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Abstract

We analyse in a unified way how the presence of a trader with privilege
information makes the market to be efficient when the release time is
known. We establish a general relation between the problem of finding
an equilibrium and the problem of enlargement of filtrations. We also
consider the case where the time of announcement is random. In such a
case the market is not fully efficient and there exists equilibrium if the
sensitivity of prices with respect to the global demand is time decreasing
according with the distribution of the random time.
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1 Introduction

Models of financial markets with the presence of an insider or informational
asymmetries have a great literature, see e.g Karatzas and Pikovsky (1996),
Amendiger et. al. (1998), Imkeller et. al. (2001), Corcuera et. al. (2004),
Biagini and Oksendal (2005), Kohatsu-Higa (2007), Di Nunno et. al. (2008)
and the references there in. In most of these models prices are fixed exogenously,
the insider does not affect the stock price dynamics and the privilege informa-
tion is a functional of the stock price process: the maximum, the final value,
etc. As pointed by Danilova (2010) in an equilibrium situation market prices
are determined by the demand of market participants, so in such a situation the
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privilege information cannot be a functional of the stock price process because
this implies the knowledge of future demand and it is unrealistic. Then the
privilege information has to be something fixed exogenously like the announce-
ment of the fundamental price, latter evolving independently of the demand and
known by the insider. Another point is about the efficiency of the market in
the sense that market prices converge to the fundamental one. In this paper we
will show how the presence of an insider can be beneficial to the market in the
sense that it makes the market be efficient. This problem has been addressed in
different papers from the seminal papers of Kyle (1985) and Back (1992). See
for instance Back and Pedersen (1998), Cho (2003), Lasserre (2004a, 2004b),
Aase et. al. (2007), Campi and Cetin (2007), Danilova (2010) and Caldentey
and Stacchetti (2010).

Here we analyze in a unified form how the presence of an insider makes the
market be efficient when the insider knows the release time of the fundamental
value of the asset. We also establish a general relationship between the problem
of finding rational prices and the enlargement of filtrations problem. Moreover
we consider the case when the time of the announcement is just a stopping time
for all traders. In this latter case the market is not fully efficient, nevertheless
there is an equilibrium where the sensitivity of prices is decreasing in time
according with the probability that the announcement time is greater than the
current time. In others words, prices are becoming more and more stable when
the announcement is coming.

The paper is organize as follows. In the next section we describe the model
that gives rise the stock prices. In the third section we discuss the optimal
strategy . In section fourth and fith we discuss what happens when the release
time is known or not respectively. In section six we review the results about the
enlargement of filtration problem and provide new one. Finally we apply these
results to find an equilibrium strategy.

2 The model

We consider a market with two assets, a risky asset S and a bank account with
interest rate r equal to zero for the sake of simplicity. The period in which the
participants trade is [0,∞). There is to be a convergence of fundamental and
market price at (a possibly random) time τ . The fundamental price process is
denoted by V, it will be the price of the asset after time τ , after that time we
can consider that all traders have the same information so we cannot talk about
insiders in the market.

In the paper of Caldentey and Stacchetti [7], authors consider that after
time τ market price matches the fundamental price and that at the same time
market makers use their pricing rule to set the market price, this situation leads
the insider to a wild strategy. However we think that this situation is a bit
artificial since if fundamental price is known from market makers then they do
not need a pricing rule.

We shall denote the market price of the stock at time t by Pt. So, Pt 6= Vt
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if t < τ and Pt = Vt if τ ≥ t. The market is continuous in time and order
driven. There are three kinds of traders. A (large) number of liquidity traders,
who trade for liquidity or hedging reasons, an informed trader or insider, who
has privilege information, and market makers, who set the price and clear the
market.

We write FP =
(
FP

t

)
t≥0

where FP
t = σ(Ps, 0 ≤ s ≤ t). We denote by

St = σ{τ ∧ s, 0 ≤ s ≤ t} and S =(St)t≥0 . Let X be the demand process of
the informed trader. At time t, her information is given by Ht, where Ht =
σ(Ps, ηs, τ ∧ s, 0 ≤ s ≤ t), where η is a signal process or firm value in such a
way that

Vt = E(f(η1)|Ht),

where f is an increasing function. Then, V is an H-martingale, where H =(Ht)t≥0.
The informed trader tries to maximize her final wealth, that is, she is risk-
neutral.

Let Z be the aggregate demand process of the noise traders, we assume
that Z is an H-martingale independent of η. We take for granted that all these
processes are defined in the same, complete, probability space and the filtrations
are complete and right-continuous.

We assume that market makers ”clear” the market by fixing prices through
a pricing rule, in terms of formulas

Pt = H(t, ξt), t ≥ 0

with

ξt :=
∫ t

0

λ(s)dYs,

where λ is a positive function, H ∈ C1,2 and H(t, ·) is strictly increasing for
every t ≥ 0 and where Y = X + Z is the total demand that market makers
observe. We also assume that, due to the competition among market makers,
the previous prices are rational or competitive in the sense that

Pt = E(Vt|Ys, τ ∧ s, 0 ≤ s ≤ t), t ≥ 0.

Note that Ht = σ(Ps, ηs, τ ∧ s, 0 ≤ s ≤ t) = σ(Ys, ηs, τ ∧ s, 0 ≤ s ≤ t) and that
(Pt) is then an FY ∨S -martingale, where FY =

(
FY

t

)
0≤t≤1

and FY
t = σ(Ys, 0 ≤

s ≤ t).

