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Abstract
Despite the huge increase in processor and interprocessor network performace, many computational
problems remain unsolved due to lack of some critical resources such as floating point sustained
performance, memory bandwidth, etc... Examples of these problems are found in areas of climate research,
biology, astrophysics, high energy physics (montecarlo simulations) and artificial intelligence, among others.
For some of these problems, computing resources of a single supercomputing facility can be 1 or 2 orders of
magnitude apart from the resources needed to solve some them. Supercomputer centers have to face an
increasing demand on processing performance, with the direct consequence of an increasing number of
processors and systems, resulting in a more difficult administration of HPC resources and the need for more
physical space, higher electrical power consumption and improved air conditioning, among other problems.
Some of the previous problems can´t be easily solved, so grid computing, intended as a technology enabling
the addition and consolidation of  computing power, can help in solving large scale supercomputing
problems. In this document, we describe how 2 supercomputing facilities in Spain joined their resources to
solve a problem of this kind. The objectives of this experience were, among others, to demonstrate that such
a cooperation can enable the solution of bigger dimension problems and to measure the efficiency that could
be achieved. In this document we show some preliminary results of this experience and to what extend these
objectives were achieved.

Introduction
Supercomputing centers offer high performance computing resources focused to solve the highest
demanding computational problems (the so called grand challenge simulations). However, and spite of the
continue exponential increase in processor performance following Moore´s law, and to the development of
new massive parallel computing architectures, many computational problems in different areas remain
unsolved in a realistic way due to extremely long computational times or even can not be solved in any way
primarly due to the lack of computational resources like available memory or permanent storage.

As in many other aspects, cooperation and resources aggregation between different institutions can be the
only real solution to provide enough capabilities to solve these problems actually, offering increased
computation resources. Grid computing[1] establishes some mecanisms needed to achieve this kind of
computing power agregation. One of the most know projects in grid computing is the Globus project[2],
which has been developed a set of software components becoming a de-facto standard during the last years.

Many different testbeds have appeared in different grid projects aimed to experiment and exploit this
emerging technology. However, most of these projects in grid computing are focused in the execution of
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sequential tasks, or what has been called High Throughput Computing (like the Europena Datagrid
project[3]), and there are few projects focused in the execution of parallel tasks within the Grid. Examples of
these experiencies include the Cactus simulation framework [13, 14] and the European Crossgrid project[4].
These parallel applications can specially benefit from the lastest developments in wide area networks in
terms of bandwith and realibility, as well as the recent introduction of Quality of Service.

As a first step in this way, two supercomputing centers in Spain, namely Centro de Supercomputacion de
Galicia (CESGA) and Centre de Supercomputació de Catalunya (CESCA), have initiated a series of
experiences in order to explore how suitable are these technologies in a real case, parallel application, as well
as the issues and benefits of employing Globus toolkit[8].

Objectives
The main objectives of this experience are:

1. Establish a grid computing environment between two independent supercomputing facilities.

2. Demonstrate that real world sequential problems can be scheduled in this grid environment and load
balancing can be achieved, without any code change or system configuration.

3. Demonstrate that parallel codes can be executed in this grid environment without any code change or
system configuration.

4. Check how systems heterogeneity can affect the efficiency of parallel computing.

5. Analyze how network heterogeneity and communication equipment can influence in this kind of
problems and determine the Reliability, Availability and Serviciability (RAS) capabilities of the new
generation wide area research networks.

What lies behind all these important objectives is a common effort to provide dedicated and high
performance permanent computational resources to help solving scientific and real world problems
demanding higher computational capacities.

Problem and application
For this experience, we focused on a real, non synthetic, problem application requiring high sustained
floating point performance and large amounts of memory. These requirements made impossible to face such
a task in any of the two supercomputing centers alone, with their own available resources. Moreover, it was
also required that the code were already parallelized with the MPI message passing library, and thoroughly
tested.

