Selectivity cis/trans = 95:5. ^{*e*} Selectivity cis/trans = 19:81. ^{*f*} Selectivity cis/trans = 90:10.

One-pot olefin-to-COC conversion was also applied to the conversion of internal olefins, although only for the case of cyclohexene oxide (CHO). Remarkably, *cis*-cyclohexene carbonate (CHC) was selectively formed in 84% yield, which is one of the highest reported yields for this type of reaction. The reaction conditions included the use of a nearly stoichiometric amount TBHP and low loading of the epoxidation catalyst $(MoO_2(acac)_2 = 0.1 \text{ mol}\%)$ operated at 100°C for 1 h, whereas in the second step TBAB (5 mol%) was used as catalyst at 140 °C for 6 h at a CO₂ pressure of 3.0 MPa for the epoxide/CO₂ coupling reaction (Scheme 5).⁶¹

Scheme 5. One-pot conversion of cyclohexene oxide (CHO) to the corresponding cyclohexene carbonate (CHC). TBHP = *tert*-butyl hydroperoxide.

Compared to epoxides, oxetanes are more challenging substrates for direct coupling reactions involving CO_2 because of their lower reactivity; although this is not due to difference in ring strain energy released upon ring-opening as these values are rather comparable to epoxides.⁶² There are other kinetic barriers associated to their conversion, features that are not yet fully understood. The resulting six-membered COC products from oxetane/CO₂ coupling reactions have lower thermal stabilities. Five-membered COCs are thermodynamically more stable than the corresponding six-membered COCs: the latter, in particular, undergo easy ring-opening polymerization (ROP) processes leading to polycarbonates, while this process is thermodynamically disfavored for five-

membered COCs.^{63,64} This reactivity behavior has been studied in detail by computational methods.⁶⁵ For example, coupling of trimethylene oxide with CO₂ occurs, at least in part, through the formation of a 6-membered cyclic carbonate intermediate. Ring-opening of trimethylene carbonate has an enthalpy of -11.3 kcal·mol⁻¹ in the gas phase, which is more exothermic than the values calculated for the ring-opening of five-membered cyclic carbonates (-1 to -8 kcal·mol⁻¹) under similar conditions, and explains why ring-opening polymerization of 6-membered cyclic carbonates is feasible (*vide infra*). Ring-opening of 5-membered cyclic carbonates requires loss of a CO₂ molecule as an entropy gain to compensate the unfavorable free energy barrier of the process. Sixmembered COCs can be considered as highly valuable intermediates/monomers for (functionalized) polycarbonate applications if selectively prepared.

Selective six-membered COC preparation from direct coupling to oxetanes has been literature, seldom addressed in the the main examples including the M(aminotriphenolate) catalysts (M = Al, Fe) developed by Kleij and co-workers, and the selective depolymerization strategies reported by the group of Darensbourg. The group of Kleij tested both Fe(III) and Al(III) based amino(triphenolate) catalytic systems for the conversion of oxetanes to the corresponding 6-membered cyclic carbonates.^{42,58} Al(III) based catalyst **4d** was employed as catalyst for the conversion of unsubstituted trimethylene oxide, and quantitative conversion to the corresponding trimethylene carbonate was observed in 4 h (Entry 1, Table 3)⁴² with non-observable formation of the polycarbonate side product.

The group of Darensbourg reported on Co(III) and Cr(III) salen complexes (**18a-b**; Figure 5) active towards the selective formation of six-membered cyclic carbonates and polycarbonates starting from substituted and unsubstituted oxetanes.⁶⁶ Co(III) salen

complex **18a** was active towards the formation of trimethylene carbonate by coupling of CO_2 with trimethylene oxide in the presence of TBAB as co-catalyst (Entry 3, Table 3) however with limited selectivity towards the cyclic carbonate product. This behavior is ascribed to the spontaneous ring-opening polymerization of six- and seven-membered COCs which occurs at all temperatures (ΔH_p is negative and ΔS_p is positive), as depicted in Scheme 6.⁶⁷⁻⁶⁹

18a: R = *t*Bu; M = Co(II), X = none **18b:** R = *t*Bu; M = Cr(III), X = CI

Figure 5. Salen complexes employed for the synthesis of six-membered COCs from oxetanes.

Scheme 6. Spontaneous ROP of six-membered cyclic carbonates facilitated by a metal catalyst.

Similar results were obtained for the catalytic activation of trimethylene oxide with Cr(III) salen catalysts: although in this case lowering the operating temperature from 70 to 60 °C resulted in much lower conversion levels, the selectivity towards the formation of the corresponding trimethylene carbonate increased dramatically (cf. Entries 4 and 5, Table 3).⁷⁰ Also, the applied CO₂ pressure plays an important role in the overall process selectivity, since it has been shown also computationally that CO₂ insertion in the salen based M–alkoxide is the rate-limiting step (*cf.*, Entries 5 and 6, Table 3).^{31,71} Darensbourg and co-workers also reported on a binary systems composed of a simple metal complex, V(acac)₂, and an onium salt (TBAB) active towards the selective preparation of trimethylene carbonate starting from trimethylene oxide.⁶⁴ In particular, when adding a non-coordinating co-solvent (toluene), trimethylene carbonate was formed in 4 h (Entries 8-10, Table 3) in high chemo-selectivity and conversions of up to 84%.

Coupling reactions of CO₂ with more demanding 3,3'-disubstituted oxetanes have shown, so far, lower degrees of success (Entries 2, 7 and 11-12; Table 3) giving lower conversions and significantly poorer selectivities towards the COC as a result of competitive ROP of the product. This challenge still remains to be solved as to capitalize on the use of six-membered COC in organic synthesis. The 3,3'-dimethyl substituted oxetane was converted into its COC using Al(aminotriphenolate) complex **4d**/TBAB as binary catalyst, affording the targeted product with moderate selectivity (54%) and low yield (26%; Entry 2, Table 3).⁴² Alternatively, the use of 3benzyloxymethyl-3-methyloxetane catalyzed by Cr(salen) complex **18b** and TBAN₃ resulted in the preferred formation of the polycarbonate species (Entry 7, Table 3). This behavior has been ascribed to an increased steric hindrance of the substituents at 3position.⁷² Similar reactivity behavior was also noted by Kleij and co-workers for the substrates 3,3-dimethyloxetane and 3-methyl-3-methoxymethyloxirane using Al(III) or Fe(III) aminotriphenolate based catalysts (Entries 2 and 11-12, Table 3).^{42,58} In general, more sterically hindered substrates such as the 3,3-disubstituted oxetanes require increased reaction times and give modest results in terms of conversion and selectivity towards the corresponding COCs. Thus, the selective, high yield synthesis of substituted six-membered COCs through direct CO_2 /oxetane coupling still remains an open challenge.

