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Abstract

This paper considers the estimation of the geographical scope of industrial location

determinants. While previous studies impose strong assumptions on the weight-

ing scheme of the spatial neighbour matrix, we propose a flexible parametrisation

that allows for different (distance-based) definitions of neighbourhood and different

weights to the neighbours. In particular, we estimate how far can reach indirect

marginal effects and discuss how to report them. We also show that the use of

smooth transition functions provides tools for policy analysis that are not available

in the traditional threshold modelling.
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1 Introduction

New firms formation is an important policy concern (Hayter 1997, Lee 2008). However,

industrial location policies may backfire if different local authorities implement them with-

out an appropriate assessment of what is their geographical scope (Gramlich 1994, Kitson

et al. 2004). In this context, having an estimate of how far such policies reach may be

extremely helpful. For example, the estimated distance may provide the basis for a coor-

dinated policy design that avoids that the efforts of different local authorities offset each

other. It may also be useful to know whether the policy effect is constant or decreasing

with the distance from the affected local area and/or what is the shape of this effect with

respect to such distance. Similarly, how a change in the characteristics of a particular area

affects location decisions in other close-by areas is an information that business managers

may find of great value. In a metropolitan area, for example, how is the location of new

concerns in the peripheral municipalities affected if the metropolis changes some of its

infrastructures?

Unfortunately, policy makers and business managers looking for answers to these ques-

tions would find little guidance in the literature. Despite the large number of papers

dedicated to empirically analyse the determinants of industrial location (see e.g. Arauzo-

Carod et al. 2010 for a review), the estimation of their geographical scope is an issue that

has received little attention.1 In general, the effects these determinants may have on the

location process are assumed to be restricted to the geographical limits of the considered

sites, which means that most previous research in this area has been carried out under the

assumption that there are no spatial effects.2 This is not only at odds with the tenets of

the New Economic Geography (Combes et al. 2008), but may often result in misleading

conclusions (Amrhein 1995, Arbia 2001, Olsen 2002).

This paper makes two contributions to this literature: one is methodological and the

other is empirical. First, we propose a new estimating approach based on the use of smooth

transition functions (Granger and Teräsvirta 1993). The geographical scope of industrial

location determinants has previously been estimated using threshold models in which

neighbours are defined in terms of an indicator function. This means that two locations

are considered neighbours if the distance that separates them is smaller than a certain

threshold. Although simple to implement, this approach imposes strong assumptions on

1Rosenthal and Strange (2003) is an early attempt to address this issue.

2See, however, Autant-Bernard (2006), Lambert et al. (2006), Woodward et al. (2006), Blonigen
et al. (2007), Alañón et al. (2007), Basile et al. (2010), Lambert et al. (2010), Melo et al. (2010),
Alamá-Sabater et al. (2011), Arauzo-Carod and Manjón (2011) and Stewart and Lambert (2011).
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the (distance-based) weighting scheme of the spatial neighbour matrix. In contrast, we

define the weighting matrix using smooth transition functions, which allows us to explore

different definitions of neighbourhood and to give different weights to different neighbours

(Getis and Aldstat 2004, LeSage 2004, McMillen and McDonald 2004).

Our second contribution to this literature is to provide a number of empirical results

with interesting policy implications. First, we replicate results from previous studies using

the threshold approach and compare them with those obtained using continuous functions.

In particular, we illustrate the validity of our approach in a sample of new manufacturing

plants of Catalonia by comparing results from the Uniform and Normal smooth transition

functions (as illustrative examples of threshold and continuous approaches, respectively).3

Second, we report evidence on two important issues that largely motivated this work:

how far can reach the “indirect marginal effects”of industrial locations determinants (see

e.g. Arauzo-Carod and Manjón 2011) and how can we report these “indirect marginal

effects”(see e.g. Woodward et al. 2006). While direct marginal effects measure the impact

on the dependent variable of a unitary change in a covariate with respect to the same

geographical unit, indirect marginal effects measure the impact on the dependent variable

of a unitary change in a covariate with respect to a different geographical unit (LeSage

and Pace 2009).

The main limitation of this paper is that, in line with previous literature, we do not

address the question of what is the origin of the spatial dependence. Our model seems par-

ticularly well suited for addressing spatial dependence arising from a poor match between

the spatial extent of the phenomenon of interest and the administrative units for which

data are available. However, the presence of unobserved (spatially correlated) covariates

may also produce spatial dependence. Our model cannot distinguish between these al-

ternative sources of spatial dependence and, in fact, in the latter case would probably be

outperformed by other approaches based on e.g. instrumental variables and panel data

methods. We differ from previous studies in that we do not need to assume that such

spatial dependence exists, for our model provides a direct assessment of the geographical

scope of the determinants of industrial location (albeit not a formal test).4

The rest of the paper is organised as follows. In section 2 we briefly review the litera-

3Although the dataset allows to distinguish between locations and relocations (see e.g. Manjón and
Arauzo-Carod 2011), it is important to stress that in this paper we only consider the information referred to
new locations (Arauzo-Carod 2008, Arauzo-Carod and Manjón 2011). We leave the comparative analysis
of locations and relocations within the framework developed in this paper for future research.

4In this respect it is interesting to note that other methodologies that account for spatial correlation,
such as for example the Geographically Weighted Regression (see e.g. Fotheringham et al. 2002), do not
address the estimation of indirect marginal effects (see e.g. Lambert et al. 2006).
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ture. In section 3 we present the model. In section 4 we discuss the empirical results. In

section 5 we summarise the main conclusions of this study.

2 The role of space in industrial location studies

The location decisions of new plants have been extensively analysed from both theoretical

and empirical perspectives (Hayter 1997, Arauzo-Carod et al. 2010). This interest arises

from the enormous implications of such decisions in terms of, for example, employment

growth, demand for infrastructures and innovation activities (Gramlich 1994, Kitson et

al. 2004, Lee 2008). However, a complete review of this literature is beyond the scope of

this paper. Rather, we restrict attention to those investigations that account for the role

of space when studying the determinants of industrial location.

In particular, recent research in this area has largely concentrated around two related

questions (Olsen 2002, Rosenthal and Strange 2003). First, when looking for a potential

site, which are the geographical areas considered by the firms? Second, which are the most

suitable methods to analyse the spatial range of the variables influencing these decisions?

The first question has been addressed by comparing estimates obtained from different

geographical aggregations. Arauzo-Carod and Manjón (2004) and Arauzo-Carod (2008),

for example, compare estimates obtained from different administrative levels (municipal-

ities, counties and provinces in the first case, municipalities and counties in the second)

and functional areas (travel-to-work areas, in the second case). Both papers find that

the differences across spatial aggregations, albeit minimal, do exist. Still, the size of the

differences may be due to the similar size of the considered areas. As Pablo-Mart́ı and

Muñoz-Yebra (2009) show, when the comparison is made using areas of different size,

results differ considerably.

In addition to these empirical contributions, there are some papers that investigate

more methodological issues. Amrhein (1995) shows that omitting the geographical scope of

the location determinants may entail a severe specification error, while Briant et al. (2010)

show how the use of different spatial units in the analysis of agglomeration economies may

result in substantially different coefficients. In general, however, these papers are more

related to the so-called Modifiable Area Unit Problem (MAUP).5

The second question has been addressed by including in the specification of the model

5In essence, the main concern behind the MAUP is that, as Arbia (2001) shows, the distribution of a
variable that is spatially georeferenced can lead to completely different conclusions depending on how the
geographical area of interest is divided: in squares of equal size, in areas of different shape and size, etc.;
in different administrative units, such as municipalities, counties, regions, etc..
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some measure of spatial dependence, either in the exogenous explanatory variables (as in

e.g. Autant-Bernard 2006, Woodward et al. 2006, Lambert et al. 2006, Alañón et al. 2007,

Melo et al. 2010, Alamá-Sabater et al. 2011, Arauzo-Carod and Manjón 2011 and Stewart

and Lambert 2011) and/or in the endogenous explanatory variable (as in e.g. Alañón et

al. 2007, Blonigen et al. 2007, Basile et al. 2010 and Lambert et al. 2010).6 Thus, this

strand of the literature revolves around the use of different neighbourhood matrices, i.e.,

weighting matrices constructed under a certain definition of neighbourhood.7

One way to define a neighbour is on the grounds of contiguity. In this vein, all the

areas that share edges or corners with other areas are considered neighbours. This is

the first order contiguity employed by for example Autant-Bernard (2006) to analyse the

determinants of the location of R&D labs in French regions and by Alañón et al. (2007) to

analyse how improvements in the accessibility to road infrastructures affect the creation

of new manufacturing establishments in Spain.