As this is the first experience running a distributed code involving both centers, we selected a problem with
not many communication processes or, at least, in which network latency wasn't a real problem (as far as
network latency can't be reduced, but rather "hidden" with different software techniques). We must take in
account that even though the increasing capacities of recent wide area networks in terms of bandwidth and
quality of service, latency remains as a bottleneck as far as optical links have, by now, light speed limits. For
the testbed of the two supercomputer centers, there are more than 1200 kilometres of optical fiber between
CESGA and CESCA and light signals need more than 8 milliseconds for a full round trip. Due to the electro-
optical conversion overheads and packet routing, the measured round-trip time is almost twice bigger, in the
range of 20 to 30 ms. This is more than 1000 times bigger than typical high-speed, low latency interconnect
networks like Quadrics, Myrinet, or Memory-Channel interconnecting low distance computers.



It was also desirable that the problem could be easily re-sized, ideally without recompiling the code. This
could result in better resource provisioning, specially taking into account that production systems were used
for the final tests (we will demonstrate later that small test-systems results can't simulate the results of the big
case problem in these enviroments). With this characteristic, we could go through a 3 phase testing: first
check for a small and simple case, so that the message passing mechanisms and the network performance
could be tested for many hours. Second, a mid-size test, in which production systems were tested and finally
a full-size test for the real problem.

After inquiring users of both supercomputing facilities, a self deployed Artificial Intelligence application[5, 6],
SEVEN, was selected as the most adequate code according to the characteristics needed for this experiment.

This code has all the characteristics needed to run smoothly in our configuration:

• It is a well tested parallel application and the final users have a deep knowledge of its internal
structure.

• The problem solved by this application demands HPC resources in terms of processor performance
and memory, and can be easily resized to solve different size problems.

• Even though in each iteration dozens of megabytes of data have to be transmitted, these
transmissions only happen after a significant amount of computing time, i.e., the computing to
communications time ratio is aproximately one hundred of times bigger.

Objectives of the simulation

The objective of the simulation is to obtain a controller for an autonomous robot Pioneer 2-DX. The purpose
of this controller is to provide the robot with a given behaviour: this robot (R) is located in a square room
with other two robots. One of these two robots is a pursuer and the other one is a prey. Robot R must escape
from the pursuer and follow the prey. The pursuer and the prey don't have any special difference apart from
their movement speeds, so that temporal information is necessary in order to distinguish both robots because
they can only be differentiated by checking the way in which they move. The controller must implement this
autonomous behaviour with the information provided by the sonar sensors of Robot R.

Introduction to evolutionary algorithms

 Evolutionary algorithms employ an analogy with the evolutionary process and the search of a solution in a
given space. Basically, there is an initial population of individuals. Each individual is a possible solution of
the problem (a point in the solutions space) and is characterized by one or more chromosomes (each
chromose codes the solutions space). This population evolves with the time: the individuals combine with
each other and suffer mutations in the genes of their chromosomes, so that the possibilities to survey in the
next generation are proportional to how near they are to the solution of the problem. The way in which the
individuals to be reproduced are selected and how they are combined leads to different kinds of evolutionary
algorithms.

We have used a Macroevolutionary Algorithm[7], which is a new type of evolutionary algorithm where,
instead of using the word “individual” to refer to a candidate solution, we talk about “species”. So, a survival
coefficient is assigned to each specie and the species with the worst survival coefficient become extinct and
new species, derived from those that become extinct and from survivals, take their place. There are two



modifications with respect to the original algorithm. First, as the fitness measure is not determinist (due to
the stochastic behaviour of some parameters in the simulation), survival species are evaluated once more in
each generation. Second, if the fitness for a given specie changes more than a given percentage after doing
that extra evaluation, the number of evaluations for new species is incremented.

For our problem, the individuals are the candidate controllers, implemented using Artificial Neural Networks
(ANNs), for a given behaviour of the robot. The genes of the chromosome are the parameters that describe
those ANNs. To know how far away an individual is to the solution of the problem, the behaviour of the
robot with the controller corresponding to that individual genes is checked in a simulated environment, and a
quality parameter is given depending on how good that robot implements the behaviour that the designer
wanted to obtain.