Table 3. Catalytic conversion of oxetanes and CO₂ into six-membered COCs.^a

Entry ^b	R ¹	R ²	cat. (mol%)	co-cat (mol%)	Solv.	T (°C)	t (h)	<i>p</i> (CO ₂) (MPa)	Conv. (%)	Sel. (%)
1 ³³	Н	Н	4d (0.5)	TBAB (2.5)	MEK	70	4	1	95	>99
2 ³³	CH ₃	CH ₃	4d (2.5)	TBAB (2.5)	MEK	70	66	1	26	54
356	Н	Н	18a (0.3)	TBAB (0.6)	neat	110	24	3.5	46.7	79.1
4 ⁶⁰	Н	Н	18b (0.3)	TBAB	Tol	70	24	3.5	73.7	37.4
5 ⁶⁰	Н	Н	18b (0.3)	TBAB (0.6)	Tol	60	24	3.5	33.9	86.7
660	Н	Н	18b (0.3 %)	TBAB (0.6)	Tol	60	24	1	46.6	53.5
7 ⁶¹	Me	OMe	18b (1.2·10 ⁻²)	$TBAN_3$ (2.4·10 ⁻²)	neat	110	24	3.5	22.4	n.d.
8 ⁵⁵	Н	Н	$VO(acac)_2$ (2.5)	TBAB (2.5)	neat	60	4	3.5	57	98.2
9 ⁵⁵	Η	Н	$VO(acac)_2$ (5.0)	TBAB (5.0)	neat	50	4	3.5	56	>99
10 ⁵⁵	Η	Н	$VO(acac)_2$ (5.0)	TBAB (5.0)	Tol	60	4	3.5	84	>99
11^{49}	CH ₃	CH ₃	14a (0.5)	TBAI (5.0)	MEK	85	66	0.2	28	n.d
12 ⁴⁹	CH ₃	CH ₂ OH	14a (2.5)	TBAB (2.5)	MEK	85	66	0.2	38	n.d.

^{*a*} Abbreviations used: TBAB = tetrabutylammonium bromide, TBAI = tetrabutylammonium iodide, TBAN₃ = tetrabutylammonium azide, MEK = methyl ethyl ketone, Tol = toluene. N.d. stands for not determined/reported. ^{*b*} References given.

4. CONTROL OVER SELECTIVITY FEATURES IN COC PREPARATION

4.1 Chemoselectivity: the case of cyclohexene oxide (CHO). Cyclohexene oxide (CHO) can be regarded as a typical benchmark substrate to test simultaneously the activity and chemoselectivity of a given CO₂ coupling catalyst. Most of the catalytic systems reported to date couple CHO unselectively with CO₂ to give the corresponding bicyclic carbonate (CHC) along with substantial amounts of the corresponding polycarbonate PCHC (Table 4). Unlike polycarbonates derived from linear (acyclic) epoxides, the resulting polymerization product poly(cyclohexene)carbonate (PCHC) is not prone to undergo (spontaneous) depolymerization via a backbiting mechanism (vide infra).65,73 The formation of the cyclic carbonate is generally prevented because of the ring strain placed on the five-membered carbonate ring in order to accommodate the conformational requirements of the cyclohexyl ring, and as such the activation barrier for CHC formation is $>80 \text{ kJ} \cdot \text{mol}^{-1}$ higher in energy than that of PCHC.^{74,75} Therefore, the development of catalytic systems which can selectively convert CHO into the corresponding polycarbonate PCHC has reached a high level of sophistication, with seminal contributions reported by the groups of Darensbourg,^{22,76} Coates,^{77,78} Nozaki,^{79,80} and Lu.81,82

In search of catalytic systems for the synthesis of PCHC providing alternatives to the well-known Co(III) and Cr(III) salen complexes,⁵ Nozaki and co-workers reported on the use of tetravalent Ti(IV) and Ge(IV) complexes coordinated by a trianionic $[N_2O_2]$ -tetradentate (BOXDIPY) ligand and a monoanionic ancillary ligand to mimic (salen)MX complexes. Different tetravalent metal complexes such as **19a** (Figure 6, M = Ti) and **19b** (Figure 6, M = Ge) were designed that are active towards the selective formation of PCHC (**19a** = **19b** = PPN-Cl = 0.005 mol%, $p(CO_2) = 2.0$ MPa, T = 60

°C, t = 12 h). Although under these conditions the yields of PCHC were quite low (46 % for **19a** and 36 % for **19b**, respectively), the resulting PCHC is highly regular (>99 % carbonate links) with respectable M_n values of 13000–14000 and polydispersities in the range 1.12-1.27.⁸³ This recent work further demonstrates that the formation of PCHC is fairly easy with a proper catalyst design, whereas the *selective* formation of the corresponding COC (CHC) is more challenging.¹¹

Figure 6. (BOXDIPY)MCl complexes 19a and 19b used for CHO/CO₂ coupling reactions.

Examples of selective *and* high yield preparation of CHC *via* CO_2 coupling reactions using CHO as substrate are still limited although some promising results have been achieved in the last years.^{44,56,61,84,85} Pescarmona and co-workers reported on a binary Zn(II)(salphen) **2**/TBAI catalytic system (see for the structure of **2** Figure 1) operated under scCO₂ to boost the selectivity and yield towards the COC product. Interestingly, in a conventional reactor setup (autoclave reactor), up to reaction temperature of 105°C no observable formation of carbonate product from CHO was noted.^{38,39} The use of scCO₂ turned out to be crucial as it allowed for all reactants to (partially) co-exist in one phase giving a moderate yield of the corresponding CHC (yield = 38 %; reaction conditions: $\mathbf{2} = 0.05 \text{ mol}\%$, TBAI = 0.25 mol%, no co-solvent, $p(\text{CO}_2) = 8.0 \text{ MPa}$, T = 80 °C, t = 5 h).⁵⁵

Table 4. Metal-catalyzed conversion of CHO to CHC and/or PCHC.^a

Entry	cat (mol%)	co-cat (mol%)	Т (°С)	t (h)	<i>p</i> (CO ₂) (MPa)	Conv. (%)	CHC (%)	PCHC (%)
1 ³²	3 (0.1)	_	80	24	1.0	70	<1 ^b	> 99
2 ³²	3 (1.0)	PPN-Cl (2.0)	80	24	0.1	90	>99 ^c	0
373	14a (0.5)	PPN-Cl (0.5)	85	3	8.0	98	-	> 99
4 ⁷³	14a (0.5)	PPN-Cl (5.0)	85	3	8.0	85	96 ^c	0

^a All reactions were performed without solvent. ^b Trans-CHC. ^c Cis-CHC.