Another way to define a neighbour is on the grounds of distance. In this vein, neigh-

bours are all the areas that fall within a given Euclidean distance (5 km, 10 km, etc.). This

is the criterion used by for example Woodward et al. (2006) to estimate the effect that

the universities’ R&D expenditures in one US county have on the location of high-tech

establishments in other counties; by Melo et al. (2010) to estimate the impact of railways

and motorways of Portugal on new plant openings in manufacturing (see also Holl 2004

and Alañón et al. 2007); by Alamá-Sabater et al. (2011) to empirically discern whether

the location of new manufacturing firms in the Spanish region of Murcia depends on the

characteristics of the chosen municipality rather than those of the neighbourhood; and by

Arauzo-Carod and Manjón (2011) to estimate how far can a change in the characteristics of

a Catalan municipality affect the location of industrial establishments in the surrounding

municipalities.

However, it is interesting to note that there is a certain arbitrariness involved in fixing

the number of neighbours to be considered and/or the distance that defines a neighbour.

Moreover, these contiguity- and distance-based definitions of neighbourhood give the same

weight to all the neighbours. This paper proposes a flexible approach for the construction

of the weighting matrix that addresses these shortcomings. However, there have been other

attempts in the literature to avoid such arbitrariness and/or to account for differences in

neighbouring importance.

6These can be seen as particular cases of the spatial Durbin model advocated by LeSage and Pace
(2009).

7See Griffith (1996) and Getis and Aldstadt (2004) for a review of alternative neighbourhood criteria.
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Getis and Aldstat (2004), for example, advocate for giving different weights to different

types of neighbours, which amounts to give larger weights to closer areas if one uses

Euclidean distances (e.g., an area at 5 km receives three times the weight given to an area

at 10 km). This is the approach followed by Lambert et al. (2006) in their study of the

manufacturing investment location in US counties. In particular, they report results from

a geographically weighted regression model and a spatial generalized lineal model.

However, one may also use an inverse-distance based criterion that considers that

the intensity of the relationship between two neighbours is inversely proportional to the

distance that separates them (Fotheringham et al. 2002). Blonigen et al. (2007) follow

this approach to analyse to what extent Foreign Direct Investment (FDI) in neighbour

countries helps to explain FDI into the host country and Basile et al. (2010) to analyse

the determinants of the number of inward Greenfield FDI in European regions.8

Lastly, recent work explores the use of hybrid spatial weighting matrices that combine

contiguity- and distance-based definitions of neighbourhood. Lambert et al. (2010), for ex-

ample, propose a spatial lag count data model that accommodates global spatial spillovers

by using an inverse distance matrix constructed with the eight nearest neighbours. Also,

Stewart and Lambert (2011) analyse ethanol production site location in the U.S. counties

using a bivariate probit regression with an inverse distance matrix based on the county’s

nearest neighbours.

3 The Model

3.1 The basic setting

We seek to asses the geographical scope of the determinants of industrial location us-

ing regression analysis. In particular, we restrict attention to regression models with an

exponential conditional mean function (Cameron and Trivedi 1998):

E [Y |X] = µ = eWXβ

where the dependent variable Y is a column vector containing the number of new man-

ufacturing establishments or firms created during a time period in one of the n locations

considered.

8More sophisticated inverse-weighting schemes include the bandwidth distance decay (Fotheringham
et al. 1996), the Gaussian distance decline (LeSage 2004) and the tri-cube distance decline (McMillen and
McDonald 2004).
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This specification includes, among others, Poisson and Negative Binomial models,

which essentially differ in the form of the conditional variance function: while in the Pois-

son model is µ, in the Negative Binomial model is µ+αµ2 (the so-called “NB2 model”, with

α being a parameter to be estimated). In addition, the “inflated” versions of the Poisson

and Negative Binomial models can easily be accommodated by multiplying the conditional

mean above by one minus the parameter of the Bernoulli process that governs the two

data generation processes involved (the binary and the count), so that E [Y |X] = µ(1−δ).
We concentrate on these count data models for three reasons. First, in the empirical

application we seek to replicate a study that uses these count data models (Arauzo-Carod

and Manjón 2011). Second, these models are the most commonly used in industrial lo-

cation studies (Arauzo-Carod et al. 2010). Third, although a discrete choice approach

is also possible, there is a close relation between count data models and discrete choice

models (Guimarães et al. 2003).9

As for the covariates, we use a set of spatially lagged variables calculated as

WX = WX

where X is a matrix of k explanatory variables (with at least one having spatial varia-

tion) and W is an appropriate row-standardised n × n spatial neighbour matrix. More

specifically, W is a symmetric weighting matrix with elements taken 1/0 values depending

on whether every two sites are considered as neighbours, where neighbourhood is defined

in terms of a predefined distance and the standardisation is performed by dividing the

elements by its row sum. Notice that if the diagonal of W is strictly positive, WX is

constructed from (weighted) sums of the explanatory variables and their spatial lags. On

the other hand, a zero diagonal in W implies that only the spatially lagged variables are

considered to construct WX.

Some studies use as regressors not only the spatially lagged variables, but also the

explanatory variables without applying any spatial lag (see e.g. Autant-Bernard 2006,

Alamá-Sabater et al. 2011 and Arauzo-Carod and Manjón 2011). In maths, WX =

[WX
...X]. However, it is important to notice that in these studies the diagonal of W is

typically made of zeros, a constrain that it is not imposed in our model. This means that in

our setting WX contains essentially the same information as X and its spatial lags, so that

we can compute both direct and indirect marginal effects without explicitly including X

9Having said that, it is important to stress that our approach can also be applied to discrete choice
models (in general, to any model that can be represented in conditional expectation form), an extension
of this paper that we leave for future research.
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among the covariates, much in the same way you can do it in the Spatial Autorregressive

Models (where the weighted spatial lag of the dependent variable is included) and the

Spatial Durbin Models (where the weighted spatial lag of the dependent variable, the

weighted covariates and the covariates are included).10

The implicit assumption behind this result is that marginal effects are continuous

when the distance is zero. A discontinuity would arise in zero distances, however, had we

included X as an additional regressor (to see this, notice that in the computation of the

direct marginal effects one would need take into account the coefficients associated with

X, whereas now we only take into account those associated with WX). Leaving aside this

detail, which clearly does not alter the essence of our approach, results presented below

still hold.

Bearing in mind these issues, a simple specification of the weighting matrix is the

following:

WX = WUX

with

WU [i, j] =
1 (dij ≤ h)∑n
l=1 1 (dil ≤ h)

,

where WU [i, .] and WU [., j] are the i− th row and j− th column of WU , respectively, dij is

the distance between locations i and j, h is the distance that defines neighbourhood, and

1(.) is an indicator function that takes value one if the condition in brackets (.) is true

and zero otherwise. Thus, this weighting matrix amounts to assume that locations i and

j are considered neighbours if dij is less or equal than h.

Woodward et al. (2006), Melo et al. (2010), Alamá-Sabater et al. (2011) and Arauzo-

Carod and Manjón (2011), for example, use alternative versions of this weighting matrix

while considering different values of h. In particular, Woodward et al. (2006) explore an

increasing sequence of 5 miles, starting from 0 and up to 250, to define neighbourhood

(i.e., h = 0, 5, 10, . . . , 250) and

WX =

[
X[., 1]

...X[., 2]
... . . .

...WUX[., s]
... . . .

...X[., k]

]
,

where s is the covariate of interest (university R&D expenditures) and X[., j] is the j− th
column of X.11 As for Arauzo-Carod and Manjón (2011), they explore an increasing

10See e.g. LeSage and Pace (2009) for details.

11Actually, the weighting matrix used by Woodward et al. (2006) is slightly more complex, for they
allow W to vary across industries (i.e., the definition of neighbourhood differs across industries).
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sequence of 10 km, starting from 10 km and up to 100 km, to define neighbourhood

(i.e., h = 10, 20, . . . , 100) and apply these criteria to all the spatially-varying explanatory

variables they have. Thus, if we denote by S this sub-set of covariates, their weighting

matrix is

WX =

[
X[., 1]

...X[., 2]
... . . .