Problem description

In this case, the size of the global population is 64000 individuals, grouped in 64 races, 1000 individuals
each one. The size of the population depends on the chromosome size and the complexity of the search
space. Each individual has a chromosome with 17301 genes. Each chromosome codes an artificial neural
network with an input layer of 17 neurons, 2 hidden layers of 64 neurons each one and an output layer of 2
neurons. The ANN has gaussian synapsis and, there are delays between the neurons of the input and the first
hidden layers. All the parameters in the ANN (Gaussian synapsis parameters, delay values, neurons biases
and the slope of the neurons activation) are constants during the evolutionary process. Each individual is
evaluated 8 times in a simulated environment for a period of time of 300 steps (equivalent to one minute of
real time).

Code description: parallel implementation

To implement the asynchronous transfer of data, in every generation and just before checking if there must
be a migration of the individuals, the next code is executed in order to check if any race has sent data (best
individual, the number of the working generation, etc.). Basically, if there is any data, it is read and placed
where needed:

      for (int i = 0; i < evolAlg->races; i++)

        if (i != race)

          while(commMaster.Iprobe(i, 1000))

          {

            commMaster.Recv(data, dataElements, MPI::DOUBLE, i, 1000);

            evolAlg->lastWriteGeneration = (evolAlg->lastWriteGeneration >

(int)data[0])? evolAlg->lastWriteGeneration : (int)data[0];

            dataGen = (int)data[1];

            evolAlg->currentGeneration[i] = dataGen + 1;

            pos =  i * evolAlg->generations + dataGen ;

            evolAlg->totalFitness[pos] = data[2];

            evolAlg->bestFitness[pos] = data[3];

            bestInd = evolAlg->bestIndividual + (pos) * evolAlg->genes;

            for (int j = 0; j < evolAlg->genes; j++)



              bestInd[j] = data[j + 4];

          }

The next part of the code runs in every generation after checking if is necessary to migrate (and do the
migration if needed) and after updating the information about the actual state of the evolution and after
writing to file all the relevant data. The data is sent using buffers to continue the work immediately.

      for (int i = 0; i < evolAlg->races; i++)

        if (i != race)

        {

          data[0] = evolAlg->lastWriteGeneration;

          dataGen = evolAlg->currentGeneration[race] - 1;

          data[1] = dataGen;

          pos =  race * evolAlg->generations + dataGen;

          data[2] = evolAlg->totalFitness[pos];

          data[3] = evolAlg->bestFitness[pos];

          bestInd = evolAlg->bestIndividual + (pos) * evolAlg->genes;

          for (int j = 0; j< evolAlg->genes; j++)

            data[j + 4] = bestInd[j];

          commMaster.Bsend(data, dataElements, MPI::DOUBLE, i, 1000);

        }

Grid configuration: systems and networks
Both centers have many different supercomputing servers: from vector parallel computers to symmetric
multiprocessing systems. For this test, the most powerful supercomputer of each site was used: 2 Hewlett
Packard HPC320 supercomputers.



Figure 1. RedIris-2 network, showing the links speed and the posible routes between two points. CESGA is
located at the northwest of Spain and CESCA at the northeast, with more than 1200 kilometers from each
other. The shortest path between them has 3 hops with 2,5 Gbps links.

Figure 2. Diagram showing the internal LAN between the HPC320 at CESCA (left) at CESGA (right side)
from the local area to the RedIris network.
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CESGA´s HPC320 system runs Tru64 v5.1A and has 8 computing nodes ES45 with 4 Alpha EV68 CPUs at
1GHz in each node. 6 nodes have 8GB of memory and the other 2 have 16GB per node. Globally, the system
hosts 32 CPUs, 24 with 2GB per CPU and 8 with 4GB per CPU. The nodes are internally connected with a
high speed and low latency Memory-Channel II with 2 rails and 100MB/s bandwidth per rail, configured in
fail over mode. This supercomputer has a peak performance of 64 GFlops and achieved 45 GFlops in the
linpack benchmark. Two nodes have gigabit-ethernet and six nodes have fast-ethernet links for the public
internet connection.