3 The optimal strategy

Consider first a discrete model where trades are made at times i = 1, 2, . . . N,
and where N is random. If at time i− 1, there is an order of buying Xi −Xi−1

shares, its cost will be Pi(Xi −Xi−1), so, there is a change in the bank account
given by

−Pi(Xi −Xi−1).
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Then the total change is

−
N∑

i=1

Pi(Xi −Xi−1),

and due to the convergence of market and fundamental prices, just after time
N , there is the extra income: XNVN . So, the total wealth is

WN+ = −
N∑

i=1

Pi(Xi −Xi−1) + XNVN

= −
N∑

i=1

Pi−1(Xi −Xi−1)−
N∑

i=1

(Pi − Pi−1)(Xi −Xi−1) + XNVN

Analogously, in the continuous model,

Wτ+ = XτVτ −
∫ τ

0

Pt−dXt − [P,X]τ

=
∫ τ

0

Xt−dVt +
∫ τ

0

Vt−dXt + [V,X]τ −
∫ τ

0

Pt−dXt − [P,X]τ

=
∫ τ

0

(Vt− − Pt−) dXt +
∫ τ

0

Xt−dVt + [V,X]τ − [P,X]τ

where (and throughout the whole article) Pt− denotes the left limit lims↑t Ps.
We require that X is an FV,P -semimartingale, so that the integrals can be seen
as Itô integrals, and to ensure the quadratic covariation [P,X] is finite we also
assume that P is an FV,P -semimartingale.

First we consider strategies of the form

dXt = θtdt,

where θ is an H-adapted process, with
∫ τ

0
|θt|dt < ∞, a.s..

Assumption 1.

E
(∫ τ

0

|∂2H(t, ξt)θs|ds

)
< ∞,

Assumption 2.

E
(∫ τ

0

|Xs|2 σ2
V (s)ds

)
< ∞,

where σ2
V (s) := d[V,V ]s

ds .
The wealth at time τ+ is given by

Wτ+ :=
∫ τ

0

(Vt − Pt)θtdt +
∫ τ

0

XtdVt

where Pt = H(t, ξt), with ξt :=
∫ t

0
λ(s)(θ(s)ds + dZs), and where Z is an H-

martingale. In the following we will consider two kinds of stopping times: τ
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bounded, or τ is conditionally independent of (Vs, Ps, Zs)t≤s given Ht. In both
cases we have that E(

∫ τ

0
XtdVt) = 0.

Denote

J(θ) := E (Wτ+) = E

(∫ τ

0

(Vt −H(t, ξt))θtdt

)
,

then, if θ is optimal, for all β, such that θ + εβ is admissible with ε > 0 small
enough, we will have

0 =
d
dε

J(θ + εβ)

=
d
dε

E

(∫ τ

0

(Vt −H(t,
∫ t

0

λ(s)((θ(s) + εβs)ds + dZs))) (θ(t) + εβt) dt

)
= E

(∫ τ

0

(Vt −H(t, ξt))βtdt

)
+ E

(∫ τ

0

−∂2H(t, ξt)θt

(∫ t

0

λ(s)β(s)ds

)
dt

)
= E

((∫ τ

0

(Vt −H(t, ξt))− λ(t)
∫ τ

t

∂2H(s, ξs)θsds

)
βtdt

)
,

then, since we can take βt = 1[u,u+h](t) αu, with αu Hu-measurable and
bounded. Then

E

(∫ u+h

u

(
E(1[0,τ ](t) (Vt −H(t, ξt))

∣∣Ht)− λ(t)E
(∫ ∞

t

1[0,τ ](s)∂2H(s, ξs)θsds

∣∣∣∣Ht

))
dt

∣∣∣∣∣Hu

)
= 0

(1)
and this means that

Mt :=
∫ t

0

(
E(1[0,τ ](u)Vu|Hu)− E(1[0,τ ](u)H(u, ξu)|Hu)− λ(u)

∫ ∞

u

E
(
1[0,τ ](s)∂2H(s, ξs)θs|Hu

)
ds

)
du

is an H-martingale and this implies that, for all t ≥ 0,

E(1[0,τ ](t)Vt|Ht)−E(1[0,τ ](t)H(t, ξt)|Ht)−λ(t)
∫ ∞

t

E
(
1[0,τ ](s)∂2H(s, ξs)θs|Ht

)
ds = 0, a.e.

Since S ⊆ H, or equivalently τ is an H-stopping time, and FP,V ⊆ H, then we
can write in the set τ > t,

Vt −H(t, ξt)− λ(t)E
(∫ τ

t

∂2H(s, ξs)θsds

∣∣∣∣Ht

)
= 0, a.e..

4 Case when τ is bounded and known by the
insider

4.1 Market efficiency

If σ(τ) ∈ H0, then

Vt −H(t, ξt)− λ(t)
∫ τ

t

E (∂2H(s, ξs)θs|Ht) ds = 0, a.e. 0 ≤ t ≤ τ .
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E
(∫ τ

t
|∂2H(s, ξs)θs|ds|Ht

)
is a supermartingale:

E

(
E

(∫ τ

t

|∂2H(s, ξs)θs|ds

∣∣∣∣Ht

)∣∣∣∣Hs

)
= E

(∫ τ

t

|∂2H(s, ξs)θs|ds

∣∣∣∣Hs

)
≤ E

(∫ τ

s

|∂2H(s, ξs)θs|ds

∣∣∣∣Hs

)
.

and by Assumption 1

E

(
E

(∫ τ

t

|∂2H(s, ξs)θs|ds

∣∣∣∣Hs

)∣∣∣∣ τ) < ∞, a.s..

So, for fixed τ , E
(∫ τ

t
|∂2H(s, ξs)θs|ds

∣∣Hs

)
converges in L1 to zero, when

t → τ , so it converges a.s to zero. Then we have that

Vτ −H(τ−, ξτ−) = 0, a.s.

So, optimal strategies lead the market price to the fundamental one making the
market be efficient.