...WUX[., S]
... . . .

...X[., k]

]
.

Similarly, Melo et al. (2010) use a 40 km threshold to weight the two transport

variables they consider. Lastly, Alamá-Sabater et al. (2011) explore an increasing se-

quence of 0.1 km, starting from 25 km and up to 125 km, to define neighbourhood (i.e.,

h = 25, 25.1, 25.2, . . . , 125) and apply these criteria to all the explanatory variables they

have, so that

WX =

[
WUX[., 1]

...WUX[., 2]
... . . .

...WUX[., k]

]
.

3.2 Using smooth transitions functions to construct neighbour-

hood matrices

In this paper we follow an alternative approach based on smooth transitions functions

(Granger and Teräsvirta 1993). This allows to extend this basic setting to the use of

continuous rather than discrete (i.e., threshold) neighbourhood criteria. In maths,

W f [i, j] = f (dij, hf )

where f () is a continuous function on hf such that 0 ≤ W f [i, j] ≤ 1 and
∑n

j=1W
f [i, j] = 1.

There are many functions that may satisfy these simple conditions. However, Kernel

functions are natural candidates, since they are likely to satisfy the first condition (see

e.g. Pagan and Ullah 1999) and can easily accommodate the second (a commonly used

standardisation, as discussed in e.g. LeSage and Pace 2009). For illustrative purposes, here

we consider two of the most widely used: the Uniform kernel density (a threshold function

hereby denoted with the upper index U) and the Standard Normal density function (a

continuous function hereby denoted with the upper index N). Namely,

WU [i, j] =
1 (dij ≤ hU)∑n
l=1 1 (dil ≤ hU)

and

WN [i, j] =
e−hNd

2
ij∑n

l=1 e
−hNd2

il

,

respectively. Notice that the Uniform kernel corresponds to the weighting matrix used by

9



Woodward et al. (2006), Melo et al. (2010), Alamá-Sabater et al. (2011) and Arauzo-

Carod and Manjón (2011). Also, the Normal kernel has been previously used by for

example LeSage (2004) and McMillen and McDonald (2004), albeit in a rather different

context, for their goal is to estimate a Locally Weighted regression with varying coefficients

(Fotheringham et al. 2002).

Interestingly, these functions can be seen as two extreme cases of what is considered a

neighbour and what is the weight given to each neighbour. On the one hand, the uniform

case only considers as neighbours those locations in the sample that satisfy the “neigh-

bourhood condition” 1 (dij ≤ hU). However, all the values of the explanatory variables

that refer to a neighbour location have the same weight. This means that, given a loca-

tion of interest i, the marginal effect of the variable m with respect to location j (Xm,j)

is the same as the marginal effect of the variable m with respect to location j∗ (Xm,j∗) as

long as 1 (dij ≤ hU) and 1 (dij∗ ≤ hU) both hold:

∂E [Yi/X]

∂Xm,j

=
1 (dij ≤ hU)∑n
l=1 1 (dil ≤ hU)

βmµ =
∂E [Yi/X]

∂Xm,j∗
=

1 (dij∗ ≤ hU)∑n
l=1 1 (dil ≤ hU)

βmµ

(Obviously, this result also holds for the inflated versions of the Poission and Negative

Binomial models, except that in that case the corresponding marginal effects are multiplied

by 1− δ).
On the other hand, the Standard Normal case considers that all the locations are

neighbours. In other words, there is no “neighbourhood condition”. However, the values

of the explanatory variables that refer to a neighbour location in general do not have the

same weight, for the weights in this case are decreasing with distance. That is, given a

location of interest i, the marginal effect of the variable m with respect to location j is

∂E [Yi/X]

∂Xm,j

=
e−hNd

2
ij∑n

l=1 e
−hNd2

il

βmµ,

which in general is not the same as the marginal effect of the variable m with respect to

location j∗ (unless of course the neighbourhood locations are at the same distance from

the location of interest):

∂E [Yi/X]

∂Xm,j∗
=

e−hNd
2
ij∗∑n

l=1 e
−hNd2

il

βmµ.

Rather, it can be seen that, if hN ∈ (0,∞), the larger the distance between two locations

the smaller is the associated marginal effect (and this also holds for the inflated versions

10



of the Poisson and Negative Binomial models once the 1− δ correction is applied).

Lastly, it is interesting to analyse the two limiting cases that arise in this setting with

respect to what is considered a neighbour. The first limiting case arises in settings in

which none of the locations in the sample are considered neighbours. This means that

WX = X, so that the value of the covariates that refer to other locations are not affecting

the conditional mean. This limiting case occurs in the Uniform case when hU = 0, while

in the Normal case occurs when hN → ∞. The second limiting case arises in settings in

which all the locations in the sample are considered neighbours. This means that all the

values of the covariates are affecting the conditional mean, a result that is achieved in the

Uniform case when hU ≥ max (dij) and in the Normal case when hN = 0.12

In applications, however, the values of these parameters would typically lie somewhere

in between these extremes. Thus, generalizing the previous results we may conclude that:

i) low estimated values of hU should be interpreted as evidence that only a few (close-

by) locations in the sample affect the conditional mean, whereas high estimated values

of hU should be interpreted as evidence that many locations in the sample affect the

conditional mean; ii) high estimated values of hN should be interpreted as evidence that

only a few locations in the sample significantly affect the conditional mean, whereas low

estimated values of hN should be interpreted as evidence that many locations in the sample

significantly affect the conditional mean.

4 Empirical evidence

In this section we compare the performance of the two weighting functions considered:

the Uniform (as an illustrate example of the threshold approach) and the Normal (as an

illustrate example of smooth transition functions). We initially analyse direct marginal

effects and present results for both the Poisson and the Negative Binomial model as well

as their zero-inflated versions. Next we analyse indirect marginal effects. In particular, we

address two questions that have previously been investigated using the threshold approach:

what is the distance that may reach a change in the covariates (Arauzo-Carod and Manjón

2011) and how to report these indirect marginal effects (Woodward et al. 2006). We show

the advantages of using smooth transition functions by presenting graphical results from

12These results make clear an important difference between the parameters of the Uniform and Normal
functions: whereas hU can be interpreted as a (threshold) distance, hN is not at all a distance. Another
difference between hU and hN is that although both parameters can be estimated by grid search (see
Section 4.2 for details), hN may alternatively be estimated as an additional parameter of the corresponding
log-likelihood function because the associated weighting matrix makes the function continuous in hN .
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the Zero Inflated Negative Binomial model, which is the specification that fits the data

better according to model selection criteria.

4.1 The Data

Results reported below were obtained from a dataset that has been recently used in several

papers investigating the determinants of industrial location.13 Table (1) reports details

on the definition of variables and data sources, as well as some descriptive statistics. In

essence, the dataset contains information on the location of new manufacturing establish-

ments in the municipalities of Catalonia and on several characteristics of these municipal-

ities. There are 946 municipalities in Catalonia, the autonomous region in the Northeast

of Spain that has about 7 million inhabitants (15% of the Spanish population), covers

an area of 31,895 km2, and contributes approximately 19% of Spanish GDP. The city of

Barcelona is the capital of Catalonia.

[Insert Table 1 around here]

In particular, the dependent variable is the number of new manufacturing establish-

ments (codes 12–36 of NACE classification) created in each Catalan municipality in 2002.

As for the explanatory variables, the dataset contains a number of proxies for agglom-

eration economies (residential population change between 1991 and 2001, urbanisation

economies, dis-urbanisation economies, jobs and population density), industrial mix (a

manufacturing concentration index, the percentage of manufacturing jobs and the per-

centage of jobs in services), education (percentage of population older than 10 years that

completed technical secondary school, secondary school, a 3-year degree and a 4-year de-

gree or a Ph.D.), transport infrastructures (a dummy for the existence of a rail station and

travel times to the capital of the province, to the closest airport and to the closest port),

the knowledge economy (jobs in high-tech industries and jobs in high-tech manufacturing

industries), commuting (population working and living at municipality j over jobs at j

and population working and living at j over population living at j and working at j or

elsewhere), population (population aged between 20 and 44 years), location (dummies for

the municipalities of each of the provinces of Catalonia other than Barcelona, a dummy

for the capitals of comarques or counties, a dummy for shoreline areas, distance in km

to the nearest city with at least 100,000 inhabitants and distance in km to the capital of

13See, among others, Arauzo-Carod (2008), Arauzo-Carod and Manjón (2011) and Manjón and Arauzo-
Carod (2011).
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Catalonia) and entrepreneurship (percentage of small firms). All these covariates refer to

2001, except of course the residential population change.

