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Abstract

The cost of operational risk refers to the capital needed to afford the loss generated
by ordinary activities of a firm. In this work we demonstrate how allocation prin-
ciples can be used to the subdivision of the aggregate capital so that the firm can
distribute this cost across its various constituents that generate operational risk.
Several capital allocation principles are revised. Proportional allocation allows to
calculate a relative risk premium to be charged to each unit. An example of fraud
risk in the banking sector is presented and some correlation scenarios between
business lines are compared.

Keywords: solvency, quantile, value at risk, copulas

1. Introduction and Motivation

Risk management in business is about anticipating the potential losses that can
occur in a firm and to design methods that can either mitigate them or compensate
them. It is a field of intense research given that security and protection is an
essential part of quality control.

In ordinary business operations, there are risks of malfunctioning that are al-
most inevitable and that create a constant burden to the expected profits by sub-
stantially reducing those. These risks are called operational because they arise
naturally in everyday business activities. They include, software failures, elec-
tricity cuts, human mistakes, internal and external fraud, among others. Expected
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operational losses can be accounted for as a fixed cost component of production,
but holding a capital to be able to pay for the unexpected operational losses is
necessary to respond to exceptional operational risk events that exceed the rou-
tine. We will address the cost of operational risk and to what proportion a every
single produced unit should contribute to the total capital held for operational risk
purposes. A constant allocation would mean that the total capital is divided by
the number of product units in spite of the contribution of that unit to the aggre-
gate operational risk. A proportional allocation would increase the contribution
of those units whose production creates more risk than the others compared to the
average.

We will examine an example in the context of fraud in banking. Our illustra-
tion is inspired in a typical simplified situation where a bank has only two lines of
business, for instance credit cards and savings accounts. Losses due to fraud arise
in these two business services and are an area of research for improving business
performance [26, 2, 4, 5]. Managers can predict the annual average loss due to
fraud in credit cards and savings accounts independently and include this expected
loss as part of the general managing expenses of credit cards and savings accounts,
respectively. Similar applications have been disussed in the context of automobile
insurance before [33]. However, some additional capital must be held as a results
of risk exposure due to fraud in any of the two lines and there are several ways
to decide how much capital should be provided by the credit card business and
how much from the savings account business. Moreover, assuming independence
between lines of business is unrealistic. It is well known that fraud propensity
fluctuates with exogenous factors that create spurious correlation between busi-
ness units [32]. Factors such as economic recession, social networking where
people share information about the modus operandi of successful fraud attempts
and periods during the year when consumers are more prone to defraud affect all
business lines at the same time (see, for instance Caudill et al. [15]). We will
address how to cope with dependence between fraud risk in this two dimensional
setting, here we consider fraud in credit cards and in savings accounts.

In general, companies wish to allocate capital to their business units for sol-
vency reasons. Moreover, banks and insurance companies are legally required to
set aside some amount of capital in order to remain solvent and they wish to as-
sociate the capital, and therefore the loss of returns, to every single unit as a price
loading, also called a risk premium.

The mere existence of operational risk recommends that firms keep some capi-
tal, unless they prefer to purchase an insurance policy to cover operations failures,
in which case instead of capital they need to pay for an insurance premium, which
in our terms is an equivalent problem (see, Guillen et al. [21]).

Capital allocation of operational risk cost can be a useful tool and an indicator
for performance measurement [7, 9]. Designing incentives schemes as managers’
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performance can be assessed by the amount of capital allocated to their business
units, which is an indicator of operational risk. Profit-and-loss analysis under
loan pricing context and under general investment purposes are another reasons
that motivate companies to carry out capital allocations.

Note that capital allocation, namely the contribution to risk of every unit, is the
purpose of this work and we do not attempt going into details on how to determine
the sum of economic capital to be allocated. We assume this capital is known
and given, we are describing a way to determine the optimal proportions of this
given capital for allocating them among different risk sources of the enterprise.
The main problem to be solved is the so-called allocation problem. Based on
the general framework proposed by [16] we provide explicit formulations for the
proportion of capitals the manager should allocate on different risk sources based
on a wide variety of risk measures.

We provide an exact functional forms of each allocation principle and also
paying carefully attention to the numerical part, we analyze the “correlation ef-
fect” on the allocation principles. Correlation effect is considered to be the effect
of changes in the allocated capital suggested by each principle when changing
the correlation between the losses. We argue that correlations exist in practice
[18, 29, 11, 12]. Our findings suggest that correlation effect exists.