Both the group of Kleij and Williams developed catalytic systems which can *selectively* produce CHC or PCHC by slight changes in the experimental conditions. For instance, the previously mentioned dinuclear Fe(III) complex 3^{41} reported by Williams and co-workers (Figure 1) proved to be also active in the context of CO₂ coupling reactions involving internal epoxides. Particularly, in the case of CHO this catalyst could selectively produce *cis*-CHC or PCHC by changing the operating pressure and cat/co-cat ratio (Entries 1 and 2, Table 4). At high CO₂ pressure ($p(CO_2) = 1.0$ MPa) and in the presence of catalytic quantities of the bimetallic catalyst **3** (*i.e.*, no nucleophilic co-catalyst added) exclusive copolymerization took place (CHO conversion up to 70 %)

thereby selectively obtaining the PCHC copolymer with good TONs of 694 (Entry 1, Table 4). The polycarbonate was of excellent quality: the resulting atactic co-polymer contained >99 % carbonate linkages and the M_n was 11700 with a narrow molecular weight distribution of 1.13. ¹H NMR peak assignment and MALDI-ToF mass spectral analysis of the PCHC obtained at low CHO conversions showed a major series of peaks corresponding to PCHC chains with chloride end-groups resulting from the incorporation of a chloride originating from the catalyst structure **3**. Only traces (<1 %) of the back-biting by-product, *trans*-CHC carbonate, were detected. Under milder reaction conditions (Entry 2, Table 4) and in the presence of higher loadings of catalyst **3** and a nucleophilic co-catalyst (PPN-CI) exclusive formation of *cis*-CHC was observed. This is the first example of a switchable catalyst for organic carbonate formation.

In their initial report on the use of Fe(III) amino(triphenolate) catalysts,⁵⁸ Kleij and co-workers noted that the coupling reaction of CHO with CO₂ generally led to moderate conversions and gave a complex mixture of cyclic and polycarbonates species containing both carbonate and ether linkages. The use of a Fe(III)amino(trisphenolate) catalyst (**14a**; Figure 4) resulted in the selective formation of CHC or PCHC from CHO in CO₂ rich/scCO₂ reaction media.⁸⁶ The presence of an equimolar amount of a nucleophilic organic salt containing a poor leaving group (PPN-CI) when compared to TBAB and TBAI suppressed the ring-closure reaction and selective and quantitative formation of PCHC was observed (cat/co-cat ratio 1:1; Entry 3, Table 4) under supercritical conditions. Since the catalysts employed were not chiral, an atactic polymer was obtained with $M_n = 6000$ which is lower compared to those obtained with other catalytic systems (*vide supra*); moreover, ¹H NMR/MALDI analysis of the polymeric product indicated that the polycarbonate chains were end-capped

predominantly with hydroxyl groups, suggesting that water was the main cause of the termination of the polymer growth (*i.e.*, being a chain-transfer agent). As a further proof, performing the reaction under more strictly anhydrous conditions in a Fischer-Porter reactor provided much higher M_n values of nearly 19000. When using sufficiently large excess of the co-catalyst PPN-Cl (cat/co-cat ratio 1:10, Entry 4, Table 4), the displacement of the metal-bound carbonate intermediate occurred efficiently and *cis*-CHC became the only carbonate-based product formed.

Generally, the formation of the *cis*-CHC is thermodynamically disfavored and requires a mechanism involving a double-inversion of the original CHO configuration as shown in Scheme 7. It has been proposed that an excess of PPN-Cl can compete for coordination to the Fe metal center thereby displacing the intermediate hemi-carbonate giving an outer-sphere type mechanism. Performing the reaction in the presence of substoichiometric quantities of PPN-Cl allows for clean copolymerization to occur through insertion of additional molecules of CHO and CO_2 in the growing polymer chain.⁴¹ The formation of *trans*-CHC is a result of carbonate back-biting, and generally believed to proceed with formal inversion of configuration.

Scheme 7. Proposed formation routes for the formation of *trans*-CHC (top) and *cis*-CHC (below) using Fe-catalysis.

Recent work from Müller and co-workers using a Cr(III) based catalyst (**20**; Figure 7) led to different conclusions.⁸⁷ This catalyst selectively produced PCHC in high selectivity (yield = 76 %; conditions: **20** = 1 mol%, PPN-Cl = 2.5 mol%, $p(CO_2) = 2.0$ MPa, T = 100 °C, t =3 h) and with high carbonate linkage content (97 %) although the observed M_n was quite low (3831). When the reaction was performed in the presence of an appropriate chain transfer agent (1,8-octanediol) and tetrabutylammonium chloride (TBAC), a longer reaction time was needed to achieve a similar yield (6 h, 69 %). However, in this case the chemo-selectivity dropped significantly and a mixture of polycyclohexene-ethercarbonate (77 %) and CHC (23 %) was obtained. Interestingly,

the CHC formed consisted of both *trans* and *cis* isomers indicating different mechanistic manifolds occurring simultaneously. The restricted geometry of the cyclohexene ring was suggested to disfavor an inner-sphere CHC formation step, promoting its formation *via* an alternative backbiting pathway triggered by dissociation of the polymer chain from the coordination sphere of the Cr(III) complex. *Anti*-attack of a free carbonate end-group on the cyclohexene ring in a chair conformation according to a $S_N 2$ mechanism provides *cis*-CHC while *trans*-CHC is obtained by the same carbonate nucleophilic attack on the cyclohexene ring though in a boat conformation (less favoured due to the high ring strain), resulting in a mixture of both isomers with *cis*-CHC being the major one.

Figure 7. Metal-catalysts selective towards CHO conversion to CHC or PCHC.

4.2 Diastereoselective conversions. Whilst the vast majority of the developed synthetic approaches to exploit CO_2 as a molecular synthon have focused on relatively simple synthetic transformations, the preparation of organic molecules of higher complexity by means of stereo-chemical methodology has received much less attention. For example, optically active cyclic carbonates can be regarded as precursors of

diasteoropure *cis*-diols, which are important constituents of natural compounds with pharmaceutical interest.⁸⁸ Various routes have been reported over the past years⁵ to obtain these heterocyclic derivatives with high degrees of stereo-control including CO_2 conversion reactions using unsaturated alcohols.^{45,89} Several contributions have demonstrated that stereo-selective coupling reactions between CO_2 and 2,3-disubstituted oxiranes epoxides may be possible by a judicious choice of a suitable metal catalyst that is able to control formal inversion or retention of the original configuration of the epoxide reaction partner.

Scheme 8. Different routes for the stereo-selective formation of COCs from CO_2 and 2,3-disubstituted oxiranes. M stands for metal catalyst, Nu is short for nucleophile.