We determine which explanatory variables have spatial variation (and are thus affected

by the corresponding weighting matrix) using the same methodology as Arauzo-Carod

and Manjón (2011). This was found necessary to replicate their results and turn out to

be useful because it reduces the size of the presented evidence (without compromising

the main conclusions). In practice, an explanatory variable is considered to have spatial

variation if it shows an statistically significant spatial autocorrelation according to Moran’s

I. Otherwise the variable remains unchanged, i.e., it is included in the model with its

original values (and so does the set of dummy location variables). Similarly, we constructed

the weighting matrices following their design. Namely, we used a distance based matrix

at the municipality level constructed from data provided by the Catalan Cartographical

Institute about the latitude and longitude of Catalan municipalities, measured both at

the centroid of each municipality.

4.2 Results

Coefficient estimates

We use a grid search to estimate the parameters associated with the distance that indirect

marginal effects can reach. In particular, the search is performed using two optimisation

criteria: maximisation of the likelihood function (ML) and minimisation of the Chi-Square

Goodness of Fit test (GoF).14 In the Uniform case, we use an increasing sequence of 1 km

to find the sample value of hU , starting from 1 and up to 100. In the Normal case, we

use an non-constant increasing sequence to find the sample value of hN , starting from

7.85× 10−5 and up to 0.785.15

Tables (2), (3), (4) and (5) report maximum likelihood estimates of the Poisson, Nega-

tive Binomial, Zero-Inflated Poisson and Zero-Inflated Negative Binomial models, respec-

14The GoF test is a m-type specification test; see Cameron and Trivedi (1998) for an excellent intro-
duction to its use in count data models.

15The sequence chosen for hU , hU (t) = t for t = 1, 2, . . . , 100, is consistent with values found in
related studies (Woodward et al. 2006, Alamá-Sabater et al. 2011, Arauzo-Carod and Manjón 2011).
However, using an analogous sequence for the Normal case would make difficult to compare results between
functions. This is because whereas using a constant variation in the sequence of the Uniform case results
in constant variations of the weighting function, it does not in the Normal case. In fact, in the Normal
case a constant variation sequence results in large/small variations of the weighting function when hN
is small/large. Thus, the sequence of values chosen for hN , hN (t) = π

4t2 for t = 1, 2, . . . , 100, satisfies∫∞
0

ehN (t)dd(d) =
∫∞
0

1 (d < hN (t)) d(d), where d () denotes the derivative. In this way we guarantee that
the aggregated “relative effect” (see below) of all possible distances is the same in both the Uniform and
Normal weighting functions.
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tively, when the parameters hU and hN take the optimal value. That is, we report the

estimated coefficients and standard errors obtained when the parameters hU and hN either

maximise the likelihood function or minimise the Chi-Square Goodness of Fit test. For

comparative purposes, in the first column of these tables we also report results under the

limiting case that none of the locations in the sample are considered neighbours (hU = 0,

hN → ∞ and WX = X). Thus, these tables replicate some of the results reported by

Arauzo-Carod and Manjón (2011).

[Insert Table 2 around here]

The first thing to notice is that results obtained for the limiting case given by hU =

0 and hN → ∞ only allow to compute direct marginal effects. Put differently, these

coefficient estimates are obtained imposing that indirect marginal effects are zero. Thus,

they are largely comparable with those obtained in previous studies that do not account

for spatial dependence. In addition, the sign and significance of these estimates are fairly

similar across the four models considered. There are indeed some differences (e.g., the

percentage of population older than 10 years that completed technical secondary school is

only significant in the inflated versions of the models and the location dummies are less

significant in the inflated versions of the models), but some common patterns also emerge.

[Insert Table 3 around here]

We find that agglomeration economies tend to have a positive effect on new business

creation. However, the attractiveness of concentrated areas shows decreasing returns up

to a point in which the new establishments prefer to locate in less densely populated

areas. We also find that the characteristics of the industrial mix (concentration, jobs in

manufacturing and jobs in services), population (aged between 20 and 44 years) and, to a

certain extent, our proxies of the knowledge economy (jobs in high-tech industries) increase

the number of new locations. These estimates are largely consistent with those reported

in the literature (see Arauzo-Carod et al. 2010), both in terms of the sign and significance

of the coefficients. In contrast, we find that education and transport infrastructures have

no clear impact on the location of new establishments. Lastly, among our set of location

dummies the significance of the capitals of comarques or counties suggest that the presence

of public administrations and/or certain facilities in these municipalities make a difference

for the new concerns.
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Indirect marginal effects

Tables (2) to (5) also report results when at least one of the locations in the sample are

considered neighbours (i.e., when hU > 0 or hN < ∞). These coefficients are thus em-

ployed to compute indirect marginal effects. In particular, given the exponential mean

specification of the models considered, the change in the expected number of new manu-

facturing establishments in location i of a unitary variation of covariate m in location j

is:
∂E (yi/X)

∂Xm,j

= βmW [i, j]eWX[i,.]β = βmWijµi

This shows that, in general, indirect marginal effects depend on the coefficients of the

model (β and, in the inflated versions of the Poission and Negative Binomial models, δ)

and the weighting function (W [i, .]). However, if we replace W [i, .] by the two weighting

functions considered we have (again omitting δ for the sake of simplicity):

∂E (yi/X)

∂Xm,j

=


βm

1(dij≤hU )∑n
l=1 1(dil≤hU )

µi for the Uniform case.

βm
e
−hNd

2
ij∑n

l=1 e
−hNd

2
il
µi for the Normal case.

Notice that, given the parameters of the model (β, δ if it is the case, and hU or hN) and

the distance between locations i and j (dij), indirect marginal effects depend on the sum∑n
l=1 1 (dil ≤ hU) in the Uniform case and on the sum

∑n
l=1 e

−hNd2
il in the Normal case.

Interestingly, these sums that can be interpreted as measures of concentration around lo-

cation i: the former corresponds to the number of locations that are considered neighbours

and the latter to the sum of the (exponentially inverted) distances to all the locations in

the sample. This means that indirect marginal effects are larger/smaller the lower/higher

is the concentration of locations around location i. Since rural areas tend to have locations

more dispersed than metropolitan areas, for example, the change in the expected number

of new manufacturing establishments in a metropolitan location due to a unitary variation

of a covariate in another metropolitan location will in general be lower than that in a rural

location due to a variation in a close-by location (ceteris paribus).16

[Insert Table 4 around here]

Notice also that, in applications, it is the estimated parameters (β, δ if it is the case,

and hU or hN) what drives indirect marginal effects, for the distances between locations do

16This result arises directly from the row-standardisation of the weighting matrices.
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not vary across the econometric models, optimisation criteria and weighting functions one

may consider. However, estimations of the parameters of the model typically vary across

the econometric models, optimisation criteria and weighting functions. This is illustrated

in Tables (2) to (5); see also Figure (1) below. It is therefore important to determine what

should be the preferred specification to make these inferences.

[Insert Table 5 around here]

We find evidence of over-dispersion in the data (a standard result in the literature). In

other words, the statistical significance of the parameter α in all the reported specifications

indicate that the (Inflated) Negative Binomial model fits the data better than the (Inflated)

Poisson model. However, we also find that the Vuong test shows a strong preference for the

inflated versions of these specifications (also a commonly found result). In fact, the Akaike

criterion indicates that, irrespective of the optimising criteria and weighting function we

use, the Inflated Poisson and Inflated Negative Binomial models provide a better fit than

the Poisson and Negative Binomial models, respectively. However, only the Zero Inflated

Negative Binomial model shows no signs of misspecification according to the GoF test.

Moreover, the AIC indicates that this is the specification that fits the data better.