The remainder of this article is arranged as follows. Section 2 discusses for-
mally what the allocation problem is. Allocation principles are presented in Sec-
tion 3 while the general framework for capital allocation, based on [16], is dis-
cussed in Section 4. An application is on fraud reported in Section 5. Some
concluding remarks are in Section 6.

2. The General Capital Allocation Problem

Capital Allocation is a term referring to the subdivision of the aggregate cap-
ital held by the firm across its various constituents, for example, business lines,
type of exposure, territories, or even individual products in a portfolio of insur-
ance policies. This capital is often referred to as Economic Capital (EC) and is
defined as the p-quantile of the loss distribution minus the expected value of the
of loss distribution [28]. Formally, economic capital is a risk measure,

EC(p) = F−1
S (p) − E(S ) with,

F−1
S (p) = inf{s ∈ R | FS (s) ≥ p}, p ∈ (0, 1).

Since this definition of EC(p) does not account for “bad times” episodes, then
it is viewed as an “all or nothing” rule for capital definition. An alternative defi-
nition, according to [28], tries to incorporate such “bad times” in its formulation
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and treat it as a more “optimistic” event, this definition states that EC must be:

ECK = E(S |S > K),

where this definition considers Economic Capital in average also enough to cush-
ion losses even in bad times. Note that capital allocations in Section 4.2.2 are
based on this capital definition.

Once the capital is defined, we have to define its counterpart, i.e. the loss.
Consider a portfolio of n individual losses (random variables) X1, X2, . . . , Xn ma-
terializing at a fixed future date T . Assume that (X1, X2, . . . , Xn) is a random vector
on the probability space (Ω,F ,P). We assume that any loss Xi has a finite mean.
The distribution function P(Xi ≤ x) of Xi will be denoted by FXi(x).

The aggregate loss is defined by the sum of the individual losses:

S =

n∑
i=1

Xi, (1)

where this aggregate loss can be interpreted as:

1. the total loss of a corporation, for example, an insurance company, with the
individual losses corresponding to the losses of the respective business unit,

2. the loss from an insurance portfolio, with the individual losses being those
arising from the different policies; or

3. the loss by a financial conglomerate, white the different individual losses
correspond to the losses suffered by its subsidiaries.

4. the loss of a bank due to fraud in credit card and savings accounts, respec-
tively3.

Following [16] it is the first of these interpretations we will use throughout
this article. Hence, S is the aggregate loss faced by a company and Xi is the loss
of business unit i.

In order to clarify what the allocation problem is, one can view the problem
from another perspective, namely, consider an investor who can invest in a fixed
set of n different investment possibilities with losses represented by the random
variables X1, X2, . . . , Xn. We have the following economic interpretations depend-
ing on the area of application [27]:

1. Performance measurement. Here the investor is a financial institution and
the Xi represent the Profit-and-Loss distribution of n different lines of busi-
ness.

3this example is similar to the illustration provided in the application section
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2. Loan pricing. In this situation the investor is a loan book manager respon-
sible for a portfolio of n loans.

3. General investment. Here we consider either an individual or institutional
investor and the standard interpretation of Xi are profit-and-loss correspond-
ing to a set of investments in various assets.

S is random, so usually we assume that the company has already determined
the aggregate level of capital safely to face those losses and denote this total risk
capital by K. The company now wishes to allocate this exogenously given total
risk capital K across its various business units, that is, to determine non-negative
real numbers K1, . . . ,Kn satisfying the full allocation requirement:

n∑
i=1

Ki = K. (2)

This allocation is in some sense a notional exercise; it does not mean that
capital is physically shifted across the various units, as the company’s assets and
liabilities continue to be pooled. The allocation exercise could be made in order
to rank the business units according to levels of profitability. This task can be
performed, for example, by determining the returns on the allocated capital for
the respective business units.

The general approach of capital allocation raises the question of what the ap-
propriate risk capital for an individual investment opportunity might be. Thus the
question of performance of the investment is intimately connected with the risk
measurement chosen. A two-step procedure is used in practice [27].