Remark 1 This is the case in Campi and Çetin (2007), where they take Vt =
1{τ̄>1}, τ̄ is an H-stopping time and τ = τ̄ ∧ 1 and τ is known by the insider,
that is τ ∈ H0 and it is bounded. Then they obtain

1{τ̄>1} −H(τ̄ ∧ 1, ξτ̄∧1) = 0, a.s..

They also assume that τ̄ is the first passage time of a standard Brownian motion
that is independent of Z.

Remark 2 If we take Vt ≡ V and τ ≡ 1 then we are in Back’s framework
(1992). Market prices converge to V when t → 1.

4.2 Price pressure

For the sake of simplicity we are going to assume that Z is a continuous H-
martingale, even though similar calculations can be done in case of a jump part
in the process Z. Nevertheless the presence of jumps and the independence of
Z and V have been shown to be incompatible with the existence of rational
prices in important cases (see Corcuera et. al (2010)). By using Itô’s formula,
we have

E

(∫ τ

t

1
λ(s)

∂2H(s, ξs)dξs |Ht

)
= E

(
Vτ

λ(τ)

∣∣∣∣Ht

)
− H(t, ξt)

λ(t)

−E

(∫ τ

t

(
− λ′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)
λ(s)

+
1
2
∂22H(s, ξs)λ(s)σ2

s

)
ds

∣∣∣∣Ht

)
,
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where σ2
s := d[Z,Z]

ds . So,

0 = Vt − λ(t)E
(

Vτ

λ(τ)

∣∣∣∣Ht

)
+λ(t)E

(∫ τ

t

(
− λ′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)
λ(s)

+
1
2
∂22H(s, ξs)λ(s)σ2

s

)
ds

∣∣∣∣Ht

)
Now if τ ∈ H0, then

Vt

λ(t)
− Vτ

λ(τ)
+
∫ τ

t

E

(
− λ′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)
λ(s)

+
1
2
∂22H(s, ξs)λ(s)σ2

s

∣∣∣∣Ht

)
ds

= 0.

By differentiating and identifying the predictive and martingale parts we have
that

λ′(t)
λ2(t)

Vt −
λ′(t)
λ2(t)

H(t, ξt) +
∂1H(t, ξt)

λ(t)
+

1
2
∂22H(t, ξt)λ(t)σ2

t = 0

Then writing H̄(t, y) := H(t,y)
λ(t) , Vt(ω) = vt and ξt(ω) = yt we have the following

equation for H̄ :

λ′(t)
λ2(t)

vt + ∂1H̄(t, yt) +
1
2
∂22H̄(t, yt)λ2(t)σ2

t = 0.

Proposition 3 Assume that the law of ξ and M, where M· :=
∫ ·
0
λ(u)dZu, are

equivalent. Then the price pressure is constant and

∂1H̄(t, yt) +
1
2
∂22H̄(t, yt)λ2(t)σ2

t = 0.

Proof. Since Z and V are independent, this implies that

λ′(t)
λ2(t)

vt + ∂1H̄(t, yt) +
1
2
∂22H̄(t, yt)λ2(t)σ2

t = 0.

is satisfied for certain trajectories of (V,M), that only depend on the value of
V , but corresponding to different values of ω. Moreover the pricing rule has to
be independent of the values of V , so the previous equation should be satisfied
for any value of (V,M). Then, by Itô’s formula, we have

H̄(τ , Mτ ) = H̄(t, Mt) +
∫ τ

t

∂2H̄(s,Ms)λ(s)dZs +
∫ τ

t

∂1H̄(s,Ms)ds

+
∫ τ

t

1
2
∂22H̄(s,Ms)λ2(s)σ2

sds,
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and

E
(
H̄(τ , Mτ )|Mt = yt, Vt = vt

)
= H̄(t, yt) + E

(∫ τ

t

∂1H̄(s,Ms)λ(s)ds

∣∣∣∣Mt = yt, Vt = vt

)
+E

(∫ τ

t

1
2
∂22H̄(s,Ms)λ2(s)σ2

sds

∣∣∣∣Mt = yt, Vt = vt

)
= H̄(t, yt)− E

(∫ τ

t

λ′(s)
λ2(s)

Vsds

∣∣∣∣Mt = yt, Vt = vt

)
= H̄(t, yt)− vt

(
1

λ(t)
− 1

λ(τ)

)
,

so

H(t, yt) = λ(t)E
(
H̄(τ , Mτ )|Mt = yt

)
− vt

(
1− λ(t)

λ(τ)

)
,

but the price function cannot depend on the values of V, so λ(t) = λ0 and the
price pressure is constant.

Remark 4 Note that we finally have that

H(t, y) = E (H(τ , λ0Zτ )|λ0Zt = y) .

4.3 More general strategies and a verification theorem

Define

J(f(v), t, y) :=
∫ H−1(τ,λ0·)(v)

y

f(v)−H(t, λ0x)
λ0

dx,

then, by Itô’s formula and assuming again, for the sake of simplicity that Z is
continuous.

J(Vτ , τ , ξτ ) = J(0, 0, 0) +
∫ τ

0

∂1Jds +
∫ τ

0

∂2Jdξs +
∫ τ

0

∂0JdVs

+
1
2

∫ τ

0

∂22Jλ2
0σ

2
sds +

1
2

∫ τ

0

∂00Jσ2
V ds.