Two main pathways have been identified (Scheme 8); (1) prior formation of a polymer intermediate via CO₂/epoxide coupling followed by depolymerization (backbiting mechanism) thus obtaining the corresponding product with inversion of configuration or, alternatively, (2) direct COC formation preserving the configuration of the starting material in the resulting product. The first route (1) was extensively investigated by Darensbourg and co-workers through experimental and theoretical studies, developing diastereo- and enantio-selective processes where effective catalytic systems based on Co(III) or Cr(III) salen complexes (Figure 5) were used in the presence of quaternary ammonium or phosphonium salts as co-catalysts.^{21,31,90-92} Such polymer degradation leading to a cyclic carbonate unit and a shorter polymer chain may occur through distinct pathways based on metal-bound or metal-free backbiting reactions (Scheme 8, route (1)). Although the mechanism depends on the substrate and the catalytic system chosen, generally backbiting processes are slower when the polymer is bound to the metal center preventing polymer degradation, while the metalfree anionic polymer backbites faster having a much lower free energy barrier than the metal-bound one.31,92

Both types of depolymerization may occur with carbonate or alkoxide backbiting. For example, when working at low CO₂ concentration, the operating mechanism is based on the metal-free alkoxide attack on the growing polymer chain carbonate moiety with inversion of stereochemistry, as a result of a lower activation barrier in comparison with the metal-free carbonate backbiting process (10 kcal·mol⁻¹).³¹ A remarkable exception is represented by the above mentioned coupling between CHO and CO₂, which is generally highly selective towards copolymer formation.⁷⁵ Although difficult, depolymerization of PCHC occurs exclusively in presence of catalytic quantities of **18b** (2 mol %) and an appropriate co-catalyst (TBAN₃, 4 mol %). Quantitative (> 99 %)

depolymerization of PCHC occurs in t = 170 h heating at T = 110 °C, producing selectively *trans*-CHC. This accounts for a preferential backbiting process involving a metal-bound alkoxide, with consequent retention of configuration and formal inversion of configuration for the overall CO₂ coupling/depolymerization process.⁷³ In general, when working under polymerization conditions (*i.e.*, high CO₂ and epoxide concentrations in the presence of a metal catalyst), the calculated alkoxide back-biting metal-free reactions have approximately half the free energy barrier of the metal-bound systems, thus suggesting that under these conditions indeed the metal-free alkoxide backbiting is the principal polymer degradation mechanism.⁹² The overall retention of configuration observed for route (2) is the result of two consecutive S_N2 reactions: an initial epoxide ring-opening by nucleophilic attack of the co-catalytic additive followed by CO₂ insertion, and a final carbonate ring-closure reaction.

In some cases both (or: at least two different) mechanisms may take place: for example, Kruper and co-worker reported on a Cr(III)porphyrin/DMAP binary system active towards the formation of cyclic carbonates from epoxides.³⁰ When starting from trans-2,3-epoxybutane, a quantitative conversion to the corresponding cyclic carbonate was achieved (conversion = 84 %, cat. = 0.013-0.07 mol%, Cr(porphyrin):DMAP = 1:4–1:10; $p(CO_2) = 5.0-5.4$ MPa, T = 100 °C, t = 20 h), observing however, a roughly 1:1 ratio of *cis*- and *trans*-isomeric COC products. This finding has been ascribed to the concomitant formation of both the COC and the corresponding (low molecular weight) polycarbonates. At the operating temperatures, the poly/oligo-carbonates readily undergo depolymerization with formation of the inversion product, i.e. cis-4,5dimethyl-1,3-dioxolan-2-one. On the contrary, when Nguyen and co-workers performed Co(III)TPP/DMAP similar reactions using а catalytic system (TPP tetraphenylporphyrin), 4,5-dimethyl-1,3-dioxolan-2-one was obtained in high yields (93–99 %, cat. = 0.04 mol%, Co(porphyrin):DMAP ratio = 1:2; $p(CO_2) = 2.0$ MPa, T = 120 °C, t = 9–20 h) and with a high degree of stereo-selectivity.⁹³ The use of both *cis*-and *trans*-2,3-epoxybutane as coupling partners gave the corresponding COCs with exclusive *retention* of configuration, supporting the proposed double inversion mechanism. This is in line with an initial coordination of the epoxide to the metal center (Lewis acid) followed by a Lewis base catalyzed ring-opening step (Scheme 9).

Scheme 9. Proposed mechanism for the formal stereo-chemical retention of configuration in the COC product arising from a coupling reaction between a 2,3-disubstituted oxirane and CO_2 . M stands for metal catalyst, and X is a nucleophilic species.

As mentioned previously, internal epoxide conversion was reported by North and coworkers using their well-known bimetallic Al(salen) catalyst 1 (Figure 1).⁵⁶ In this case, starting from diastereo-pure internal epoxide isomers (*cis* or *trans*) the corresponding COCs were obtained with overall retention of the configuration ([1] = [TBAB] = 2.5 mol%, T = 60 °C, t = 24–72 h, $p(CO_2) = 1.0$ MPa, yield = 26–99 %). Under these conditions, *trans*-stilbene epoxide, *cis*-2,3-epoxybutane, *cis*-cyclohexene epoxide and *cis*-cyclopentene epoxide were initially converted to the corresponding cyclic carbonates, followed by basic hydrolysis to the corresponding *cis*-diols in 45–90 % yield.

Since the overall configuration is retained in the hydrolysis step, CO₂ can be exploited as a temporary protecting group to afford *cis*-diols.²⁵ A wide-scope method for the formation of such *cis*-diols obtained from cyclic COCs having different ring sized (5–8) was only recently communicated: more than 18 different (multi)cyclic and hetero-(multi)cyclic oxiranes were converted to their corresponding COCs using **4d** (Scheme 4) as catalyst for these CO₂/epoxide coupling reactions (MEK as solvent, [**4d**] = 0.1–1 mol%, TBAB = 0.5–5 mol%, T = 70 °C, $p(CO_2) = 1.0$ MPa, t = 18–66 h, yield = 15–98 %, COC selectivity >99 % in all cases). The *cis* isomer of the COC was the major product (>95% in most cases) affording selectively the corresponding *cis*-diols after hydrolysis with a suitable base (15 examples; yield = 40–96 %).

Significant advances were also made in the work performed by Leitner *et al.*,⁵⁴ who described a different homogeneous catalytic system for the stereo-selective CO_2 coupling with internal epoxides derived from the oleochemical industry. The use of metal tetraheptylammonium silicotungstates (THA-M-Si-POM; POM = polyoxometalate) as catalysts gave rise to interesting results from the view point of yield and selectivity, while developing a mechanistic proposal. In particular, the

combination of the THA-M-Si-POM based on Cr and using TBAB as co-catalyst showed high conversions (95%) and selectivities (98% *vs.* 70% for TBAB used individually) under supercritical CO₂ conditions (T = 100° C, $p(CO_2) = 12.5$ MPa, t = 12 h, THA-Cr-Si-POM = TBAB = 2 mol%), since the POM catalyst is readily soluble in the mixture of epoxide substrate, COC product and scCO₂. A cooperative effect between both the POM structure and co-catalyst was suggested for this catalytic system: the nucleophile opens the epoxide while at the same time the POM structure, carrying negative charge, is able to coordinate/activate CO₂ (Scheme 10). As a result of this CO₂ activation mode, the reaction involving a double S_N2 pathway (preserving the original configuration) becomes much faster.

Scheme 10. Synergistic pathway for the combined POM/quaternary salt catalyst system (as depicted in reference 54; note that only one negative charge of the POM cluster is shown for clarity).