1. Compute the overall risk capital ρ(S ), where S is defined in (1) and ρ is a
particular risk measure, such as value at risk (VaR), expected shortfall (ES),
or an economic capital (EC(p)) (see Dhaene et al. [17], ? ], Guillen et al.
[22] and Abbasi and Guillen [1] for detailed explanations and applications
and Alemany et al. [3] for estimation methods). Coherent measures will be
more appropriate than non-coherent ones as they guarantee sub-additivity4

Some new measures have been proposed in this area and they could gener-
alize the interpretation [6]

2. Compute K as ρ(S ) and allocate the capital K to the individual units ac-
cording to some mathematical capital allocation principle such that, if (Ki)
denotes the capital allocated to i with potential loss Xi. The sum of Ki fulfills
the requirement in (2).

4See Dhaene et al. [17] for a definition of what a coherent measure implies.
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We are interested in the second step of the procedure above; roughly speaking
we require a mapping that takes as input the individual losses X1, X2, . . . , Xn and
the risk measure ρ and yields as output the vector (K1,K2, . . . ,Kn) such that:

ρ(S ) =

n∑
i=1

Ki = K. (3)

Such a mapping is called a capital allocation principle. The relation (3) is
sometimes called the full allocation property [27] since all of the overall risk cap-
ital ρ(S ) (not more, not less) is allocated to the investment possibilities; [27] con-
sider this property to be an integral part of the definition of an allocation principle.

Given that a capital allocation can be carried out in a countless number of
ways, additional criteria must be set up in order to determine the most suitable
form of determining the mapping. A reasonable start is to require the allocated
capital amounts Ki to be “close” to their corresponding losses Xi in some appro-
priately defined sense. Prior to introducing the idea of “closeness” between in-
dividual loss and allocated capital, we revisit some well-known capital allocation
methods.

3. Allocation Principles in Risk Management

A capital allocation principle in risk management is a general rule that assigns
a capital K that is aimed to cover an aggregated loss S , to units that contribute
to S and not necessarily independently. The reasons why firms want their total
capital needs to cover risk to be allocated are [16]:

1. There is a need to redistribute the total (frictional or opportunity) cost asso-
ciated with holding capital across various business lines so that this cost is
equitably transferred back to the depositors or policyholders in the form of
charges.

2. The allocation of expenses across lines of business is a necessary activity
for financial reporting purposes.

3. Capital allocation provides for a useful device of assessing and comparing
the performance of the different lines of business by determining the return
on allocated capital for each line. Comparing these returns allows one to
distinguish the most profitable business lines and hence may assist in re-
munerating the business line managers or in making decisions concerning
business expansions, reductions or even eliminations.

Allocation principles are methods aimed to solve the allocation problem by
providing capital to each business unit for them to face their losses. This means
that allocation principles gives those Ki shown in (2) as solution to our main prob-
lem. Standard risk measures give rise to different allocation principles.
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3.1. Haircut allocation principle
This a is straightforward allocation method consisting of allocating the capital

Ki = γF−1
Xi

(p), i = 1, . . . , n to business unit i, where factor γ is chosen such
that the full allocation requirement (2) is satisfied. This gives rise to the haircut
allocation principle:

Ki =
K

n∑
i=1

F−1
Xi

(p)
F−1

Xi
(p), i = 1, . . . , n. (4)

Haircut principle is based on the idea of measuring stand-alone losses using
a VaR for a given (fixed) probability level p that is why it is a very common
technique among banks and insurance companies. It boils down to a principle of
single proportionality.

It should be noted that K is exogenously determined, it is considered as a
given value. The capital allocated by this principle does not rely on the structure
dependence of the losses Xi of the different business units. [16] consider haircut as
a method which is independent of the portfolio context within which the individual
losses are embedded, clearly this fact highlights the non-subadditivity property of
the VaR.

The two more immediately consequences derived from non-subadditivity in
the haircut principle context are: i) The portfolios do not benefit from a pool-
ing effect (this is true even beyond haircut scope) and ii) It may happen that the
allocated capitals Ki exceed the respective stand-alone capitals F−1

Xi
(p).

3.2. CTE allocation principle (Overbeck type II allocation principle)
CTE principle is based on conditional tail expectation, we call this kind of

allocation Overbeck type II allocation principle5. For a given probability level
p ∈ (0, 1), the CTE of the aggregate loss is defined as:

CT Ep[S ] = E
[
S |S > F−1

XS
(p)

]
. (5)

expression (5) for a fixed level p, gives the average of the top (1 − p) percent
losses.