We consequently conclude that the Zero Inflated Negative Binomial model is the best

specification for our industrial location data. Thus, we only report results based on this

model in our analysis of how far can reach the indirect marginal effects and how can we

report them. More specifically, we report results for the two optimising criteria (ML and

GoF) and weighting functions (Uniform and Normal) considered because the values of the

AIC and the GoF we obtained are not conclusive about what is the optimising criteria

and weighting function that perform better for this model.

Compared to the other models, we find that the Zero Inflated Negative Binomial model

provides roughly the same results in terms of the direction of the effects of covariates.

However, the significance of the coefficients is often lower, especially with regard to the

variables measuring transport time to major infrastructures and principal urban areas. It

is also worth noting that the sign, significance and, to a large extent, the value of the Zero

Inflated Negative Binomial estimates are rather robust across the optimisation criteria and

weighting functions considered. Agglomeration economies and the industrial mix thus arise

as the main determinants of the entry on new establishments in a municipality, being also

relevant the percentage of population that completed secondary school, the number of jobs

in high-tech industries and the fact that the municipality is the capital of the comarca.
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Distance estimates on how far can reach indirect marginal effects

Columns two to four of Table (5) provide estimates of the Zero Inflated Negative Binomial

model coefficients when the parameters hU and hN take the optimal value. However,

what is that optimal value? How far can reach indirect marginal effects? In order to

answer these questions Figure (1) graphically shows the relation between the parameters

of interest (hU and hN) and the optimising criteria (ML and GoF).

[Insert Figure 1 around here]

In the Uniform case, results indicate that both selection criteria (ML and GoF) reach

the optimum at small distances. Namely, hU = 4 km for GoF and hU = 1 km for ML.

In the Normal case, however, the parameter hN cannot be interpreted as a distance. In

fact, as previously pointed out, the correct interpretation of this parameter in the Normal

case is in terms of the number of locations in the sample that significantly affect the

conditional mean. This is because hN reflects the rate at which indirect effects tend to

zero: the higher/smaller is hN , the higher/lower is the rate and the shorter/further is the

distance indirect effects reach before becoming insignificant. In particular, as shown in

Figure (2) below, a value of hN around 0.08 (GoF criterion) indicates that those locations

within a distance of approximately 8 km are significantly affecting the conditional mean,

whereas a value of hN around 0.78 (ML criterion) indicates that only locations within a

distance of approximately 3 km are significantly affecting the conditional mean. These

results are slightly bigger but still in line with the optimal distances found in the Uniform

case.

These figures are consistent with the institutional setting we study (see also Arauzo-

Carod and Manjón 2011). In Catalonia, practically all the municipalities have another

municipality within a distance of less than 8 km and around one out of five have at

least another municipality within a distance of less than 2 km. Also, indirect marginal

effects affect on average between one and eight surrounding municipalities. Therefore,

our results indicate that indirect marginal effects typically reach contiguous municipalities

(and possibly second-order contiguous municipalities).

In contrast, Woodward et al. (2006) find an optimal value of 60 miles for the US

counties and Alamá-Sabater et al. (2011) find an optimal value of 43.6 km for the Spanish

region of Murcia. Notice, however, that these are institutional settings in which the number

of locations within the obtained distances is considerably lower. This is apparent in the

US counties (which are in general much larger than Catalan municipalities), but is also

the case in the municipalities of the region of Murcia, which, according to Alamá-Sabater
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et al. (2011), “are slightly larger on average in the national space”. Notice also that

Alamá-Sabater et al. (2011) use a grid search that starts at 25 km. As Figure (1) shows,

had we used the same starting point we would have obtained distances of around 30 (GoF

test criterion) and 40 km (maximum likelihood criterion).

Reporting indirect marginal effects

As it is common in non-linear models, indirect marginal effects are not constant but vary in

general across locations (i.e., one may compute one effect for each location in the sample).

One way to summarise this information is to report descriptive statistics (the mean and

the median being the most popular) and/or graphical methods (e.g., histograms). How-

ever, these measures are not independent of the distance in models using neighbourhood

matrices, which means that they may provide misleading results. We therefore need to

compute these statistics conditional on distance. The downside is that, since they then

become covariate-specific, the resulting output can be difficult to handle.

We accordingly propose using the ratio between the indirect marginal effect and the

direct marginal effect (that is, the “relative”effect) as an alternative measure that combines

accuracy and parsimony:17

REij = 100

∂E(yi/X)
∂Xm,j

∂E(yi/X)
∂Xm,i

=

 100× 1 (dij ≤ hU) for the Uniform case.

100× e−hNd2
ij for the Normal case.

The first thing to notice about the relative effect of municipality j on municipality i is

that only depends on the distance between i and j. Thus, the relative effect varies between

100% (zero distance) and 0% (at the distance in which the indirect marginal effect is zero).

How the two weighting functions considered incorporate this feature, however, differs.

While in the Uniform case the marginal effect produced in neighbouring municipalities

(those who satisfy dij < hU) is the same as that produced in the municipality of interest

(i.e., direct and indirect marginal effects are the same, a result that is only plausible for

small values of hU), in the Normal case this relative effect is a continuous decreasing

function on dij (smoother the smaller the parameter hN). This is apparent in Figure (2),

where we report the relative effects computed for the two weighting functions (Uniform

and Normal) and optimising criteria (ML and GoF) we have considered.

[Insert Figure 2 around here]

17We have also experienced with the quantiles of the indirect marginal effects conditional on the distance
and with the indirect marginal effects evaluated at different quantiles. However, these measures are more
difficult to compute and less easy to interpret.
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Notice also that policies based on the results obtained from the Uniform case would

typically leave a number of locations unattended. This is because the threshold structure

would lead us to conclude that those municipalities that are not considered neighbours are

unaffected (i.e., the relative effect is zero). However, as results from the Normal case show,

these locations may simply be less affected than the others. In particular, the difference

between the locations considered unaffected by the Uniform estimates and those considered

at least affected by the Normal case will (ceteris paribus) be larger the smaller are the

parameters hU and hN . Obviously, at the end of the day it is up to the governments to

decide whether these locations should be take into account. What is interesting to note

here is that in some of these potentially unattended locations the relative effects may vary

between 20% to 40% according to our estimates, which seem rather high figures to be

ignored. In any case, this just shows that indirect marginal effects are an excellent tool to

analyse the geographical scope of the covariates.18

5 Conclusions

This paper empirically analyses the geographical scope of the determinants of industrial

location. We propose a new estimating approach based on the use of smooth transition

functions and illustrate the validity of our approach using a sample of manufacturing plants

created in the municipalities of Catalonia. In particular, we address two questions that

have previously been investigated using the threshold approach and count data models:

what is the distance that may reach a change in the covariates and how to report marginal

effects with respect to the other locations in the sample. We show that the use of a

continuous parametrisation of the neighbourhood function has a number of advantages

over the traditional threshold approach. Among others, it can accommodate alternative

views on what is considered a neighbour and what is the weight that should be given to

each neighbour. These features turn out to provide a more powerful framework for policy

analysis than that based on the traditional threshold modelling.

We provide illustrative results using an example of threshold (the Uniform) and smooth

transition functions (the Normal). We find that in the Uniform case all locations within

a distance of 1 to 4 km (depending on whether we use the maximisation of the likelihood

function or the minimisation of the Goodness-of-Fit test as optimising criterion) are signif-

18One may easily construct an analogous argument for those locations that are “over-attended”, in the
sense that the Uniform function gives them a 100% relative effect whereas the Normal function shows
that their relative effect varies between 20% and 100%.
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icantly affecting the conditional mean, whereas in the Normal case the range of distances

extends to 4 to 8 km (for the maximum likelihood and GoF criterion, respectively). Thus,

these are the distances that indirect marginal effects can reach in the institutional setting

we study. We also find that these effects differ depending on the degree of isolation of the

municipality and the level of manufacturing activities, being larger for those municipalities

that are isolated and have higher levels of manufacturing activities. Lastly, we show that

the use of threshold functions as the basis for policy making may result in a number of

locations being unfairly disregarded.

Among the possible extensions of this work, it is interesting to note that we follow

previous literature in assuming that the different explanatory variables either have no

geographical scope or have the same geographical scope. In other words, we are using a

single spatial neighbour matrix. However, the framework presented in this paper allows

to use different matrices for different covariates, so that, for a particular covariate m,

locations i and j are considered neighbours if dij < hm. This extension may not only

provide a more realistic setting, but additional economic policy tools.
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Table 2: Estimation Results for the Poisson Model

Variables

hU = 0
hN =∞
Coef. S.E.