Where ∂i, i = 0, 1, 2 indicates the partial derivative with respect to the first
second or third argument of J respectively. Then if the strategy is optimal
J(Vτ , τ , ξτ ) = 0, since any optimal strategy satisfies H−1(τ , λ0·)(f−1(Vτ )) = ξτ ,
so

E(J(0, 0, 0)) = E

(∫ τ

0

Vs −H(s, ξs)
λ0

θsds

)
− E

(∫ τ

0

∂1Jds

)
−E

(
1
2

∫ τ

0

∂22Jλ2
0σ

2
sds− 1

2

∫ τ

0

∂00Jσ2
V (s)ds

)
,

where σ2
V (s) := d[V,V ]s

ds . Then if

E

(∫ τ

0

∂1Jds +
1
2

∫ τ

0

∂22Jλ2
0σ

2
sds

)
= 0,

8



we will have that E
(
J(0, 0, 0) + 1

2

∫ τ

0
∂00Jσ2

V ds
)

= E
(∫ τ

0
Vs−H(s,λ0ξs)

λ0
θsds

)
.

But

∂2J = −f(v)−H(t, λ0y)
λ0

(2)

so we deduce from the equation for H̄ that

∂1J +
1
2
∂22Jλ2

0σ
2
t = C(t) (3)

but since J(Vτ , t, ξτ ) = 0 for all t, we obtain that C(t) ≡ 0. Then we have the
following theorem.

Theorem 5 E
(
J(0, 0, 0) + 1

2

∫ τ

0
∂00Jσ2

V (s)ds
)

is the maximum expected profit
and it can be reached by a strategy X if and only if it satisfies the following
properties:

(i) X has continuous paths,
(ii) the Doob’s decomposition of X does not have martingale part,
(iii) the strategy drives the price to Vτ .that is lim

t→τ
Pt = Vτ .

Proof. By using Itô’s formula, we have

J(Vτ , τ , ξτ ) = J(0, 0, 0) +
∫ τ

0

∂1J(Vt, t, ξt−)dt +
∫ τ

0

∂2J(Vt, t, ξt−)dξt +

+
1
2

∫ τ

0

∂22J(Vt, t, ξt−)d[ξc, ξc]t +
∫ τ

0

∂02J(Vt, t, ξt−)d[ξc, V ]t

+
1
2

∫ τ

0

∂00J(Vt, t, ξt−)σ2
V dt

+
∑

0≤t≤1

(
∆J(Vt, t, ξt)−

∂J

∂y
(Vt, t, ξt−)∆ξt

)
.

By construction, ξ0 = 0, and we have dξt = λ0dYt

d[ξc, ξc]t = λ2
0d[Xc, Xc]t + 2λ2

0d[Xc, Z]t + λ2
0σ

2
t dt,

and
∂02J(Vt, t, ξt−)d[ξc, V ]t = −d[X, V ]t

so using (2) and (3), we get

J(Vτ , τ , ξτ ) = J(0, 0, 0) +
∫ τ

0

∂0J(Vt, t, ξt−)dVt +
∫ τ

0

(Pt− − Vt)(dXt + dZt)

+
1
2

∫ τ

0

∂22J(Vt, t, ξt−)λ2
0d[Xc, Xc]t − [X, V ]τ +

1
2

∫ τ

0

∂00J(Vt, t, ξt−)σ2
V dt

+
∫ τ

0

∂22J(Vt, t, ξt−)λ2
t d[Xc, Zc] +

∑
0≤t≤1

(
∆J(t, ξt)−

∂J

∂y
(t, ξt−)∆ξt

)
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Subtracting [P,X]τ from both sides and substituting, we obtain∫ τ

0

(Vt − Pt−)dXt − [P,X]τ + [X, V ]τ −
(

J(0, 0, 0) +
1
2

∫ τ

0

∂00J(Vt, t, ξt−)σ2
V dt

)
= −J(Vτ , τ , ξτ ) +

∫ τ

0

∂0J(Vt, t, ξt−)dVt +
∫ τ

0

(Pt− − Vt)dZt

+
1
2

∫ τ

0

∂22J(Vt, t, ξt−)λ2
0d[Xc, Xc]t +

∫ τ

0

∂22J(Vt, t, ξt−)λ2
t d[Xc, Zc]

+
∑

0≤t≤1

(
∆J(t, ξt)−

∂J

∂y
∆ξt

)
− [P,X]τ .

We will show that the expectation of the left hand side is non-positive by eval-
uating the right hand side. Note that

[P,X]τ ≡ [P c, Xc]τ +
∑

0≤t≤τ

∆Pt∆Xt.

Itô’s formula for H shows that the continuous local martingale part of P is∫
∂H
∂y (t, ξt−)dξc

t , so by using 2, we obtain

[P c, Xc]τ =
[∫

∂H

∂y
(t, ξt−)dξc

t , X
c

]
τ

=
∫ τ

0

∂H

∂y
(t, ξt−)d [ξc, Xc]t

=
∫ τ

0

∂22J(Vt, t, ξt−)λ2
0d [Xc, Xc]t +

∫ τ

0

∂22J(Vt, t, ξt−)λ2
0d [Xc, Z]t ,

and also

λ0∂2J(Vt, t, ξt−)∆Xt + ∆Pt∆Xt = (Pt− − Vt)∆Xt + ∆Pt∆Xt

= (Pt − Vt)∆Xt = λ0∂2J(Vt, t, ξt)∆Xt.

Substituting them for [P,X]t in the right hand side of equation, it simplifies to

−J(Vτ , τ , ξτ ) +
∫ τ

0

∂0J(Vt, t, ξt−)dVt +
∫ τ

0

(Pt− − Vt)dZt −
1
2

∫ τ

0

∂22J(Vt, t, ξt−)λ2
0d[Xc, Xc]t

+
∑

0≤t≤1

(
J(Vt, t, ξt)− J(Vt, t, ξt−)− λ0∂2J(Vt, t, ξt)∆Xt

)
1. We know that λ0∂22J(Vτ , τ , ξτ ) = ∂2H(τ , ξτ ) > 0 and that λ0∂2J(Vτ , τ , ξτ ) =
−Vτ +H(τ , λ0ξτ ) so we have a maximum value of −J(Vτ , τ , ξτ ) if and only
if −Vτ + H(τ , λ0ξτ ) = 0 and in that case J(Vτ , τ , ξτ ) = 0.