The CTE allocation principle for some fixed probability level p ∈ (0, 1) has
the form:

Ki =
K

CT Ep[S ]
E

[
Xi|S > F−1

XS
(p)

]
, i = 1, . . . , n. (6)

5See Section 4.2.2 to find out why we call this principle this way.
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Unlike the haircut allocation principle, the CTE principle takes into account
the dependence structure of the random losses (X1, X2, . . . , Xn). Interpreting the
event S > F−1

XS
(p) as the “the aggregate loss S is large”, we see from (6) that

business units with larger conditional expected loss, given that the aggregate loss
S is large, will be penalized with larger amount of capital required than those with
lesser conditional expected loss.

3.3. Covariance allocation principle
The Covariance allocation principle takes the following form:

Ki =
K

Var[S ]
Cov(Xi, S ), i = 1, . . . , n, (7)

where Cov(Xi, S ) is the covariance between the individual loss Xi and the aggre-
gate loss S and Var(S ) is the variance of the aggregate loss. Because clearly the
sum of the individual covariances is equal to the variance of the aggregate loss,
the full allocation requirement in (2) is automatically satisfied in this case.

The Covariance allocation principle as well as the CTE allocation principle
takes into account the dependence structure of the random losses. A nice interpre-
tation that arises from the covariance principle is that “business units with a loss
that is more correlated with the aggretate loss S are penalized by requiring them
to hold a larger amount of capital than those that are less correlated” [16] .

3.4. Proportional allocations
[27] summarizes all the allocation methods explained in the previous sections

into what they call Proportional Allocations which is a more general class en-
compassing the allocation principles described above. Depending on which risk
measure ρ is chosen for attributing capital Ki is the key for obtaining one of them.
This idea is formalized as:

Ki = ωρ(Xi), i = 1, . . . , n, (8)

where Ki is the capital to be allocated to each business unit i, ρ(·) is risk measure
and factor ω is chosen such that the full allocation requirement in (2) is satisfied,
this factor takes the following form:

ω =
K

n∑
i=1
ρ(Xi)

, i = 1, . . . , n. (9)

Factor (9) can be seen as a weighting scheme for capital allocation, substitut-
ing (9) into (8) we have an explicit and general formulation encompassing all the

8



allocation principles discussed above:

Ki =
K

n∑
i=1
ρ(Xi)

ρ(Xi), i = 1, . . . , n. (10)

4. Optimal Capital Allocations

As we have pointed out above, K is considered to be exogenous; because
there are several allocation principles to aggregate capital K to n parts K1, . . . ,Kn

corresponding to the different business units. [16] claim that “there seems to be
a lack of a clear motivation for preferring to choose one over another, although it
appears obvious that different capital allocations must in some sense correspond
to different questions that can be asked within the context of risk management”
and this is the main focus of the [16] becomes a key reference for systematizing
capital allocation methods by viewing them as solutions to a particular decision
problem. In order to achieve this goal they formulate a decision criterion, such as:

Capital should be allocated such that for each business unit the
allocated capital and the loss are sufficiently close to each other [16].

In order to cast this statement in a more formal setting, consider the aggregate
portfolio loss S = X1 + . . . + Xn with aggregate capital K. Once the aggregate
capital is allocated, the difference between the aggregate loss and the aggregate
capital can be expressed as:

S − K =

n∑
i=1

(Xi − Ki), (11)

where the quantity (Xi − Ki) expresses the loss minus the allocated capital for
unit i. It is important to notice that in this setting, the units are cross-subsidizing
each other, in the sense that the occurrence of the event “Xk > Kk” does not
necessarily lead to “ruin”; such unfavorable performance of subportfolio k may
be compensated by a favorable outcome for one or more values (Xl − Kl) of the
other units. [16] propose to determine the appropriate allocation by the following
optimization problem:

Definition 1. Optimal Capital Allocation Problem Given the aggregate capital
K > 0, determine the allocated capitals Ki, i=1, . . . , n, from the following opti-
mization problem:

min
K1,...,Kn

n∑
i=1

υiE
[
ζiD

(
Xi − Ki

υi

)]
, such that,

n∑
i=1

Ki = K, (12)
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where the υi are non-negative real numbers such that
∑n

i=1 υi = 1, the ζi are non-
negative random variables such that E(ζi) = 1, and D is a non-negative function.

