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0 Introduction

A mutation which occurs frequently in DNA strands is the duplication of a factor inside a
strand [6]. The result is called a tandem repeat, and the detection of these repeats has received
a great deal of attention in bioinformatics [1, 10]. The reconstruction of possible duplication
histories of a gene is used for the construction of a phylogenetic network in the investigation
of the evolution of a species [11]. Thus duplicating factors and deleting halves of squares is
an interesting algorithmic problem with some motivation from bioinformatics. A very similar
reduction was also introduced in the context of data compression by lIlie et al. [4, 5]. They,
however conserve information about each reduction step in the resulting string such that the
operation can also be undone again. In this way the original word can always be reconstructed,
which is essential for data compression.

Our main aim here is the development of efficient methods for the repeated reduction of
squares. At the heart of this is the detection of squares, or, as we will see, the detection of runs.
Several methods for this are known [7]. Usually they use suffix arrays or related data structures.
What we want to avoid here is having to construct these for every string from scratch. Since
the deletion of half a square is a very local change, it might be more efficient to update the old
suffix array.

In recent work Salson et al. [9, 8] have investigated the updating of suffix arrays and related
data structures. They considered insertions, deletions and changes of factors. Basically, the
reduction of a square is just a deletion. However, it has the special property that another copy
of the deleted factor remains just next to the deletion site. Thus the suffixes and LCP values of
the new string’s suffix array are more related to the old one’s than usually. Here our aim is to
characterize this relation and use it for an efficient update of the suffix array.

1 Runs, not Squares

Before we start to reduce squares, let us take a look at the effect that this operation has in
periodic factors. In the following example, we see that reduction of either of the three squares



in the periodic factor bcbebe leads to the same result:

abcbcbca abcbcba abcbcbca

p + v

abcbca

Thus it would not be efficient to do all the three reductions. A maximal periodic factor like
this is called a run. So rather than looking for squares, we should actually look for runs and
reduce one square within each of them.

As stated above, the most common algorithms for detecting runs are based on suffix arrays
and related data structures [7]. Using these, we would employ a method along the lines of
Algorithm 1. Then this method would be applied to all the resulting strings which are not

Algorithm 1: Constructing all words reachable from w by reduction of squares.

Input: string: w;
Data: stringlist: S (contains w);
1 while (S nonempty) do
2 | x:=POP(S);
3 Construct the suffix array of x;
4 if (there are runs in x) then
5 foreach run r do
6 Reduce r;
7 Add new string to S;
8 end

9 end
10 else output x;
11 end

square-free. Our aim is to improve line 3 by modifying the antecedent suffix array instead of
constructing the new one from scratch. For this we first look at what a suffix array is.

SA LCP SA LCP
7 1 a 7—3=4 1 a
0 0 abcbbcba 0 0 (new) abcba
6 1 ba 6—3=3 1 ba
3 1 bbcba = —
5 3 bcba 5-3=2 1 bcba
1 0 bcbbcba —
4 2 cba 4—-3=1 cba
2 cbbcba —

Figure 1: Modification of the suffix array by deletion of bcb in abcbbceba.



2 Suffix Arrays

In string algorithms, suffix arrays are a very common data structure, because they allow fast
search for patterns. A suffix array of a string w consists of the two tables depicted on the left-
hand side of Figure 1: SA is the lexicographically ordered list of all the suffixes of w; typically
their starting position is saved rather than the entire suffix. LCP is the list of the longest com-
mon prefixes between these suffixes. Here we only provide the values for direct neighbors.
Depending on the application, they may be saved for all pairs.

On the right-hand side of Figure 1 we see how the deletion of bcb changes the suffix array.
Obviously there is no change in the relative order nor in the LCP values for all the suffixes that
start to the right of the deletion site; here it is more convenient to consider the first half of the
square as the deleted one, because then we see immediately that also for the positions in the
remaining right half nothing changes.

The only new suffix is abcba. It starts with the same letter as abcbbcba, the one it comes from;
also the following bcb is the same as before, because the deleted factor is replaced by another
copy of itself — only after that there can be change. Thus the new suffix will not be very far
from the old one in lexicographic order. Formulating these observations in a more general and
exact way will be the objective of the next section.