2. The processes
∫ ·
0
∂0J(Vt, t, ξt−)dVt and

∫ ·
0
(Pt−−Vt)dZt are FP,V -martingale,

so they vanish when we take expectations.

3. By (2) and H being increasing monotone, we have that ∂22J > 0, and the
measure d[Xc, Xc] ≥ 0,

10



4. ∂22J > 0 (convexity) implies that

J(v, t, x + h)− J(v, t, x)− ∂J

∂y
(v, t, x + h)h ≤ 0.

So, ∑
0≤t≤1

(
J(Vt, t, ξt− + λt∆Yt)− J(t, ξt−)− ∂J

∂y
(Vt, t, ξt)λt∆Xt

)
≤ 0,

and has its maximum if and only if ∆Yt = 0, that is if and only if X is
continuous.

5 Case when τ is unknown

In the general case

Vt −H(t, ξt)− λ(t)
∫ ∞

t

E
(
1[0,τ ](s)∂2H(s, ξs)θs|Ht

)
ds = 0, a.e. t ≥ 0.

Then if we assume that {τ ∧ s, s ≥ t} is conditionally independent of
(Vt, Pt, Zt)0≤t≤s given Ht, we will have (provided that P (τ > t) > 0).

Vt −H(t, ξt)− λ(t)
∫ ∞

t

P (τ > s|Ht)E(∂2H(s, ξs)θs|Ht) ds

= Vt −H(t, ξt)−
λ(t)

P (τ > t)

∫ ∞

t

P (τ > s)E(∂2H(s, ξs)θs|Ht) ds = 0, a.e. t ≥ 0.

Then

(Vt −H(t, ξt))P (τ > t)
λ(t)

−
∫ ∞

t

P (τ > s)E(∂2H(s, ξs)θs|Ht) ds = 0.

By Assumption 1,
∫∞

t
P (τ > s)E(|∂2H(s, ξs)θs| |Ht) ds converges in L1 to zero

when t goes to infinity:

lim
t→∞

E

(∫ ∞

t

P (τ > s) |∂2H(s, ξs)θs|ds

)
= 0,

and since it is a supermartingale it converges a.s. to zero. Then we have that

lim
t→∞

(Vt −H(t, ξt))P (τ > t)
λ(t)

= 0. (4)

11



Then proceeding in a similar way than before and assuming again that Z is
continuous and that σ2

s := d[Z,Z]
ds ,

E

(∫ ∞

t

P (τ > s) ∂2H(s, ξs)θsds

∣∣∣∣Ht

)
= lim

T→∞
E

(
H(T, ξT )P (τ > T )

λ(T )

∣∣∣∣Ht

)
− H(t, ξt)P (τ > t)

λ(t)

−E

(∫ ∞

t

(∂s

(
P (τ > s)

λ(s)

)
H(s, ξs) +

P (τ > s)
λ(s)

∂1H(s, ξs)

+
1
2
∂22H(s, ξs)P (τ > s)λ(s)σ2

s)ds

∣∣∣∣Ht

)
.

then by (4)

lim
T→∞

E

(
H(T, ξT )P (τ > T )

λ(T )

∣∣∣∣Ht

)
= lim

T→∞
E

(
VT P (τ > T )

λ(T )

∣∣∣∣Ht

)
= Vt lim

T→∞

P (τ > T )
λ(T )

:= VtC,

0 = Vt

(
1− Cλ(t)

P (τ > t)

)
− λ(t)

P (τ > t)
E

(∫ ∞

t

(
∂s

(
P (τ > s)

λ(s)

)
H(s, ξs)

+
P (τ > s)

λ(s)
∂1H(s, ξs) +

1
2
∂22H(s, ξs)P (τ > s) λ(s)σ2

s

)
ds

∣∣∣∣Ht

)
,

and we will have a solution if and only if C = P (τ>t)
λ(t) , then the price pressure

is not constant. Here the situation is analogous to that in Cho (2003) where he
considers a risk-averse insider, he concludes that a risk-averse would do most of
his trading early to avoid the risk that the prices gets closer to the asset value,
unless the trading conditions become more favorable over time, this is exactly
what happens when the insider does not know the release time. He would try
to trade early to use his information before the anouncement unless the price
pressure decreases over time making more favorable trading later and this is
what happens in equilibrium.

Note also that we have that

∂1H(s, ξs) +
1
2
∂22H(s, ξs)λ

2(s)σ2
s = 0.

By defining (conjecture, check)

J(v, t, y) := lim
τ→∞

∫ H−1(τ,λ0·)(v)

y

f(v)−H(t, λ0x)
λ0

dx,

we would obtain a similar theorem to Theorem 5.
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Remark 6 In Caldentey and Stacchetti (2010) authors assume that V is an
arithmetic Brownian motion and τ follows an exponential distribution with scale
parameter µ, independent of (Vt, Pt, Zt)0≤t≤τ . Then, on the set t < τ

Vt −H(t, ξt)− λ(t)
∫ ∞

t

e−µ(s−t)E (∂2H(s, ξs)θs|Ht) ds = 0, a.e,

then, proceeding in a similar way we have a solution if and only if λ(t) = λ0e
−µt.