Each of the component in the general optimal capital allocation problem in
(12) are defined as follows:

υi: The non-negative real number υi is a measure of exposure or business vol-
ume of the ith unit, such as revenue, insurance premium, etc. These scalar
quantities are chosen such that they sum to 1. Their inclusion in the ex-

pression D
(

Xi − Ki

υi

)
normalizes the deviations of loss from allocated capi-

tal across business units to make them relatively more comparable. At the
same time, the υis are used as weights attached to the different values of

E
[
ζiD

(
Xi − Ki

υi

)]
in the minimization problem in (12), in order to reflect the

relative importance of the different business units.

D
(

Xi − Ki

υi

)
: For simplicity, it is first assumed that υi = 1 and also that ζi ≡ 1.

The terms D(Xi−Ki) quantify the deviations of the outcomes of the losses Xi

from their allocated capital Ki. Minimizing the sum of the expectations of
these quantities essentially reflects the requirement that the allocated cap-
itals should be “as close as possible” to the losses they are allocated to.
Examples of distance measures are “squared or quadratic deviations” and
“absolute deviations”.

ζi The deviations of the losses Xi from their respective allocated capital levels
Ki are measured by the terms E

[
ζiD(Xi − Ki)

]
. These expectations involve

non-negative random variables ζi with E(ζi) = 1 that are used as weight
factors to the different possible outcomes of D(Xi−Ki). One possible choice
for the ζi could be ζi = h(Xi) for some non-negative and non-decreasing
function h. In this case, the heaviest weights are attached to deviations that
correspond to states of the world leading to the largest outcomes of Xi. We
will call allocations based on such a choice for the ζi business unit driven
allocations.

Another choice is to let ζi = h(S ) for some non-negative and non-decreasing
function h, such that the outcomes of the deviations are weighted with re-
spect to the aggregate portfolio performance. In this case, heavier weights
are attached to deviations that correspond to states of the world leading to
larger outcomes of S . Allocations based on such a choice for the random
variables ζi will be called aggregate portfolio driven allocations.

A yet different approach is to let ζi = ζM for all i, where ζM can be in-
terpreted as the loss on a reference (or market) portfolio. In this case, the
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weighting is market driven and the corresponding allocation is said to be a
market-driven allocation.

The Quadratic Optimization Criterion is proposed by [16] as the General
Solution of the Quadratic Allocation Problem by letting

D(x) = x2. (13)

This leads to (12) to

min
K1,...,Kn

n∑
i=1

E
[
ζi

(Xi − Ki)2

υi

]
, such that,

n∑
i=1

Ki = K. (14)

The solution to this minimization problem is given in the following theorem.

Theorem 1. The optimal allocation problem in (14) has the following unique so-
lution:

Ki = E(ζiXi) + υi

K −
n∑

i=1

E(ζiX j)

 , i = 1, . . . , n. (15)

A detailed proof of the solution for this minimization problem can be found in
[16].

4.1. Business unit driven allocations
Following [16], in this subsection, we consider the case where the weighting

random variables ζi in the quadratic allocation problem in (14) are given by

ζi = hi(Xi), (16)

with hi being a non-negative and non-decreasing function such that E[hi(Xi)] = 1,
for i = 1, . . . , n. Hence, for each business unit i, the states of the world to which
we want to assign the heaviest weights are those under which the business unit
performs the worst. As earlier pointed out, we call allocations based on (16)
business unit driven allocations. In this case, the allocation rule in (15) can be
rewritten as

Ki = E[Xihi(Xi)] + υi

K −
n∑

i=1

E[Xihi(Xi)]

 , i = 1, . . . , n. (17)

For an exogenously given value of K, the allocations Ki are not influenced by
the mutual dependence structure between the losses Xi of the different business
units. In this sense, one can say that the allocation principle (17) is indepen-
dent of the portfolio context within which the Xis are embedded and, hence, is
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indeed business unit driven. Such allocations might be a useful instrument for
determining the performance bonuses of the business unit managers, in case one
assumes that each manager should be rewarded for the performance of his own
business unit but not extra rewarded (or penalized) for the interrelationship that
exists between the performance of his business unit and that of the other units of
the company. One should however note that disregarding in this way diversifica-
tion between business units, the allocation may give incentives to managers that
are at odds with overall portfolio optimization criteria.

The law invariant risk measure E[Xihi(Xi)] assigns to any loss Xi the expected
value of the weighted outcomes of this loss, where higher weights correspond to
larger outcomes of the loss, that is, to more adverse scenarios. Risk measures
and premium principles of this general type are proposed and investigated in [25],
[30], and [19].