The same issue was addressed by Ema and co-workers,⁵¹ using Mg(II) and Zn(II) porphyrin based bifunctional complexes (Figure 1, complex 6) as active catalyst for the

synthesis of COCs. Although activation of true internal oxiranes was formally not achieved, kinetic studies to elucidate the reaction mechanism were performed using *trans*-deuterated-1,2-epoxyhexane as substrate. Complex **6** was able to catalyze the conversion of the epoxide to the corresponding product with retention of configuration, observing a 99:1 *trans/cis* ratio of the resulting isomeric cyclic carbonates. Such result accounts for a very selective process where the bromide ion of the co-catalyst attacks the epoxide, and not the CO₂, affording the *trans*-cyclic carbonate through a double inversion mechanism, as depicted in Scheme 9.

A noteworthy control over the diastereo-selectivity in the coupling between pure trans- or cis-2,3-epoxybutane and CO₂ was published by Kleij and co-workers⁹⁴ using the previously mentioned Fe(III)amino(triphenolate)/TBAX (X = halide) binary catalyst systems (Figure 4). Starting from cis-2,3-epoxybutane and using the catalyst systems 14a and 14b, they were able to correlate the relationship between the co-catalyst loading and the configuration of the COC product. Thus, for example, in the presence of high TBAB loading (2.5-4 mol%; 14:TBAB ratio = 1:10 to 1:16), cis-4,5-dimethyl-1,3dioxolan-2-one was formed with overall retention (up to >99%) of the configuration, indicating that this reaction follows the classical double inversion pathway (Scheme 11, pathway B). Conversely, at low TBAB concentration (<1.25-0.125 mol%; 14:TBAB ratio = 3.2:1 to 32:1) the corresponding *trans*-4,5-dimethyl-1,3-dioxolan-2-one is formed as the major product (up to >99%). This unusual control pointed towards the presence of a complementary mechanism, preferred at relatively low TBAB loadings. Similarly to pathway B, the first step of this alternative mechanism (pathway A) involves oxirane coordination to the metal center, followed by epoxide ring-opening, resulting in an inversion of configuration at this carbon center. Then, differently from pathway B, after insertion of CO₂ in the metal-alkoxide (Scheme 11, Intermediate III)

the bromide dissociates from the hemi-carbonate, forming an hexa-coordinated Fe complex by coordination on the vacant *cis*-site of the metal center. Finally, a *pseudo*- S_N1 type ring-closing reaction occurs giving the corresponding *trans*-COC product with formal inversion of configuration. The use of the trans substrate (*trans*-2,3-epoxybutane) gave similar results and both the *cis* (85%) as the *trans* (>99%) COCs could be obtained in high diastereo-selectivity.

Scheme 11. Proposed mechanism for CO_2 coupling with *trans*-2,3-epoxybutane to obtain the corresponding COCs with formal inversion of the configuration (pathway A) or retention of configuration (pathway B). See also reference 94.

Alternative strategies to prepare diastereo-pure COCs have also been reported, including the Pd(II) catalyzed coupling of CO with diols, as described by Dibenedetto and co-workers.⁶⁰ Although modest success was observed in terms of substrate scope and yields, this oxidative carbonylation of 1,2- and 1,3-diols catalyzed by palladium iodide in conjunction with KI gave access to diastereo-pure COCs starting from diastereoisomeric mixtures of the substrates (Scheme 12; T = 100 °C, DMA, PdI₂ = KI = 10 mol%, $p(CO_2) = 2.0$ MPa of a 1:4 CO-air mixture).

Scheme 12. Pd(II)/KI catalyzed carbonylation of 1,2- and 1,3-diols carried out in dimethylacetamide (DMA).

4.3 Enantio-selective control. The formation of enantiomerically pure COCs *via* CO₂ coupling with epoxides is still an open challenge. Enantiopure COCs are key synthetic intermediates in pharmaceutical industry and are present in numerous relevant biological compounds.^{27,95} Given the overall process atom-economy and the numerous reported examples of effective catalysts, CO₂ coupling with epoxides can be regarded as one of the most efficient and, potentially, selective processes for the preparation of such chiral derivatives.

The simplest way to obtain enantiopure cyclic carbonates is by coupling of enantiopure epoxides with CO_2 developing catalytic procedures that favor a high level of retention of configuration at the asymmetric carbon centre of the oxirane. Evidently,

such procedures have lower synthetic impact but offer useful probes for mechanistic understanding in COC synthesis. Typically, for alkyl-substituted terminal epoxides ringopening occurs preferably at the non-substituted carbon center (C_a) observing an overall retention of configuration (Figure 8, top). However, when using terminal epoxides containing electron-withdrawing groups (*e.g.* epichlorohydrin and styrene oxide), an increased preference for ring-opening at the C_a center occurs (Figure 8, bottom), resulting in (partial loss) of the original stereo-chemical information.⁹⁶

Figure 8. Stereochemistry involved in the ring-opening of a terminal epoxide by a nucleophile (Nu) at the involved carbon centers.

Several different systems active towards activation of enantiomerically enriched epoxides have been reported: recently, Capacchione and co-workers used Fe(III) complex **9** (Scheme 4) combined with TBAB as a catalytic system.⁴⁸ Though the catalytic system is not chiral, it provides reasonable stereo-retention in the nucleophilic ring-opening step of the epoxide. For example, with enantio-enriched (*R*)-styrene oxide (94 % *ee*), (*R*)-styrene carbonate was obtained in 72 % *ee* (85 % yield, conditions: [**9**] =

0.025 mol%, [TBAB] = 0.1 mol%, t = 6 h, T = 100° C, $p(CO_2) = 2.0$ MPa), showing that the main ring-opening pathway is through C_a.

Another recent example was described by the group of Lu,⁹⁷ who developed a novel, active and stereo-selective bifunctional Al(III)salen complex **21** (Figure 9) active towards COC synthesis. Starting from enantiomerically pure epoxides, quantitative conversion to the corresponding enantiomerically pure cyclic carbonates (> 99 % ee) was obtained with full retention of configuration (conditions: **21** = 0.01 mol%, t = 3–24 h, T = 60–120 °C, $p(CO_2) = 2.5$ MPa). When performing the reaction at T = 120 °C using epoxides with electron-withdrawing substituents on the β-carbon, partial loss of the stereo-chemical information was observed (67 % *ee* for (*S*)-epichlorohydrin, 83 % *ee* for (*S*)-styrene oxide), while lowering the reaction temperature to T = 60 °C (for (*S*)-epichlorohydrin) or T = 80 °C (for (*S*)-styrene oxide) resulted in complete retention of the stereo-chemical information indicating preferred ring-opening at the non-substituted carbon center.

Figure 9. Salen based complexes 21 and 22 used as catalysts for the enantioselective CO_2 insertion reaction into an epoxide: Bifunctional aluminium catalyst and asymmetric cobalt catalyst.