CESCA´s HPC320 system is quite similar to CESGA´s one: runs Tru64 v5.1A and has 8 computing nodes
ES40 with 4 Alpha EV68 CPUs at 833MHz in each node. Six nodes have 2GB of memory and the other 2
have 4GB per node. Globally, the system hosts 32 CPUs, 24 with 512 MB per CPU and 8 with 1 GB per
CPU. The nodes are internally connected with a high speed and low latency Memory-Channel II with 1 rail
having 100MB/s bandwidth. The peak performance of this supercomputer is 53,31 GFlops and achieved 40
GFlops in the Linpack Benchmark. The 8 nodes are linked to the public network with one Fast-ethernet link
in each node.

These two supercomputers together offer a peak performance of 117,31 GFlops, 85 GFlops sustained, 64
processors, 100 Gbytes of memory and 4 Terabytes of disk space. Building a grid with both systems is
simplified because they share the same CPU architecture and operating system.

CESGA is located in the northwest of Spain and CESCA in the northeast of Spain. The National Research
Network, Rediris2, has recently improved its infrastructure introducing multigigabit and fail-over mechanims
in all their point of presence in the country (Figure 1). As shown in this figure, there are more than 10
different routes from CESGA to CESCA: directly through Madrid or going through Castilla Leon, or through
Aragon, etc... Depending on the load and availability of the links, network traffic can go through different
hops. However, given the actual load and the performance required for this test, it was determined that going
directly through Madrid involving the less number of hops resulted in lower connection latency. For this test
the network connection was forced to go directly through Madrid. This line is over 1200 kms long and the
mean measured RTT is 20ms. The high bandwidth links could result in a theoretical peak performance
between both supercomputing centers of more than 5 Gbps or more than 600MBytes/s, equivalent to the
typical high bandwidth local interconnections, which could be exploited in next, more network oriented,
experiments.

Software components
Two major components were used for this simulation: Globus (version 2.2.4) and MPICH-G2[9, 10, 11] (version
1.2.5-1a). Besides, taking into account that both systems were in production while performing the initial
tests, it was needed to install the corresponding Globus job managers for each site: the "Pro" version of the
Portable Batch System (PBS Pro v. 5.2) in the case of CESGA, and the Load Sharing Facility (LSF Base
version 5.0) in CESCA.

Standard user accounts were used for the test, and Redegrid1 Certification Authority provided the user and
host certificates needed by Globus software.
                                                       
1 Redegrid stands for Galicia´s network on parallel and distributed computing and Grid technologies. Seven research
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The initial experiences involved running simple calculations like the standard MPI test codes and the Pallas
MPI Benchmarks[12]. For these initial tests, test systems provided by HP were used in order to achieve the
necesary knowledge and experience to implement this configuration in the production servers.

Code Execution
Minor changes had to be incorporated in the configuration of the systems and network topologies in order to
efficiently run the application (obviously this was required to work with production and stable platforms).

One of the changes to be applied involved the network configuration of CESGA´s HPC320. In this system
only 2 nodes had public IP addresses. The other 6 nodes had to be connected to the public internet network
establishing a link between the internal LAN switch 3Com 3300 with an external switch 3Com 4300, and
public IP addresses were configured in these interfaces. No changes were needed in the rest of the network
topology, neither in terms of routing configuration or quality of service, as the available bandwidth was far
enough for the needs of this particular case. Only firewall configuration in both supercomputing facilities
was relaxed to open completely the connection between both supercomputers. Regarding the TCP stack
configuration, no change was applied as the available bandwidth with the standard parameters was enough.
However, this point and other parameters related to the Quality of Service (QoS) will have to be reviewed in
order to execute intensive message passing applications in this grid.