Defining the volumes υi by

υi =
E[Xihi(Xi)]∑n

i=1 E[Xihi(Xi)]
. (18)

The allocation principle could be found by substituting (18) in (17) and sim-
plifying the expression as in:

Ki = E[Xihi(Xi)] +
E[Xihi(Xi)]∑n

i=1 E[Xihi(Xi)]

K −
n∑

i=1

E[Xihi(Xi)]


Now it can be easily seen from this last expression the allocation principle

based on the business unit driven idea is given by:

Ki =
K∑n

i=1 E[Xihi(Xi)]
E[Xihi(Xi)]. (19)

Once we got to know the general form of the business unit driven allocation
principle we are now able to choose different forms for hi(Xi) in order to achieve
several capital allocation principles based upon the business unit driven allocation
framework, this is exactly the main purpose of the subsequent sections.

4.1.1. (Pure) Conditional Tail Expectation principle
Once we know the allocation principle for allocating Ki using business unit

driven principle we can set specific forms for hi(Xi), we can obtain several explic-

itly functional forms for Ki, for instance by choosing hi(Xi) =
I(Xi>F−1

Xi
(p))

1−FXi (F
−1
Xi

(p)) , then Ki

will result in the (Pure) Conditional Tail Expectation principle.
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We call this principle (Pure) Conditional Tail Expectation because both the
aggregate loss and each individual business unit losses are taken conditional ex-
pectation based on the average of the top (1 − p) loss. Since CT E(·) is applied to
S and Xi then we call it (Pure) Conditional Tail Expectation so that we can distin-
guish it from the Conditional Tail Expectation principle based on [28] which we
call Overbeck type II allocation principle which is a special case of the Aggregate
Portfolio Driven Allocations, see Section 4.2.

Lemma 1. For an integrable loss X with continuous distribution function, FX and
any p ∈ (0, 1) we have [16],

ES p =
1

1 − p
E(X : X ≥ qp(X)) = E(X|X ≥ VaRp).

By choosing hi(Xi) =
I(Xi>F−1

Xi
(p))

1−FXi (F
−1
Xi

(p)) multiplying by Xi and taking expectations

will lead us to:

E[Xihi(Xi)] = E

Xi

I(Xi > F−1
Xi

(p))

1 − p

 =
1

1 − p
E[Xi|Xi > F−1

Xi
(p)].

From Lemma 1 the previous expressions reduces to the Conditional Tail Ex-
pectation:

E[Xihi(Xi)] = CT Ep[Xi].

Now replacing E[Xihi(Xi)] by CT Ep[Xi] in (19) we have:

Ki =
K∑n

i=1 CT Ep(Xi)
CT Ep(Xi) =

K
CT Ep(

∑n
i=1 Xi)

CT Ep(Xi).

∑n
i=1 CT Ep(Xi) = CT Ep(

∑n
i=1 Xi) follows from the additivity proporty of CTE.

Hence Ki takes the following form:

Ki =
K

CT Ep(S )
CT Ep(Xi). (20)

4.1.2. Standard deviation principle
The standard deviation principle [14] can be easily obtained by choosing

hi(Xi) = 1 + a Xi−E(Xi)
σXi

, a ≥ 0, so that replacing it into E[Xihi(Xi)] and then plug
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it into (19) will have the so-called standard deviation principle.

In order to get an expression for Ki based upon the standard deviation princi-
ple we proceed as follows:

E[Xihi(Xi)] = E
[
Xi + a

X2
i − XiE(Xi)

σXi

]
= E(Xi) + aσXi .

For
∑n

i=1 E[Xihi(Xi)] to be explicitly found we proceed as follows:

n∑
i=1

E[Xihi(Xi)] =

n∑
i=1

{
E(Xi) + aσXi

}
=

n∑
i=1

E(Xi) + a
n∑

i=1

σXi . (21)

Expression (21) can be simplified to (22) if and only if Cov(Xi, X j) = 0 ∀i ,
j

E(S ) + aσS , (22)

this follows from the following operations:

n∑
i=1

E(Xi) + a
n∑

i=1

σXi = E

 n∑
i=1

Xi

 + a

√√
Var

 n∑
i=1

Xi

⇔ Cov(Xi, X j) = 0 ∀i , j

= E(S ) + aσS .