Jamison and co-workers reported on a continuous flow method for the formation of COCs from epoxides and CO₂ using inexpensive sources of bromide radical (Br₂ or *N*-bromosuccinimide, NBS) and using the radical initiator benzoyl peroxide (BPO) as catalyst.⁹⁸ Notably, with enantio-pure (*R*)-styrene oxide and (*S*)-phenyl glycidyl ether epoxide, the corresponding COC products were obtained with full retention of configuration (conditions: [Br₂] or [NBS] = [BPO] = 5 mol%, DMF (2M), t = 0.5 h, T = 120 °C, $p(CO_2) = 0.7$ MPa). Although this is not a metal catalyzed approach, it shows that careful design of the experimental flow setup can be beneficial to achieve excellent retention of the stereo-chemical properties.

As opposed to the use of chiral starting materials being more costly, various research groups have investigated the use of kinetic resolution to produce chiral COCs. A number of important results have been published in the last decade mainly focusing on Co(II)/Co(III)salen-based catalysts.⁵ For example, Lu and co-workers reported the first example of enantioselective synthesis of propylene carbonate by catalytic kinetic resolution of racemic epoxides with CO₂, developing a process that involves the simple use of chiral Co(III)salen(X)/quaternary ammonium halide binary catalyst systems under extremely mild and solvent-free conditions.⁹⁹ Unfortunately the kinetic resolution coefficients measured ($k_{rel} < 10$) were still far from being optimal compared with well-known hydrolytic kinetic resolution methods.¹⁰⁰

More recently, the same group reported a multichiral Co(III) complexes **22** (Figure 9) which was used in conjuction with the 2,4-dinitrophenolate salt of PPN (PPN-DNP) as the nucleophilic co-catalyst.¹⁰¹ From the data reported in Table 5, it can be noted that the addition of a quaternary ammonium salt is essential to perform this coupling reaction smoothly and this has a significant effect on the catalytic performance of Co(III)salen(X) as well as on the chemo-selectivity (Entries 3-4, Table 5). The operating

temperature has to be chosen carefully to compromise between overall conversion and optical purity of the COC product (Entries 1-3, Table 5). Higher k_{rel} were measured when increasing the co-catalyst loading (Entries 1-3, Table 5). This methodology was applied to a discrete family of terminal epoxides (4 examples) with both electron-donating and electron-withdrawing substituents, observing conversions between 12-43 % producing *ee* values for the COC products between 68–89 %. The results demonstrate a clear potential for these Co(III)salen based catalysts in the kinetic resolution of (*rac*)-epoxides in the presence of CO₂ to afford chiral COCs.

Table 5. Kinetic resolution of terminal (rac)-propylene oxide via CO2 coupling to formCOCs.^a

Entry	cat	co-cat	T (°C)	t (h)	Conv.	PC/PPC	PC	k _{rel}
	(11101 /0)		(\mathbf{U})	(11)	(70)	(70)	(70 ee)	
1	0.01	2	25	12	46	93:7	86.0	29.1
2	0.05	10	0	12	35	100:0	91.8	40.6
3	0.05	10	-25	12	10	100:0	97.1	75.8
4	0.1	0.1	-25	24	42	0:100	85.2^{b}	23.7

^{*a*} Using 0.5-0-6 equiv of CO₂. ^{*b*} Enantioselectivity of the COC obtained after depolymerization in the presence of Li(tBuO).

5 SUMMARY AND OUTLOOK

In the last five years the area of synthesis and development of more sophisticated COC scaffolds has developed tremendously as testified by the contents of this review article. Whereas initially terminal epoxides were successfully coupled to CO₂ affording their corresponding COCs, lately attention has shifted towards more challenging coupling partners including internal oxiranes and oxetanes. Also, efforts have been made to increase the reactivity of the applied catalytic systems providing very high (initial) TOFs and impressively high TONs. Obviously, catalytic systems that are able to combine robustness, recyclability, cost-effectiveness and very high reactivity/selectivity features would serve as privileged systems within the area of COC fabrication. Despite the vivid character of this area of CO₂ catalysis, there remain important challenges to be resolved. Among these are the development of a wide-scope, asymmetric synthesis of chiral COCs and related heterocycles starting from racemic precursors, new catalytic strategies for the selective conversion of highly substituted oxetanes into their sixmembered carbonates and effective methodology for the conversion of tri- and tetrasubstituted oxiranes. Inspiration from naturally occurring COCs²⁷ may serve as a useful starting point to approach such synthetic challenges. Another interesting development is the preparation and use of (functional) COCs that are used as intermediates for the synthesis of other, (chiral) organic molecules,²³⁻²⁵ amplifying the importance of these scaffolds in organic synthesis. Such potential should be able to fuel new developments in the area of COCs and beyond, giving a bright perspective for the use of CO₂ as a molecular C₁ synthon.

AUTHOR INFORMATION

Corresponding Author

*E-mail: <u>akleij@iciq.es</u>. Tel: +34 - 977920247

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

C.M. gratefully thanks the Marie Curie COFUND Action from the European Commission for co-financing a postdoctoral fellowship. G.F. kindly acknowledges financial support from the European Community through a Marie Curie Intra-European Fellowship (FP7-PEOPLE-2013-IEF, project RENOVACARB, grant agreement no. 622587). Further acknowledgements go to ICIQ, ICREA and the Spanish Ministerio de Economia y Competitividad (MINECO) through project CTQ-2011-27385, and support through Severo Ochoa Excellence Accreditation 2014-2018 (SEV-2013-0319).

REFERENCES

- (1) Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709-1742.
- (2) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365-2387.
- (3) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A., Kühn, F. E. Angew.
 Chem. Int. Ed. 2011, *50*, 8510-8537.
- (4) Martin, R.; Kleij, A. W. ChemSusChem 2011, 4, 1259-1263.
- (5) Kielland, N.; Whiteoak, C. J.; Kleij, A. W. Adv. Synth. Catal. 2013, 355, 2115-2138.
- (6) Peters, M.; Köhler, B.; Kuckshinrichs, W.; Leitner, W.; Markewitz, P.; Müller, T.
 E. *ChemSusChem* 2011, *4*, 1216-1240.
- (7) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956-9964.
- (8) Boogaerts, I. I. F.; Nolan, S. P. Chem. Commun. 2011, 47, 3021-3024.
- (9) Maeda, C.; Miyazaki, Y.; Ema, T. Catal. Sci. Technol. 2014, 4, 1482-1497.
- (10) Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábalc, G. O.; Pérez-Ramírez, J. *Energy Environ. Sci.* 2013, *6*, 3112-3135).
- (11) Pescarmona, P. P.; Taherimehr, M. Catal. Sci. Technol. 2012, 2, 2169-2187.
- (12) North, M.; Pasquale, R.; Young, C. Green Chem. 2010, 12, 1514-1539.
- (13) Decortes, A.; Castilla, A. M.; Kleij, A. W. Angew. Chem. Int. Ed. 2010, 49, 9822-9837.