6 Enlargement of filtrations

We have seen that the total demand of assets in equilibrium is given by

Yt = Zt +
∫ t

0

θ(ηt;Yu, 0 ≤ u ≤ s)ds, 0 ≤ t ≤ T (5)

where Z is a martingale independent of , so Z is an FZ,η martingale and, since
FY,η ⊆ FZ,η and Z is adapted to FY,η, it is also an FY,η-martingale. On the other
hand Y is supposed to be, in equilibrium, an FY -martingale. Consequently
(5) becomes the Doob-Meyer decomposition of the FY -martingale Y when we
enlarge the filtration FY with the process η. We are then into a problem of
enlargement of filtrations.

6.1 Initial enlargement of filtrations

Consider a stochastic basis (Ω,F , F, P) a random variable L F-measurable with
values in (R, B (R)). Let Gt := ∩s>t (Ft ∨ σ(L)) and G =(Gt) .

Condition A. For all t, there exists a σ-finite measure ηt in (R, B (R)) such
that Qt(ω, ·) � ηt where Qt(ω, dx) is a regular version of L|Ft.

Proposition 7 Condition A is equivalent to Qt(ω, dx) � η(dx) where η is
the law of L.

Proof. By Condition A we have that Qt(ω, dx) = qx
t (ω)ηt(dx), where

qx
t (ω) is B(R)⊗Ft measurable then we can write Qt(ω, dx) = q̂x

t (ω)η(dx) with
q̂x
t (ω) = qx

t (ω)
E(qx

t (ω)) .

Proposition 8 Under Condition A there exists qx
t (ω) B(R)⊗Ft-measurable

such that Qt(ω, dx) = qx
t (ω)η(dx) and, for fixed x, qx

t is an F-martingale.

Proof. See Jacod (1985) Lemma 1.8.

Theorem 9 Let M be a continuous local F-martingale and kx
t (ω) such that

〈qx,M〉t =
∫ t

0

kx
s qx

s−d〈M,M〉s
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then

M −
∫ ·

0

kL
s d〈M,M〉s,

is a G-martingale.

Proposition 10 Proof. Except for a localization procedure (see details in Ja-
cod (1985) Theorem 2.1) the proof is the following: let Z ∈ Fs and g be Borelian
and bounded, then

E(Zg(L)(Mt −Ms)) = E(E(Zg(L)(Mt −Ms)|Ft))
= E(Z(Mt −Ms)E(g(L)|Ft))

=
∫

R
g(x)η(dx)E(Z(Mt −Ms)qx

t )

=
∫

R
g(x)η(dx)E(Z(Mtq

x
t −Msq

x
s ))

=
∫

R
g(x)η(dx)E(Z(〈M, qx〉t − 〈M, qx〉s))

=
∫

R
g(x)η(dx)E(Z(〈M, qx〉t − 〈M, qx〉s))

=
∫

R
g(x)η(dx)E(Z(

∫ t

s

kx
uqx

u−d〈M,M〉u))

= E(Zg(L)(
∫ t

s

kx
uqx

u−d〈M,M〉u))

Example 11 Take Mt = Bt where B is a standard Brownian motion, take
L = B1 then

qx
t (ω) ∼

1
(1− t)1/2

exp
{
− 1

2(1− t)
(Bt(ω)− x)2 +

x2

2

}
,

by Ito’s formula

dtq
x
t = qx

t

x−Bt

1− t
dBt,

then kx
s = x−Bt

1−t and

B −
∫ ·

0

B1 −Bs

1− s
ds

is an FB∨σ(B1) martingale. Note that, by the Lévy theorem, B−
∫ ·
0

B1−Bs

1−s ds is
a (standard) G := FB∨σ(B1) -Brownian motion and since B1 is G0-measurable,
it is independent of W .

Example 12 Note that if the filtration F is that generated by a Brownian mo-
tion, B, then for any F-martingale

dMt = σtdBt
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and
d〈M,M〉t = σ2

t dt.

Also, assuming that
qx
t (ω) = hx

t (Bt)

and h ∈ C1,2 we will have that

dtq
x
t = ∂hx

t (Bt)dBt,

and

kx
t =

∂ log hx
t (Bt)

σt
.

Example 13 In fact the previous example is a particular case of the following
one: let Y be the Brownian semimartingale

Yt = Y0 +
∫ t

0

σ(Ys)dBs +
∫ t

0

b(Ys)ds,

and assume that
Y1|Ft ∼ π(1− t, Yt, x)dx.

with π smooth. We know that (π(1− t, Yt, x))t is an F-martingale, then

dπ(1− t, Yt, x) =
∂π

∂y
(1− t, Yt, x)σ(Ys)dBs

and by the Jacod theorem∫ t

0

σ(Ys)dBs −
∫ t

0

∂ log π

∂y
(1− s, Ys, Y1)σ2(Ys)ds

is an F ∨ σ(Y1)-martingale, and we can write

Yt = Y0 +
∫ t

0

σ(Ys)dB̃s +
∫ t

0

b(Ys)ds +
∫ t

0

∂ log π

∂y
(1− s, Ys, Y1)σ2(Ys)ds,

where B̃ is an F ∨ σ(Y1)-Brownian motion.

Example 14 Let B a Brownian motion and τ = inf{t > 0, Bt = −1} it is well
known that

P [τ ≤ s|Ft] = 2Φ(−1 + Bt√
s− t

)1{τ∧s>t} + 1{s<τ∧t},

where Φ is the c.d.f. of a standard normal distribution. Then in t < s ∧ τ we
have, by Itô´s formula,

P [τ ≤ s|Ft] = 2Φ(− 1√
s
) +

√
2
π

∫ t

0

1√
s− u

e−
(1+Bu)2

2(s−u) dBu,
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so

d〈P [τ ≤ s|F·], B〉t = −
√

2
π

1√
s− t

e−
(1+Bt)

2

2(s−t) dt,

and

αs
tQt(·,ds)

=
∂

∂s

(√
2
π

1√
s− t

e−
(1+Bt)

2

2(s−t)

)
=

1√
2π

 1√
(s− t)3

− (1 + Bt)
2√

(s− t)5

 e−
(1+Bt)

2

2(s−t) ,

finally

Qt(·,ds) =
∂

∂s
P [τ > s|Ft] =

e−
(1+Bt)

2

2(s−t)

√
2π

√
(s− t)3

(1 + Bt) ,

and

αs
t =

∂
∂s

(√
2
π

1√
s−t

e−
(1+Bt)

2

2(s−t)

)
∂
∂sP [τ > s|Ft]

=
1

1 + Bt
− 1 + Bt

s− t
.