Uniform

(GoF Criteria)

Coef. S.E.

Uniform

(ML Criteria)

Coef. S.E.

Normal

(GoF Criteria)

Coef. S.E.

Normal

(ML Criteria)

Coef. S.E.

CONSTabcde -3.5256 0.6121 -3.9731 1.2245 -4.7693 1.0101 -4.9179 1.6202 -4.3607 1.0198

(W) RES VAR -0.0545 0.1073 0.3955 0.3230 -0.0375 0.2115 0.0491 0.5442 -0.1051 0.1843

(W) URBabd 0.0006 0.0001 0.0015 0.0004 0.0007 0.0004 0.0038 0.0011 0.0002 0.0003

(W) DISURBabd -5.1e-09 9.8e-10 -1.3e-08 3.3e-09 -5.8e-09 3.0e-09 -3.1e-08 8.5e-09 -1.9e-09 2.6e-09

(W) JOBabcde 3.2e-05 3.8e-06 8.5e-05 2.8e-05 5.6e-05 8.3e-06 0.0002 4.6e-05 3.5e-05 1.4e-05

(W) DENSabd -0.0002 4.3e-05 -0.0003 0.0001 -0.0001 0.0001 -0.0009 0.0003 -8.2e-05 9.9e-05

(W) CONCabcde 0.3705 0.0880 0.4789 0.2059 0.4459 0.1253 1.0567 0.3254 0.4248 0.1067

(W) JOB INDabce 2.5095 0.5049 3.6649 1.1062 2.6677 0.9300 2.3482 1.4862 3.1321 0.8159

(W) JOB SERae 1.0038 0.3285 0.9428 0.7162 0.6264 0.4492 1.9276 1.1473 1.2137 0.4150

(W) TEC SEC 0.0066 0.0160 -0.0244 0.0458 0.0144 0.0282 -0.0745 0.0578 -0.0020 0.0254

(W) SECe 0.0345 0.0149 0.0632 0.0507 0.0686 0.0371 0.0786 0.0744 0.0667 0.0293

(W) DEG -0.0240 0.0278 -0.0208 0.0729 -0.0845 0.0497 0.0857 0.1129 -0.0564 0.0416

(W) DEG PHD -0.0237 0.0227 0.1200 0.0663 -0.0121 0.0380 0.0952 0.1085 -0.0372 0.0372

TT CP 0.0188 0.0063 0.0189 0.0101 0.0109 0.0086 -0.0017 0.0085 0.0110 0.0100

RAILbcd 0.2510 0.0864 0.7277 0.1877 0.4491 0.1564 0.4860 0.1653 0.2339 0.1622

TT AIR -0.0051 0.0042 -0.0124 0.0070 -0.0068 0.0060 -0.0041 0.0066 -0.0040 0.0069

TT PORTa -0.0234 0.0065 -0.0124 0.0096 -0.0165 0.0086 -0.0076 0.0098 -0.0210 0.0112

(W) JOB HTacde -6.5e-05 6.7e-06 -8.9e-05 5.0e-05 -8.2e-05 1.5e-05 -0.0002 6.7e-05 -7.6e-05 2.4e-05

(W) JOB HT MAabde 0.0010 0.0002 -0.0060 0.0020 -0.0016 0.0009 -0.0118 0.0034 0.0016 0.0008

(W) POP JOBabcde 0.0123 0.0027 0.0173 0.0077 0.0177 0.0052 0.0358 0.0114 0.0132 0.0053

(W) POP JOB E 1.3e-06 6.9e-06 -3.5e-05 3.2e-05 2.9e-06 1.1e-05 -2.8e-05 4.5e-05 -3.1e-07 9.3e-06

(W) POP 20 44ace 0.0528 0.0110 0.0322 0.0317 0.0770 0.0191 0.0485 0.0410 0.0759 0.0219

GIRONAbd -0.2883 0.1993 -0.8455 0.3489 -0.4440 0.2605 -0.7831 0.3068 -0.2941 0.2983

LLEIDA -0.4117 0.2340 -0.2490 0.3405 -0.5495 0.3107 -0.4161 0.3755 -0.4943 0.3008

TARRAace -0.8611 0.2111 -0.5030 0.4065 -0.7181 0.3334 -0.2073 0.3947 -0.8180 0.3404

CAP COabcde 1.1162 0.1019 1.4170 0.1713 1.2437 0.1537 1.2521 0.2072 1.2526 0.2500

COAST 0.3189 0.1012 -0.2573 0.2371 0.1254 0.1795 -0.0895 0.2319 0.2786 0.2422

DIST 100abce -0.0170 0.0035 -0.0111 0.0054 -0.0129 0.0049 -0.0059 0.0060 -0.0168 0.0057

DIST CATde 0.0067 0.0032 0.0081 0.0055 0.0087 0.0047 0.0137 0.0049 0.0107 0.0050

(W) FIRM SMALLabde -0.0052 0.0018 -0.0183 0.0052 -0.0041 0.0033 -0.0310 0.0089 -0.0064 0.0030

LogL -1168.89 -1196.93 -1147.51 -1177.30 -1159.96

AIC 2397.79 2453.86 2355.03 2414.61 2379.93

GoF Test

p-value

121.01

0.000

96.97

0.000

111.37

0.000

96.88

0.000

115.64

0.000

Note: (W ) denotes a weighted variable, Coef an estimated coefficient, S.E. the Standard Error of the estimated coefficient, a significance at

5% in the Poisson baseline model, b significance at 5% in the Poisson-Uniform-GoF model, c significance at 5% in the Poisson-Normal-GoF

model, d significance at 5% in the Poisson-Uniform-ML model, and e significance at 5% in the Poisson-Normal-ML model. Also, CONST
denotes the constant term of the model and ENTRY is the dependent variables (see Table 1 for definitions of the variables).
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Table 3: Estimation Results for the Negative Binomial Model

Variables

hU = 0
hN =∞
Coef. S.E.

Uniform

(GoF Criteria)

Coef. S.E.

Uniform

(ML Criteria)

Coef. S.E.

Normal

(GoF Criteria)

Coef. S.E.

Normal

(ML Criteria)

Coef. S.E.

CONSTabce -2.8516 0.8751 48.6501 20.4243 -4.3862 1.0523 16.2892 153.3568 -4.5221 1.1547

(W) RES VARbd 0.2112 0.1648 -13.3745 4.8890 0.3046 0.2314 -51.9167 19.0007 0.4026 0.2563

(W) URBac 0.0009 0.0003 -0.0222 0.0192 0.0010 0.0004 0.1355 0.3003 0.0007 0.0005

(W) DISURBac -7.6e-09 2.3e-09 1.8e-07 1.6e-07 -8.1e-09 3.4e-09 -1.1e-06 2.5e-06 -5.5e-09 3.7e-09

(W) JOBabce 5.8e-05 1.2e-05 0.0025 0.0010 6.7e-05 1.6e-05 0.0055 0.0137 7.9e-05 1.9e-05

(W) DENSa -0.0003 9.1e-05 -0.0045 0.0055 -0.0001 0.0001 -0.0469 0.0864 -6.8e-05 0.0001

(W) CONCace 0.5062 0.1162 -4.4486 3.0164 0.6917 0.1565 12.1594 11.4728 0.8114 0.1763

(W) JOB INDace 2.4219 0.7427 -28.0002 16.9960 1.9944 0.9162 -113.1803 82.4438 2.1668 0.9667