- (14) Schäffner, B.; Schäffner, F.; Verevkin, S. P.; Börner, A. Chem. Rev. 2010, 110, 4554-4581.
- (15) Sakakura, T.; Kohno, K. Chem. Commun. 2009, 1312-1330.
- (16) Shaikh, A.-A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951-976.
- (17) Comerford, J. W.; Ingram, I. D. V.; North, M.; Wu, X. Green Chem. 2015, DOI: 10.1039/C4GC01719F
- (18) Fiorani, G.; Guo, W.; Kleij, A. W. Green Chem. 2015, DOI: 10.1039/C4GC01959H.
- (19) Tundo, P.; Selva, M. Acc. Chem. Res. 2002, 35, 706-716.
- (20) Coates, G. W.; Moore, D. R. Angew. Chem. Int. Ed. 2004, 43, 6618-6639.
- (21) Lu, X.-B.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462-1484.
- (22) Darensbourg, D. J. Chem. Rev. 2007, 107, 2388-2410.
- (23) Zhang, Y. J.; Yang, J. H.; Kim, S. H.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 4562-4563.
- (24) Khan, A.; Yang, L.; Xu, J.; Jin, L. Y.; Zhang, Y. J. Angew. Chem. Int. Ed. 2014, 53, 11257-11260.
- (25) Laserna, V.; Fiorani, G.; Whiteoak, C. J.; Martin, E.; Escudero-Adán, E. C.; Kleij,
 A. W. Angew. Chem. Int. Ed. 2014, 53, 10416-10419.
- (26) Byrne, C. M.; Allen, S. D.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc.
 2004, 126, 11404-11405.
- (27) Zhang, H.; Liu, H.-B.; Yue, J.-M. Chem. Rev. 2014, 114, 883-898.

- (28) Sun, H.; Zhang, D. J. Phys. Chem A 2007, 111, 8036-8043.
- (29) Guo, C.-H.; Wu, H.-S.; Zhang, X.-M.; Song, J.-Y.; Zhang, X. J. Phys. Chem A 2009, 113, 6710-6723.
- (30) For an early example of a catalyst displaying an interesting substrate scope see:Kruper, W. J.; Dellar, D. D. J. Org. Chem. 1995, 60, 725-727.
- (31) For a recent example: Darensbourg, D.; Yeung, A. W. Polym. Chem. 2014, 5, 3949-3962.
- (32) Winkler, M.; Romain, C.; Meier, M. A. R.; Williams, C. K. Green Chem. 2015, 17, 300-306.
- (33) Darensbourg, D. J.; Chung, W.-C.; Arp, C. J.; Tsai, F.-T.; Kyran, S. J. Macromolecules 2014, 47, 7347–7353.
- (34) North, M.; Wang, B.; Young, C. Energy Environ. Sci. 2011, 4, 4163-4170.
- (35) Meléndez, J.; North, M.; Pasquale, R. Eur. J. Inorg. Chem. 2007, 3323-3326.
- (36) North, M.; Pasquale, R. Angew. Chem. Int. Ed. 2009, 48, 2946-2948.
- (37) Clegg, W.; Harrington, R. W.; North, M.; Pasquale, R. Chem. Eur. J. 2010, 16, 6828-6843.
- (38) Decortes, A.; Martinez Belmonte, M.; Benet-Buchholz, J.; Kleij, A. W. Chem. Commun. 2010, 46, 4580-4582.
- (39) Decortes, A.; Kleij, A. W. ChemCatChem 2011, 3, 831-834.
- (40) Salassa, G.; Coenen, M. J. J.; Wezenberg, S. J.; Hendriksen, B. L. M.; Speller, S.;
 Elemans, J. A. A. W.; Kleij, A. W. J. Am. Chem. Soc. 2012, 134, 7186-7192.

- (41) Buchard, A.; Kember, M. R.; Sandeman, K. G.; Williams, C. K. Chem. Commun.2011, 47, 212-214.
- (42) Whiteoak, C. J.; Kielland, N.; Laserna, V.; Escudero-Adán, E. C.; Martin, E.;
 Kleij, A. W. J. Am. Chem. Soc. 2013, 135, 1228-1231.
- (43) Whiteoak, C. J.; Kielland, N.; Laserna, V.; Castro-Gómez, F.; Martin, E.;
 Escudero-Adán, E. C.; Bo, C.; Kleij, A. W. *Chem. Eur. J.* 2014, 20, 2264-2275.
- (44) Monassier, A.; D'Elia, V.; Cokoja, M.; Dong, H.; Pelletier, J. D. A.; Basset, J.-M.;
 Kühn, F. E. *ChemCatChem* 2013, *5*, 1321-1324.
- (45) Minakata, S.; Sasaki, I.; Ide, T. Angew. Chem. Int. Ed. 2010, 49, 1309-1311.
- (46) Buckley, B. R.; Patel, A. P.; Wijayantha, K. G. U. RSC Adv. 2014, 4, 58581-58590.
- (47) Ramidi, P.; Gerasimchuk, N.; Gartia, Y.; Felton, C. M.; Ghosh, A. *Dalton Trans*. **2013**, *42*, 13151-13160.
- (48) Buonerba, A.; De Nisi, A.; Grassi, A.; Milione, S.; Capacchione, C.; Vagin, S.;Rieger, B. *Catal. Sci. Technol.* 2015, *5*, 118-123.
- (49) Qin, J.; Wang, P.; Li, Q.; Zhang, Y.; Yuan, D.; Yao, Y. Chem. Commun. 2014, 50, 10952-10955.
- (50) Ema, T.; Miyazaki, Y.; Koyama, S.; Yano, Y.; Sakai, T. Chem. Commun. 2012, 48, 4489-4491.
- (51) Ema, T.; Miyazaki, Y.; Shimonishi, J.; Maeda, C.; Hasegawa, J.-Y. J. Am. Chem. Soc. 2014, 136, 15270-15279.

- (52) Maeda, C.; Taniguchi, T.; Ogawa, K.; Ema, T. Angew. Chem. Int. Ed. 2015, 54, 134-138.
- (53) Caló, V.; Nacci, A.; Monopoli, A.; Fanizzi, A. Org. Lett. 2002, 4, 2561-2563.
- (54) Langanke, J.; Greiner, L.; Leitner, W. Green Chem. 2013, 15, 1173-1182.
- (55) Taherimehr, M.; Decortes, A.; Al-Amsyar, S. M.; Lueangchaichaweng, W.;
 Whiteoak, C. J.; Escudero-Adan, E. C.; Kleij, A. W.; Pescarmona, P. P. Catal. Sci. Technol. 2012, 2, 2231-2237.
- (56) Beattie, C.; North, M.; Villuendas, P.; Young, C. J. Org. Chem. 2013, 78, 419-426.
- (57) Whiteoak, C. J.; Gjoka, B.; Martin, E.; Belmonte, M. M.; Escudero-Adán, E. C.;
 Zonta, C.; Licini, G.; Kleij, A. W. *Inorg. Chem.* 2012, *51*, 10639-10649.
- (58) Whiteoak, C. J.; Martin, E.; Belmonte, M. M.; Benet-Buchholz, J.; Kleij, A. W. Adv. Synth. Catal. 2012, 354, 469-476.
- (59) Vignesh Babu, H.; Muralidharan, K. Dalton Trans. 2013, 42, 1238-1248.
- (60) Gabriele, B.; Mancuso, R.; Salerno, G.; Veltri, L.; Costa, M.; Dibenedetto, A. *ChemSusChem* 2011, 4, 1778-1786.
- (61) Chen, F.; Dong, T.; Xu, T.; Li, X.; Hu, C. Green Chem. 2011, 13, 2518-2524.
- (62) Stirling, C. J. M., Tetrahedron 1985, 41, 1613-1666.
- (63) Clements, J. H. Ind. Eng. Chem. Res. 2003, 42, 663-674.
- (64) Darensbourg, D. J.; Horn Jr, A.; Moncada, A. I. Green Chem. 2010, 12, 1376-1379.