Consequently

Bt −
∫ t∧τ

0

(
1

1 + Bs
− 1 + Bs

τ − s

)
ds, t ≥ 0,

is a G-martingale.

6.2 Progressive enlargement of filtrations

In the progressive enlargement of filtrations G =(Gt) with Gt = Ft ∨ Ht where
H =(Ht) is another filtration. The case where Ht = σ(1{τ≤t}) with τ a random
time has been extensely studied, see for instance Jeulin (1980), Jeulin and
Yor (1985) or Mansuy and Yor (2006), among others, however few studies has
been developed in the general setting. One exception is when Ht = σ(Jt), for
Jt = infs≥t Xs and when X is a 3-dimensional Bessel process, see section 1.2.2
in Mansuy and Yor (2006), but this case can be reduced in fact to a case with
random times taking into account that

{Jt < a} = {t < Λa} ,

where Λa = sup{t, Xt = a}. Another one is the case when Ht = σ(Lt), for Lt =
G(X, Yt), with X and FT -measurable random variable Y a process independent
of FT and G a Borelian function, see Corcuera et al. (2004). A particular case
is given by the proposition:

Proposition 15 Assume that B is a Brownian motion and that F = FB. Let
W be another Brownian motion independent of B,consider the process Vt :=
B1 +

∫ 1

t
σsdWs, with

∫ 1

t
σ2

sds < ∞, for all 0 ≤ t ≤ 1.Then provided that∫ t

0

1

1 +
∫ 1

s
σ2

udu− s
ds < ∞,
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we have that the Doob-Meyer decomposition of B in FB,V is given by

Bt = W̃t +
∫ t

0

Vs −Bs

1 +
∫ 1

s
σ2

udu− s
ds, 0 ≤ t < 1

where W̃ is a Brownian motion but correlated with V.

Proof. W̃ is a centered Gaussian processes and for 0 ≤ s ≤ t < 1

E(W̃tW̃s) = E

((
Bt −

∫ t

0

Vu −Bu

1 +
∫ 1

u
σ2

vdv − u
du

)(
Bs −

∫ s

0

Vu −Bu

1 +
∫ 1

u
σ2

vdv − u
du

))

= s− E

(
Bt

∫ s

0

Vu −Bu

1 +
∫ 1

u
σ2

vdv − u
du

)
− E

(
Bs

∫ t

0

Vu −Bu

1 +
∫ 1

u
σ2

vdv − u
du

)

+E

(∫ t

0

Vu −Bu

1 +
∫ 1

u
σ2

vdv − u
du

∫ s

0

Vu −Bu

1 +
∫ 1

u
σ2

vdv − u
du

)

= s−
∫ s

0

t− u

1 +
∫ 1

u
σ2

vdv − u
du−

∫ s

0

s− u

1 +
∫ 1

u
σ2

vdv − u
du

+2E

∫ s

0

∫ r

0

(Vr −Br) (Vu −Bu)(
1 +

∫ 1

r
σ2

vdv − r
)(

1 +
∫ 1

u
σ2

vdv − u
)du

dr


+E

∫ t

s

∫ s

0

(Vr −Br) (Vu −Bu)(
1 +

∫ 1

r
σ2

vdv − r
)(

1 +
∫ 1

u
σ2

vdv − u
)du

dr


= s−

∫ s

0

s + t− 2u

1 +
∫ 1

u
σ2

vdv − u
du + 2

∫ s

0

s− u

1 +
∫ 1

u
σ2

vdv − u
du +

∫ s

0

t− s

1 +
∫ 1

u
σ2

vdv − u
du

= s.

On the other hand, for t ≥ s

E(W̃tVs) = s−
∫ s

0

1 +
∫ 1

s
σ2

vdv − u

1 +
∫ 1

u
σ2

vdv − u
du > 0,

provided that σv is not identically null (a.e.).

Remark 16 It is important to note that contrarily to the case of initial enlarge-
ment, the innovation process W̃ is not necesarily independent of the additional
information. Then this fact makes the application of enlargement of filtrations
in our framework more involved. In other words, in most of the models, we
assume that the privilege information (V ) is independent of the demand pro-
cess of liquidity traders (W̃ ) so the previous Proposition cannot be used with
our models. Instead we have to look for processes such that their Doob-Meyer
decomposition is of the form

Xt = W̃t +
∫ t

0

θ(Vt;Xu, 0 ≤ u ≤ s)ds, 0 ≤ t ≤ T,
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where W̃ and V are independent.

Now consider the case when Ht = σ(Vt) for

Vt = V0 +
∫ t

0

σsdW 1
s ,

where σs is a deterministic funtion, V0 is a zero mean normal r.v.,
(
W 1,W 2

)
is a 2-dimensional Brownian motion independent of V0. We have the following
proposition:

Proposition 17 Assume that V ar(V1) = 1 and that∫ t

0

ds

V ar(Vs)− s
< ∞ for all 0 ≤ t < 1,

then

Bt = W 2
t +

∫ t

0

Vs −Bs

V ar(Vs)− s
ds, 0 ≤ t ≤ 1

is a Brownian motion with B1 = V1.