(W) JOB SERa 1.1612 0.4394 -22.0776 13.2504 0.7205 0.5893 -63.4784 106.7698 1.2512 0.6720

(W) TEC SEC -0.0005 0.0227 0.0200 0.3892 0.0068 0.0289 0.9627 2.7340 0.0096 0.0320

(W) SECce 0.0292 0.0218 -0.6056 0.6177 0.0705 0.0307 7.2262 4.6394 0.0882 0.0347

(W) DEG -0.0494 0.0393 -0.4213 0.9702 -0.0742 0.0546 -0.9627 4.7314 -0.0849 0.0618

(W) DEG PHD -0.0300 0.0330 1.6056 1.1011 -0.0161 0.0457 -5.2024 6.0427 -0.0315 0.0513

TT CP 0.0164 0.0100 -0.0155 0.0110 0.0050 0.0095 -0.0272 0.0150 0.0033 0.0099

RAILbcd 0.2462 0.1616 0.7340 0.1680 0.3827 0.1580 0.6253 0.1686 0.3039 0.1595

TT AIR -0.0036 0.0066 0.0069 0.0105 -0.0044 0.0067 0.0080 0.0137 -0.0034 0.0068

TT PORTa -0.0244 0.0102 -0.0123 0.0128 -0.0148 0.0101 0.0015 0.0173 -0.0146 0.0102

(W) JOB HTabce -0.0001 2.0e-05 -0.0052 0.0016 -0.0001 2.6e-05 -0.0132 0.0177 -0.0001 3.3e-05

(W) JOB HT MA 0.0005 0.0006 0.1116 0.0580 -0.0020 0.0011 -0.0414 0.5737 -0.0005 0.0017

(W) POP JOBbce 0.0045 0.0042 -0.4306 0.1473 0.0146 0.0056 0.1807 0.7987 0.0147 0.0063

(W) POP JOB Eb -6.0e-06 1.9e-05 -0.0027 0.0013 -6.6e-06 3.4e-05 0.0177 0.0110 1.1e-05 3.4e-05

(W) POP 20 44ace 0.0334 0.0159 0.2928 0.3463 0.0588 0.0217 0.3767 2.3351 0.0563 0.0243

GIRONA -0.3256 0.3199 -0.3088 0.4264 -0.4556 0.3205 -0.2151 0.4203 -0.4103 0.3230

LLEIDAc -0.5189 0.3282 -0.2336 0.4071 -0.6861 0.3411 -0.2839 0.5254 -0.6416 0.3468

TARRAace -0.9123 0.2892 -0.2185 0.4313 -0.7587 0.2932 0.4306 0.5065 -0.7301 0.3002

CAP COabcde 1.6112 0.2250 2.0667 0.2185 1.5983 0.2070 2.1564 0.2156 1.6146 0.2151

COASTa 0.4368 0.2043 -0.0793 0.2236 0.3676 0.2067 0.2122 0.2432 0.3462 0.2181

DIST 100abd -0.0123 0.0054 -0.0311 0.0072 -0.0104 0.0053 -0.0262 0.0128 -0.0104 0.0054

DIST CATbce 0.0076 0.0045 -0.0304 0.0155 0.0116 0.0046 -0.0221 0.0416 0.0133 0.0046

(W) FIRM SMALLe -0.0048 0.0027 -0.1059 0.1078 -0.0056 0.0037 -0.4882 1.1027 -0.0102 0.0041

αabcde 0.8004 0.0229 1.0863 0.0441 0.7898 0.0222 1.0568 0.0416 0.7975 0.0227

LogL -1016.52 -1049.96 -1011.51 -1046.41 -1010.14

AIC 2095.04 2161.93 2085.02 2154.83 2082.29

GoF Test

p-value

48.15

0.000

10.90

0.282

31.16

0.000

12.34

0.194

37.53

0.000

Note: (W ) denotes a weighted variable, Coef an estimated coefficient, S.E. the Standard Error of the estimated coefficient, a significance

at 5% in the Negative-Binomial baseline model, b significance at 5% in the Negative-Binomial-Uniform-GoF model, c significance at 5% in

the Negative-Binomial-Normal-GoF model, d significance at 5% in the Negative-Binomial-Uniform-ML model, and e significance at 5% in the
Negative-Binomial-Normal-ML model. Also, CONST denotes the constant term of the model and ENTRY is the dependent variables (see Table
1 for definitions of the variables).
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Table 4: Estimation Results for the Zero Inflated Poisson Model

Variables

hU = 0
hN =∞
Coef. S.E.

Uniform

(GoF Criteria)

Coef. S.E.

Uniform

(ML Criteria)

Coef. S.E.

Normal

(GoF Criteria)

Coef. S.E.

Normal

(ML Criteria)

Coef. S.E.

CONSTabce -3.5256 0.8023 -3.8010 0.8820 -4.2100 0.8038 -2.3716 1.2217 -4.6325 0.8774

(W) RES VARabe -0.0545 0.1237 -0.4150 0.1877 -0.2356 0.1240 -0.5193 0.3057 -0.3704 0.1550

(W) URBabcd 0.0006 0.0001 0.0006 0.0002 0.0005 0.0001 0.0022 0.0004 0.0003 0.0001

(W) DISURBabcde -5.1e-09 9.5e-10 -5.0e-09 1.6e-09 -4.4e-09 9.6e-10 -1.8e-08 3.1e-09 -2.6e-09 1.2e-09

(W) JOBabcde 3.2e-05 3.7e-06 5.0e-05 5.3e-06 3.3e-05 3.7e-06 0.0001 1.3e-05 3.7e-05 4.4e-06

(W) DENSabcde -0.0002 4.1e-05 -0.0002 5.0e-05 -0.0002 4.2e-05 -0.0006 9.8e-05 -0.0001 4.0e-05

(W) CONCabcde 0.3705 0.1463 0.6396 0.1750 0.5990 0.1480 0.5807 0.2448 0.6753 0.1742

(W) JOB INDace 2.5095 0.6335 0.9944 0.7572 1.7954 0.6361 1.4473 1.0133 2.2212 0.6902

(W) JOB SERabce 1.0038 0.5621 1.2562 0.6382 2.1541 0.5666 0.1000 0.9324 2.5574 0.6616

(W) TEC SEC 0.0066 0.0196 0.0166 0.0237 -0.0029 0.0197 -0.0504 0.0338 -0.0015 0.0228

(W) SECabcde 0.0345 0.0192 0.0743 0.0268 0.0436 0.0198 0.1278 0.0459 0.0804 0.0253

(W) DEGb -0.0240 0.0351 -0.1361 0.0507 -0.0241 0.0354 -0.0675 0.0809 -0.0838 0.0432

(W) DEG PHDd -0.0237 0.0276 0.0174 0.0385 -0.0344 0.0282 0.1580 0.0642 -0.0320 0.0360

TT CPac 0.0188 0.0068 0.0106 0.0071 0.0168 0.0068 0.0005 0.0078 0.0072 0.0071

RAILbd 0.2510 0.0875 0.3305 0.0823 0.0906 0.0879 0.3546 0.0822 0.0901 0.0877

TT AIR -0.0051 0.0047 -0.0060 0.0048 -0.0050 0.0048 -0.0064 0.0051 -0.0026 0.0049

TT PORT -0.0234 0.0073 -0.0060 0.0071 -0.0111 0.0073 0.0016 0.0072 -0.0089 0.0074

(W) JOB HTabcde -6.5e-05 6.5e-06 -7.5e-05 8.4e-06 -6.2e-05 6.5e-06 -0.0002 2.1e-05 -7.6e-05 7.4e-06

(W) JOB HT MAabcde 0.0010 0.0002 -0.0012 0.0004 0.0007 0.0002 -0.0059 0.0013 0.0014 0.0004

(W) POP JOBabcde 0.0123 0.0029 0.0144 0.0035 0.0114 0.0029 0.0296 0.0067 0.0112 0.0033

(W) POP JOB E 1.3e-06 7.1e-06 -9.8e-06 1.4e-05 -9.0e-06 7.1e-06 -4.4e-05 3.2e-05 -1.0e-05 8.2e-06

(W) POP 20 44abce 0.0528 0.0123 0.0561 0.0162 0.0535 0.0122 0.0266 0.0244 0.0642 0.0146

GIRONAd -0.2883 0.2215 -0.4256 0.2236 -0.3236 0.2223 -0.7427 0.2405 -0.2728 0.2230

LLEIDA -0.4117 0.2843 -0.4244 0.2781 -0.1008 0.2845 -0.4076 0.3118 -0.2978 0.2877

TARRA -0.8611 0.2380 -0.0886 0.2388 0.0038 0.2382 0.1167 0.2585 -0.0160 0.2404

CAP COabcde 1.1162 0.1009 1.0166 0.0907 0.7971 0.1005 0.9541 0.0885 0.9225 0.0986