- (65) Darensbourg, D. J.; Yeung, A. D. *Macromolecules*, **2013**, *46*, 83-95.
- (66) Darensbourg, D. J.; Moncada, A. I. Macromolecules 2009, 42, 4063-4070.
- (67) ROP catalysis of six-membered carbonates has been recently reviewed, see:
 Dagorne, S.; Normand, M.; Kirillov, E.; Carpentier, J.-F. *Coord. Chem. Rev.* **2013**, 257, 1869-1886. See also references 68 and 69.
- (68) Guillaume, S. M.; Carpentier, J.-F. Catal. Sci. Technol. 2012, 2, 898-906.
- (69) Helou, M.; Miserque, O.; Brusson, J.-M.; Carpentier, J.-F.; Guillaume, S. M. Chem. Eur. J. 2010, 16, 13805-13813.
- (70) Darensbourg, D. J.; Moncada, A. I. *Macromolecules* **2010**, *43*, 5996-6003.
- (71) Luinstra, G. A.; Haas, G. R.; Molnar, F.; Bernhart, V.; Eberhardt, R.; Rieger, B.
 Chem. Eur. J. 2005, *11*, 6298-6314.
- (72) Darensbourg, D. J.; Moncada, A. I.; Wei, S.-H. *Macromolecules* 2011, 44, 2568-2576.
- (73) Darensbourg, D. J.; Wei, S.-H. *Macromolecules*, **2012**, *45*, 5916-5922.
- (74) Darensbourg, D. J.; Lewis, S. J.; Rodgers, J. L.; Yarbrough, J. C. Inorg. Chem.
 2003, 42, 581-589.
- (75) Darensbourg, D. J.; Yarbrough, J. C.; Ortiz, C.; Fang, C. C. J. Am. Chem. Soc.
 2003, 125, 7586-7591.
- (76) Darensbourg, D. J.; Wilson, S. J. Green Chem. 2012, 14, 2665-2671.
- (77) Cheng, M.; Darling, N. A.; Lobkovsky, E. B.; Coates, G. W. Chem. Commun.
 2000, 2007-2008.

- (78) Kim, J. G.; Cowman, C. D.; LaPointe, A. M.; Wiesner, U.; Coates, G. W. Macromolecules 2011, 44, 1110-1113.
- (79) Nozaki, K.; Nakano, K.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 11008-11009.
- (80) Nakano, K.; Nozaki, K.; Hiyama, T. J. Am. Chem. Soc. 2003, 125, 5501-5510.
- (81) Shi, L.; Lu, X.-B.; Zhang, R.; Peng, X.-J.; Zhang, C.-Q.; Li, J.-F.; Peng, X.-M. Macromolecules 2006, 39, 5679-5685.
- (82) Wu, G.-P.; Ren, W.-M.; Luo, Y.; Li, B.; Zhang, W.-Z.; Lu, X.-B. J. Am. Chem. Soc. 2012, 134, 5682-5688.
- (83) Nakano, K.; Kobayashi, K.; Nozaki, K. J. Am. Chem. Soc. 2011, 133, 10720-10723.
- (84) Wilhelm, M. E.; Anthofer, M. H.; Cokoja, M.; Markovits, I. I. E.; Herrmann, W. A.; Kühn, F. E. *ChemSusChem* 2014, 7, 1357-1360.
- (85) Whiteoak, C. J.; Henseler, A. H.; Ayats, C.; Kleij, A. W.; Pericàs, M. A. Green Chem. 2014, 16, 1552-1559.
- (86) Taherimehr, M.; Al-Amsyar, S. M.; Whiteoak, C. J.; Kleij, A. W.; Pescarmona, P.
 P. *Green Chem.* 2013, *15*, 3083-3090.
- (87) Elmas, S.; Subhani, M. A.; Harrer, M.; Leitner, W.; Sundermeyer, J.; Müller, T. E. *Catal. Sci. Technol.* 2014, *4*, 1652-1657.
- (88) Sun, X.; Lee, H.; Lee, S.; Tan, K. L. Nat. Chem. 2013, 5, 790-795.
- (89) Yamada, W.; Sugawara, Y.; Cheng, H. M.; Ikeno, T.; Yamada, T. Eur. J. Org. Chem. 2007, 2604-2607.

- (90) Darensbourg, D. J.; Chung, W.-C. Macromolecules 2014, 47, 4943-4948.
- (91) Darensbourg, D. J.; Bottareli, P.; Andreatta, J. R. *Macromolecules* 2007, 40, 7727-7729.
- (92) Darensbourg, D. J.; Yeung, A. D. Polym. Chem. 2015, DOI: 10.1039/c4py01322k).
- (93) Paddock, R. L.; Hiyama, Y.; McKay, J. M.; Nguyen, S. T. *Tetrahedron Lett*.
 2004, 45, 2023-2026.
- (94) Whiteoak, C. J.; Martin, E.; Escudero-Adán, E.; Kleij, A. W. Adv. Synth. Catal.
 2013, 355, 2233-2239.
- (95) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.; Claiborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J. *Nature* 1994, 367, 630-634.
- (96) Castro-Gómez, F.; Salassa, G.; Kleij, A. W.; Bo, C. Chem. Eur. J. 2013, 19, 6289-6298.
- (97) Ren, W.-M.; Liu, Y.; Lu, X.-B. J. Org. Chem. 2014, 79, 9771-9777.
- (98) Kozak, J. A.; Wu, J.; Su, X.; Simeon, F.; Hatton, T. A.; Jamison, T. F. J. Am. Chem. Soc. 2013, 135, 18497-18501.
- (99) Lu, X.-B.; Liang, B.; Zhang, Y.-J.; Tian, Y.-Z.; Wang, Y.-M.; Bai, C.-X.; Wang, H.; Zhang, R. J. Am. Chem. Soc. 2004, 126, 3732-3733.
- (100) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science **1997**, 277, 936-938.

(101) Ren, W.-M.; Wu, G.-P.; Lin, F.; Jiang, J.-Y.; Liu, C.; Luo, Y.; Lu, X.-B. *Chem. Sci.* **2012**, *3*, 2094-2102.

TOC:

Five/six-membered COCs
Very high TOFs/TONs
Internal epoxides/oxetanes
Improved stereocontrol
Highly functional synthons