No changes were required in the code. Each race evolved independently and the only communications
between them were the migrations, where the best individual of each race is copied to the other races. To do
so, a high capacity buffer for the transmission and reception of messages was implemented in order to deal
with the high latencies of the network and especially the different processor speeds. With this mechanism the
computations in every processor evolved in a decoupled way, asynchronously, so that each process checks
the buffer in every step to get new data from the rest of the processes and continues computing. . Using this
implementation, nearly 100% of user CPU was consumed by the application during most of the run. Only the
first step (or generation) was synchronous, forcing that all processors had to wait for the slowest to finish,
and a lower percentage of CPU efficiency. This behavior must be related with the implementation of the
used mpi software, as there is no such synchronization requirement in the program. After this initial step the
rest of the simulation runs asynchronously.

One of the first observed problems was that the application could run without problems with up to 16
processors in each site, but failed to pass the DUROC startup phase when the number of  processors involved
was increased. After some debugging and having checked the increasing number of sockets in use with the
number of processors, we suspected about filtering and firewalling rules within the RedIris network. We
solved to change the port range of the MPICH-G2 protocol to use port numbers from 51000 to 52000, as
RedIris doesn´t actually block these ports. With this strategy this problem disappeared completely.



Figure 3. Kiviatt diagram showing the mean CPU usage of the SEVEN code, for the whole execution of the
simulation on each node. Nodes 1 to 8 belong to CESGA´s HPC320 (blue color), meanwhile nodes 9 to 16
belong to CESCA´s HPC320 (red color). Most of the nodes have 95% CPU use, with the exception of the
front-end nodes, primarly because they had to deal with extra computation managing the jobs.

The code was submitted with an RSL from CESGA´s system, distributing 32 jobs in each site. Once all the
processes were started by the corresponding queue system, the simulation started and run for more than 9
hours. In the next paragraphs we describe and represent some of the measurements collected during the
execution.

Observed Performance

We define the efficiency as the ratio of computing time spent by the application and the total time. The
global efficiency of the simulation achieved on both systems during the whole run was 94.3%. The kiviatt
diagram in figure 3 represents the efficiency achieved by each individual node of the HPC320 systems.
Nodes 1 to 8 belong to CESGA´s HPC320 and nodes 9 to 16 belong to CESCA´s HPC320. The diagram
shows that CESGA´s nodes have better CPU efficiency (95.3% vs. 93.2%). CESCA´s lower efficiencies are
mainly due to the lack of memory and possible memory pages throttling. Specially node number 9 is the one
which runs the Globus job-managers processes at CESCA and is the node with less CPU efficiency. Running
the job-managers has two direct consequences: First, the processors have an extra load and consequently less
CPU cycles available for the simulation, and second, there is less memory free for the application
(aproximately 224 Mbytes of memory are consumed by the job-managers). This node also hosts the LSF
manager and other cluster services, consuming extra CPU cycles and memory available for the simulation
code.
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Every step or generation took on average, 17 minutes at CESGA and 22 minutes at CESCA. This ratio of
CESCA nodes being 1.29 times slower that CESGA´s is equivalent to the ratio in processor speeds (833MHz
vs. 1000MHz) and different efficiencies achieved in each system. The first step needs exactly twice as much
time (34 and 44 minutes) because the whole population is evaluated before entering the loop, composed by
the selection, reproduction, evaluation and migration (if needed) steps.

Figure 4. Evolution of the efficiency (left scale) and network input/output (right scale) measured in 6 minutes
intervals.

In figure 4 we represent the evolution of the efficiency measured in 6 minutes intervals. In the horizontal axis
we represent the time in minutes since the jobs were submitted to the queue systems and the vertical axis
represents the efficiency achieved on this time interval. We must note some important points:

1. After job submission, jobs are queued by the respective job management software (PBSpro & LSF),
and after a short delay are submitted for execution in the corresponding node.

2. When every job starts executing, the MPI_Init waits until all the processes participating in the
simulation have reached that point.