3 Updating the Suffix Array

The problem we treat here is the following: Given a string w with a square of length n starting
at position k and given the suffix array of w, compute the suffix array of w[0...k — 1Jw[k +
n...lw—1]. Sowlk —1...k+n— 1] is deleted, not wlk +n ...k +2n —1].

First we formulate the obvious fact that the positions to the right of a deleted square remain
in the same order.

Lemma 1. The lexicographic order of the suffixes of a string w and their longest common prefixes are
the same as for the corresponding suffixes in a longer string uw.

For updating a suffix array, this means that can simply copy the values for these. The posi-
tions to the left of the deleted site may change. We formulate the conditions for this in terms of
the old suffix array values.

Lemma 2. Let the LCP of two strings z and uvw be k and let z < uvw. Then z and uvvw have the
same LCP and z < uvvw unless LCP(z, uvw) > |uv|; in the latter case also LCP(z, uvvw) > |uv|.

This characterizes the conditions under which actually a change in the suffix array has to be
done. Salson et al. have shown efficient ways for reordering a suffix array after a deletion [9].
So we do not enter into details about this here. Algorithm 2 implements the updating of a suffix
array after the deletion of a square avoiding unnecessary work according to the observations
of this section.

The test in line 2 checks exactly the condition of Lemma 2. Note that if LCP(u,v) < k then
LCP(wu,wv) < k + |w|; thus as soon as the test fails once, we do not need to continue testing
for longer suffixes. Rather we can stop the updating immediately, because the following LCP
values will all fail the test.

The runtime of this updating depends very much on how often this test is successful. This,
in turn, depends mainly on two factors: the length of the square that is reduced and the LCP
values. The latter are higher for longer strings, because the probability of a factor occurring



Algorithm 2: Computing the new suffix array.

Input: string: w, SA, LCP;
length and pos of square: n/k;

1i:=k—1;

2 while (LCP[i] > n+k—i ANDi > 0)do

3 | compute new SAof wfi...k—1wlk+n...|w| —1];
4 compute new LCP[i];

5 i:=i—1;

6 end

twice increases with the string’s length; on the other hand, a larger alphabet decreases this
probability. Both factors are not very much under our influence.

On the other hand, we can possibly do something about the length of the squares that are
reduced. Squares of lengths one can be reduced first, if we do not want the entire reduction
graph, but only the duplication root. For detecting and reducing them, it is faster to just run a
window of size two over the string in low linear time without building the suffix array. After
this, the value n 4 k — i from line 2 of the algorithm would always be at least two. Squares
of length two can already overlap with others in a way that reduction of one square makes
reduction of the other impossible like in the string abcbabcbe; here reduction of the final bebe
leads to a square-free string, and the other root abc cannot be reached anymore.

Comparing theoretical worst case runtime, we have not achieved anything. There are algo-
rithms for constructing suffix arrays in linear time. Salson et al.’s dynamic suffix arrays allow
deletion in linear time, but in practice have proven much faster than the construction of a new
suffix array. Similarly, our method will require linear time in the worst case. But as we have
argued, the test in line 2 will often fail even in the first iteration. Then the computation consists
only in removing the entries for the deleted positions. How much time this saves in practice
can only be shown by experiments on large texts.

4 Online Detection of Squares

Now we focus on the detection of repetitions based on the so-called f-factorization of a string

[2].

Definition 3. The f-factorization of a string w is the factorization w = wyw, - - - wy such that
every w; is

e a letter that does not occur in wws - - - w;_q or otherwise
e the longest prefix that occurs at least twice in wyw, - - - w;.

This factorization is a variant of the well-known Lempel-Ziv-factorization, where in the sec-
ond clause “prefix” replaces “factor”. For example, for the string abaababa we get the factor-
ization

a-b-a-aba-ba.
A key element in the computation of the f-factorization is the suffix table of the string. This

table is defined as follows:
sufffi] := |lesuff(w, w[0. .. 1])].



Here Icsuff is the function that computes the length of the longest common suffix of two strings.
Thus the table consists of the lengths of the longest common suffixes between the string w and
all of its prefixes. An example for a suffix table can be seen in Table 1.