COAST 0.3189 0.1032 0.0253 0.1017 0.0847 0.1035 -0.1907 0.1241 0.0889 0.1102

DIST 100abcde -0.0170 0.0039 -0.0141 0.0039 -0.0166 0.0039 -0.0120 0.0041 -0.0165 0.0040

DIST CAT 0.0067 0.0034 0.0021 0.0036 0.0023 0.0034 0.0058 0.0039 0.0057 0.0036

(W) FIRM SMALLd -0.0052 0.0022 -8.3e-05 0.0028 0.0002 0.0022 -0.0179 0.0045 -0.0003 0.0026

LogL -1005.39 -1013.99 -1007.54 -1034.76 -1004.54

AIC 2074.78 2091.98 2079.09 2133.53 2073.08

GoF Test

p-value

57.22

0.000

44.18

0.000

55.79

0.000

43.02

0.000

52.89

0.000

Vuong Test

p-value

7.053

0.000

6.504

0.000

7.018

0.000

5.913

0.000

6.966

0.000

Note: (W ) denotes a weighted variable, Coef an estimated coefficient, S.E. the Standard Error of the estimated coefficient, a significance

at 5% in the Inflated-Poisson baseline model, b significance at 5% in the Inflated-Poisson-Uniform-GoF model, c significance at 5% in the

Inflated-Poisson-Normal-GoF model, d significance at 5% in the Inflated-Poisson-Uniform-ML model, and e significance at 5% in the Inflated-
Poisson-Normal-ML model. Residential population is the only explanatory variable in the inflated part of the model, being in general the
coefficient associated with this variable negative and statistically significant. Also, CONST denotes the constant term of the model and
ENTRY is the dependent variables (see Table 1 for definitions of the variables).
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Table 5: Estimation Results for the Zero Inflated Negative Binomial Model

Variables

hU = 0
hN =∞
Coef. S.E.

Uniform

(GoF Criteria)

Coef. S.E.

Uniform

(ML Criteria)

Coef. S.E.

Normal

(GoF Criteria)

Coef. S.E.

Normal

(ML Criteria)

Coef. S.E.

CONSTabcde -3.2363 1.0013 -3.3971 1.1428 -3.2726 1.0039 -3.8249 1.2772 -3.2526 1.0164

(W) RES VAR -0.1450 0.1585 -0.2721 0.2426 -0.1307 0.1591 -0.2772 0.2639 -0.1591 0.1637

(W) URBabce 0.0008 0.0002 0.0008 0.0003 0.0007 0.0002 0.0006 0.0004 0.0008 0.0002

(W) DISURBabce -6.1e-09 1.7e-09 -6.6e-09 2.8e-09 -6.0e-09 1.7e-09 -5.1e-09 3.0e-09 -6.6e-09 1.8e-09

(W) JOBabcde 4.9e-05 8.7e-06 5.4e-05 1.2e-05 4.9e-05 8.8e-06 6.6e-05 1.5e-05 4.6e-05 8.6e-06

(W) DENSace -0.0003 6.9e-05 -0.0002 9.2e-05 -0.0003 6.8e-05 -0.0001 9.6e-05 -0.0003 6.9e-05

(W) CONCabcde 0.6790 0.1658 0.7212 0.2089 0.6647 0.1671 0.8393 0.2384 0.6742 0.1706

(W) JOB IND 1.1304 0.8118 0.5993 0.9891 1.2395 0.8173 0.8038 1.0618 1.1755 0.8258

(W) JOB SERacde 2.1528 0.6290 1.1765 0.7631 2.0423 0.6329 1.7949 0.8858 2.1084 0.6438

(W) TEC SEC -0.0014 0.0247 0.0125 0.0306 -0.0023 0.0248 0.0097 0.0345 -0.0026 0.0251

(W) SECabcde 0.0538 0.0259 0.1170 0.0383 0.0626 0.0267 0.1425 0.0431 0.0774 0.0273

(W) DEG -0.0391 0.0446 -0.1095 0.0636 -0.0350 0.0450 -0.1050 0.0702 -0.0437 0.0456

(W) DEG PHD -0.0399 0.0359 -0.0139 0.0506 -0.0493 0.0366 -0.0361 0.0578 -0.0523 0.0374

TT CP 0.0142 0.0096 0.0033 0.0095 0.0138 0.0096 -0.0006 0.0101 0.0124 0.0096

RAIL 0.0171 0.1299 0.2215 0.1295 0.0250 0.1309 0.1371 0.1314 0.0379 0.1311

TT AIR -0.0065 0.0065 -0.0063 0.0067 -0.0065 0.0065 -0.0050 0.0068 -0.0060 0.0065

TT PORT -0.0170 0.0099 -0.0105 0.0102 -0.0171 0.0099 -0.0107 0.0103 -0.0169 0.0100

(W) JOB HTabcde -8.6e-05 1.4e-05 -8.4e-05 2.0e-05 -8.7e-05 1.4e-05 -0.0001 2.5e-05 -8.5e-05 1.4e-05

(W) JOB HT MA 0.0003 0.0004 -0.0012 0.0009 0.0004 0.0004 6.3e-05 0.0013 0.0005 0.0005

(W) POP JOBbd 0.0056 0.0039 0.0112 0.0050 0.0050 0.0039 0.0123 0.0057 0.0057 0.0040

(W) POP JOB E -1.3e-05 1.4e-05 -1.6e-05 2.8e-05 -1.3e-05 1.4e-05 -1.1e-05 2.6e-05 -1.2e-05 1.4e-05

(W) POP 20 44ac 0.0336 0.0160 0.0429 0.0220 0.0333 0.0160 0.0457 0.0245 0.0315 0.0163

GIRONA -0.4030 0.2993 -0.5013 0.3110 -0.4087 0.3007 -0.4613 0.3144 -0.4108 0.3017

LLEIDA -0.0250 0.3531 -0.3487 0.3677 -0.0586 0.3538 -0.3227 0.3728 -0.1140 0.3556

TARRA -0.2222 0.3019 -0.2969 0.3114 -0.2374 0.3020 -0.2471 0.3186 -0.2445 0.3032

CAP COabcde 1.0387 0.1740 1.2028 0.1643 1.0846 0.1729 1.2032 0.1714 1.0924 0.1712

COAST -0.0360 0.1686 -0.0032 0.1746 -0.0456 0.1691 -0.0507 0.1843 -0.0741 0.1702

DIST 100 -0.0071 0.0055 -0.0059 0.0056 -0.0071 0.0055 -0.0060 0.0057 -0.0075 0.0055

DIST CAT 0.0022 0.0044 0.0057 0.0046 0.0028 0.0044 0.0078 0.0048 0.0035 0.0045

(W) FIRM SMALL 0.0011 0.0029 -0.0010 0.0039 0.0016 0.0030 -0.0036 0.0044 0.0010 0.0030

αabcde 0.3218 0.0305 0.3765 3.8e-02 0.3273 3.1e-02 0.3762 3.7e-02 0.3327 3.7e-02

LogL -936.46 -941.71 -936.38 -941.53 -936.73

AIC 1938.92 1949.43 1938.77 1949.06 1939.46

GoF Test

p-value

14.46

0.106

10.30

0.326

14.80

0.096

11.18

0.263

13.50

0.141

Vuong Test

p-value

6.291

0.000

6.104

0.000

6.262

0.000

5.999

0.000

6.233

0.000

Note: (W ) denotes a weighted variable, Coef an estimated coefficient, S.E. the Standard Error of the estimated coefficient, a significance at

5% in the Inflated-Negative-Binomial baseline model, b significance at 5% in the Inflated-Negative-Binomial-Uniform-GoF model, c significance

at 5% in the Inflated-Negative-Binomial-Normal-GoF model, d significance at 5% in the Inflated-Negative-Binomial-Uniform-ML model, and e

significance at 5% in the Inflated-Negative-Binomial-Normal-ML model. Residential population is the only explanatory variable in the inflated
part of the model, being in general the coefficient associated with this variable negative and statistically significant. Also, CONST denotes the
constant term of the model and ENTRY is the dependent variables (see Table 1 for definitions of the variables).
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Figure 1: Optimal hf Parameters and Distance (Zero Inflated Negative Binomial

Model Estimates).
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Figure 2: Relative Effects (Zero Inflated Negative Binomial Model Estimates).
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