Proof. Denote vr := V ar(Vr)

Bt =
∫ t

0

exp
(
−
∫ t

u

1
vr − r

dr

)
dW 2

u +
∫ t

0

exp
(
−
∫ t

u

1
vr − r

dr

)
Vu

vu − u
du,

so B is a centered Gaussian process, and for s ≤ t < 1,

E (BtBs) = exp
(
−
∫ t

s

1
vr − r

dr

)
+E

(∫ t

0

∫ s

0

exp
(
−
∫ t

u

1
vr − r

dr

)
exp

(
−
∫ s

v

1
vr − r

dr

)
VuVv

(vu − u) (vv − v)
dudv

)
= exp

(
−
∫ t

s

1
vr − r

dr

)∫ s

0

exp
(
−2
∫ s

u

1
vr − r

dr

)
du

+
∫ t

s

∫ s

0

exp
(
−
∫ t

u

1
vr − r

dr

)
exp

(
−
∫ s

v

1
vr − r

dr

)
vv

(vu − u) (vv − v)
dudv

+2
∫ s

0

∫ u

0

exp
(
−
∫ t

u

1
vr − r

dr

)
exp

(
−
∫ s

v

1
vr − r

dr

)
vv

(vu − u) (vv − v)
du.

Then , since ∫ s

0

exp
(
−
∫ s

v

1
vr − r

dr

)
vv

vv − v
dv = s,

and

2
∫ s

0

exp
(
−2
∫ s

v

1
vr − r

dr

)
vv

vv − v
dv = 2s +

∫ s

0

exp
(
−2
∫ s

u

1
vr − r

dr

)
du

18



we obtain that E (BtBs) = s. So for 0 ≤ t < 1 we have that (Bt) is a standard
Brownian motion. On the other hand

E(BtVt) = E

(∫ t

0

exp
(
−
∫ t

u

1
vr − r

dr

)
VuVt

vu − u
du

)
=

∫ t

0

exp
(
−
∫ t

u

1
vr − r

dr

)
vu

vu − u
du

= t,

therefore

E((Bt − Vt)2) = E(B2
t ) + E(Vt

2)− 2E(BtVt)
= t + vt − 2t = vt − t,

and, since by hypothesis v1 = 1, this means that

lim
t→1

Bt
L2

= V1,

then for all 0 ≤ t < 1

E

(∫ t

0

|Vs −Bs|
vs − s

ds

)
<

∫ t

0

E
(
(Vs −Bs)

2
) 1

2

vs − s
ds =

∫ t

0

√
vs − sds <

√
2,

and this implies, by the monotone convergence theorem, that

lim
t→1

∫ t

0

|Vs −Bs|
vs − s

ds =
∫ 1

0

|Vs −Bs|
vs − s

ds < ∞

and that B1 = limt→1 Bt is well defined. Now, we have, by the uniqueness of
the limit in probability, that V1 = B1 a.s.

6.3 Application to find the equilibrium strategy

In this section we shall apply the results of the previous section to find the
equilibrium strategy of the insider. We will see trough different examples how
this can be done. These different examples correspond to different models that
are extensions of the Kyle-Back model.

Example 18 (Back 92) Assume that Z is a Brownian motion with variance
σ2 and V ≡ V1 = f(η1). If the strategy is optimal V1 = H(1, Y1), and if η1 has
a continuous cumulative distribution function we can assume that Y1 ≡N(0, σ2)
by choosing f conveniently. It is also assumed that η1 (and consequently Y1) is
independent of Z. Then by the calculations in the Example 11 we have that

Yt = Zt +
∫ t

0

Y1 − Ys

1− s
ds,
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is a Brownian motion with variance σ2. So the equilibrium strategy is

Xt =
∫ t

0

Y1 − Ys

1− s
ds, 0 ≤ t < 1.

Example 19 (Aase et. al (2007))

Zt =
∫ t

0

σsdWs

where σ is deterministic and V ≡ Y1 is a N(0,
∫ 1

0
σ2

sds) independent of Z. Then
V |FY

t ∼N(Yt,
∫ 1

t
σ2

sds) and by the results in the Example 12

Yt = Zt +
∫ t

0

Ys − Y1∫ 1

t
σ2

sds
σ2

sds,

has the same law as Z. We have a similar result if σ is random.

Example 20 (Campi, Cetin, Danilova (CCD)2009) (Which is the connection
with 5.41 in CCD 2010?) If dZt = σ(Yt)dWt and V ≡ V1 = f(η1). Where
ηt =

∫ t

0
σ(ηs)dBs, and independent of Z, then by the results in the Example 13

dYt = σ(Yt)dWt + σ2(Yt)
∂yG(1− t, Yt, V1)
G(1− t, Yt, V1)

dt

where G(t, y, z) is the transition density of V·, is a martingale.

Example 21 (Campi and Cetin (2007)) If we want the aggregate process Y to
be a Brownian motion that reaches the value −1 for the first time at time τ ,
and Z is also a Brownian motion then, by the results in the Example 14:

Yt = Zt +
∫ t

0

(
1

1 + Ys
− 1 + Ys

τ − s

)
1[0,τ ](s)ds,

so, in this case η ≡ τ .

Example 22 (Back and Pedersen (1998), Wu (1999), Danilova (2008)) The
insider receives a continuous signal

ηt = η0 +
∫ t

0

σsdWs,

where σs is deterministic, η0 is a zero mean normal random variable, W is a
Brownian motion, both independent of the Brownian motion Z. It is assumed
that var(η1) = var(η0) +

∫ 1

0
σ2

sds = 1, then, by Proposition 17,

Yt = Zt +
∫ t

0

ηt − Yt

var(ηt)− t
dt, 0 ≤ t ≤ 1.

is a Brownian motion.
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