Notice that the values are in general not very high, in our case bbabcabab | suff
between 0 and 3 with 0 being the most frequent one. In general, bbabcaba | 0
if all of the letters occur with equal probability, then the average bbabcab | 2
value will be \%I + ﬁ + ﬁ R ‘2%1, which will never be bbabca | 0
more than one. bbabe | 0

In the example, the maximum of 3 is reached for the suffix bbab | 3
bab of both bbab and the full string; on the other hand, half of bba | 0
the values are zero. bb | 1

The computation of the suffix table by standard methods takes bl 1

time linear in the size of the string.

Now we ask how much this table changes, when half of a Taple 1: Suffix list for the
square factor is deleted. If these changes are not fundamental, string bbabcabab.
then we could use them for deriving the suffix table of the new
string directly instead of computing it from scratch.

5 Modifying the Suffix Table

In the new string we distinguish three types of positions to analyze the changes in the suffix
table:

abbcabsabbaaaabb baaaabb cbbaccba

N—— N—_——— N —

left rest half square right rest

The deleted positions obviously disappear and thus do not form part of the new string. Thus
they do not show up in the suffix list either.

The positions in the right rest have the same suffixes as before; further, the corresponding
suffixes of the entire string are the same, too. Thus all of these positions keep their values.

Notice that for the half square we actually had the choice of either the left or the right half
— either deletion leads to the same result. Choosing to delete the left half as we have done
immediately lets us see that for the positions in the half square the same as for the ones in the
right rest is true: their suffix table values remain unchanged.

For the left rest, if the common suffix spanned beyond the deleted factor, then the string must
have a periodic suffix. In this case, also these positions keep their values.

old string:  cababababab

suff[8]=8: cabababab
new string: cabababab
suff[8]=8: cabababab

Figure 2: No change in the suffix list; deleted letters underlined.

However, if for a position i the value suff[i] was smaller or equal to the length of the right rest
plus the half square, then this value might change:
In these cases, the new value must be computed with new letter comparisons.



old string: abcabcbceabe | old string: abbcbbce
suff[5]=5: abcabc | suff[3]=3: abbc
new string: abcabcabc | new string:  abbcbc
suff[5]=6: abcabc | suff[3]=2: abbc

Figure 3: The values in the suffix list can increase or decrease; deleted letters underlined

6 The Algorithm

As we have seen, there is basically one condition to check in order to determine, whether an
entry in the suffix table needs to be changed. Thus the implementation of the update is quite
straight-forward.

Algorithm 3: Updating the suffix list.

Data: w: the new string;

n: the length of w;

oldsuf f: the suffix table of the old string;

k: the start position of the deleted factor in the old string;
¢: the end position of the deleted factor in the old string;
Result: suff: the suffix table for w

1 for (i:=kton—({—k)—1)do

2 | suffli] :==oldsuffli+ ¢ —k|;

3 end

4 for (i:=0tok—1)do

5 | if (oldsuffli] <n—{)thensuff[i] := oldsuff[i];
6 else

7 sufflil:=n—4¢;

8 ji=n—L+1;

9 while (j < i AND wl[i — j] = w[n —j]) do
10 suffli] :=suff[i] +1;

11 ji=j+1

12 end

13 end

14 end

Thus the only letter comparisons are done in the test at line 9. The number is one more than
the increase in the value of suf f. As we have seen in the examples, in general these values are
rather small. As a consequence, we can assume that in most cases very few comparisons will
be done. Another factor that affects the this number is the distance from the end of the string:
the bigger this distance, the higher the probability of the test in line 5 to be successful; and then
the suf f value does not change.

The exact number of comparisons depends on the data. Compared to the computation of
suf f from scratch, which takes between n and 2n — 1 letter comparisons, our algorithm clearly
improves the lower bound by reducing it to zero. Nonetheless, in the worst case this number
might still be linear; It can be bounded to 2n — 1 by similar techniques as for the original suf f



construction: for every position at most one successful and one failing comparison are done.
But this worst case is less probable and the lower bound is much better; thus updating is more
efficient than computing from scratch.

7 Conclusion

As expected, the changes in suffix arrays and suffix tables that the deletion of squares cause are
very local. We have shown how this can be taken advantage of for obtaining the suffix arrays
and suffix tables of the resulting strings in a way that is more efficient than computing them
from scratch.
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