3. Once all the processes have reached that point, the execution continues and all processes consume
almost a 100% CPU, starting the simulation. This occurs at minute 18 of the execution.

4. The first step needs twice as much time than the rest of steps, that means 34 minutes on CESGA and
44 minutes on CESCA, so after 52 (18+34) minutes there is a low in the efficiency at CESGA
(shown at point 54), and 10 minutes later appears the one at CESCA (at point 62: 44+18), shown in
the graph at point 66.

5. When all the nodes reach the end of the first step or generation, the first node of CESGA´s system
still has processing on it: there is one CPU in this node still working on the code.

In the graph of figure 4 we also show the network traffic of the individual nodes. This traffic in divided in 4
categories. Input CESGA and Output CESGA represent input and output network traffic on CESGA´s nodes.
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Input CESCA and Output CESCA represent input and output network traffic on CESCA´s nodes. We must
note that this network traffic includes intranode communications of a single HPC320 system. The total data
transfer measured at CESGA´s router between both supercomputers was 8.3 Gbytes, divided in 4.6 Gbytes in
the way from CESGA to CESCA and 3.7 Gbytes in the way from CESCA to CESGA (the previous graph
represents ALL the data exchanged, including HPC320 TCP intercommunication).

Each process needs 963 Mbytes of virtual memory, and the observed resident size (RSS) was 300Mbytes at
CESCA and 600Mbytes at CESGA (we must note how the lack of memory could adversely affect
performance at CESCA´s nodes).

Application Results
In the next paragraph we describe some preliminary results from the simulation. In figure 5, a graph showing
the evolution of the quality of the individuals in every generation is shown, which represents how the
evolutionary algorithms progress in the right direction, with the peaks representing migration of the
individuals among different populations. As we have said before, each race evolves separately and when a
migration happens the better individual of each race is copied to every other race replacing the worst
individuals. The fact that the fitness of the best individual raises when migration has taken place, means that
the slowest race (the one that writes the fitness information in a file) receives better individuals from other
races thanks to migration. The fact that fitness goes down afterwards means that the initial number of
evaluations for each individual is not enough to obtain a reliable fitness measure, which is not a very big
problem because of the explained autoincrement mechanism for the number of evaluations.

Figure 5. Quality evolution of the application, during the whole simulation (35 generations in total). The
mean quality shows a continuos increase, while the maximum has peaks caused by the migration of the
individuals every 5 generations.

Summary and Future Plans
This work demonstrates that collaboration between supercomputing facilities can enable more demanding
problems to be solved. Scalability has been demonstrated under the premise that computing and network
traffic can be decoupled. A real problem can be solved using this infrastructure without major changes in the
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code, which results in a more attractive solution for the software programmer. Software infrastructure
(mainly Globus components) has proved its maturity and only minor changes had to be configured. From the
systems and networks administrator’s point of view, minor changes had to be addressed and for many
problems the actual infrastructure and configuration can provide the resources needed with minimal changes.
New generation wide area network infrastructures have proven their adequacy in terms of reliability and
bandwidth to safely and optimally interconnect spread computing resources, and in the future will be the
catalyst to execute new applications in a distributed and grid computing environment.

However, some points remain to be solved. A global scheduler for load balancing and optimal allocation of
resources, optimal tuning of network parameters, better quality of service implementation and a hierarchical
mechanism to communicate within separate clusters will be needed when an increasing number of systems
and processors are available in each site, and message passing intensive applications need to be executed
using all these disperse distributed resources. Also, the heterogeneity in terms of processors architectures and
speeds, available memory and network topology, latency and bandwidth will keep on being a handicap for
parallel applications in a grid computing framework. Meanwhile, only applications with the characteristics
previously mentioned, can be grid-enabled without major efforts.

With the knowledge learnt in this experience, in the future similar runs would be performed with some
changes: first, the node with the jobmanagers should be out of the computing part, specially if memory is a
problem. Also, a minor number of jobmanagers should be used. Also, TCP stack parameters tuning should
be carefully adapted to speed up network concerned problems.
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