Consequently the form taken by Ki based upon the standard deviation princi-
ple is:

Ki =
K

E(S ) + aσS

(
E(Xi) + aσXi

)
. (23)

A very interesting relationship between Overbeck type I allocation principle
which we will be studied in (4.2.2) and the Standard deviation allocation princi-
ple, (32) and (23), respectively, is given by:

Ki =
K

E(S ) + aφ

(
E(Xi) +

a
σ
γ
)
. (24)

Overbeck type I is retrieved by (24) when choosing φ = σ2
S and γ = Cov(Xi, S ).
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Whereas the standard deviation principle is recovered when setting φ = σS and
γ = Cov(Xi, Xi) = Var(Xi) = σ2

Xi
.

4.1.3. Esscher principle
If we let hi(Xi) be eaXi

E[eaXi ] with a > 0 then K will be allocated accordingly by
the Esscher Principle [20], as we shall see below:

E[Xihi(Xi)] = E
[

XieaXi

E[eaXi]

]
.

n∑
i=1

E[Xihi(Xi)] =

n∑
i=1

E
[

XieaXi

E[eaXi]

]
.

Thus, the optimal Ki will look like as (25):

Ki =
K∑n

i=1 E
[

XieaXi

E[eaXi]

]E
[

XieaXi

E[eaXi]

]
. (25)

Table 1: Business Unit Driven Capital Allocation
Reference hi(Xi) Ki

(Pure) Conditional Tail Expec-
tation [28]

I(Xi>F−1
Xi

(p))

1−FXi (F−1
Xi

(p))
p ∈ (0, 1)

K
CT Ep(S )

CT Ep(Xi)

Standard deviation principle
[14]6

1 + a
Xi − E(Xi)

σXi

, a ≥ 0
K

E(S ) + aσS

(
E(Xi) + aσXi

)
Esscher principle [20] eaXi

E(eaXi )
, a > 0 Ki =

K∑n
i=1 E

[
XieaXi

E[eaXi ]

] E
[

XieaXi

E[eaXi ]

]

4.2. Aggregate portfolio driven allocations
Unlike from the Business Unit Driven Allocation rule, this time [16] consider

the case where
ζi = h(S ), i = 1, . . . , n, (26)

with h being a non-negative and non-decreasing function such that E[h(S )] = 1.
In this case, the states of the world to which we assign the heaviest weights are
those under which the aggregate portfolio performs worst. Therefore, we call
such allocations aggregate portfolio driven allocations. The allocation rule (15)
can now be rewritten as:
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Ki = E[Xih(S )] + υi(K − E[S h(S )]), i = 1, . . . , n. (27)

Hence, the capital Ki allocated to unit i is determined using a weighted ex-
pectation of the loss Xi, with higher weights attached to states of the world that
involve a large aggregate loss S . Notice that the allocation principle (27) can be
reformulated as7

Ki = E(Xi) + Cov[Xi, h(S )] + υi(K − E[S h(S )]), i = 1, . . . , n. (28)

This means that the capital allocated to the ith business unit is given by the sum
of the expected loss E[Xi], a loading that depends on the covariance between the
individual and aggregate losses Xi and h(S ), plus a term proportional to the volume
of the business unit. A strong positive correlation between Xi and h(S ), which
reflects that Xi could be a substantial driver of the aggregate loss S , produces a
higher allocated capital Ki.

Using aggregate portfolio driven allocations might be appropriate when one
wants to investigate each individual portfolio’s contribution to the aggregate loss
of the entire company. In other words, the company wishes to evaluate the sub-
portfolio performances, for example, the returns on the allocated capitals, in the
presence of the other subportfolios. This can provide relevant information to the
company within which it can further be used to evaluate either business expan-
sions or reductions.

Defining the volumes υi by

υi =
E[Xih(S )]
E[S h(S )]

, i = 1, . . . , n. (29)

Plugging (29) into (27) and simplifying the resulting expression we end up
having a proportional allocation rule:

Ki =
K

E[S h(S )]
E[Xih(S )]. (30)

Using the proportional allocation principle shown in (30) and choosing some
structure for h(S ), the researcher/practitioner can be allowed to construct several
ways for allocating K. For instance let us consider a particular choice for h(S )
to be h(S ) = S − E(S ) this yields to the covariance allocation principle intro-
duced in section 3 by means of determining the expression for both E[Xih(S )] and
E[S h(S )] and then plug them into (30) as it is shown below.

7This follows from the fact that Cov(Xi, h(S )) = E(Xih(S )) − E(Xi)E(h(S )) solving for
E(Xih(S )) we end up with E(Xi) + Cov[Xi, h(S )] since E(h(S )) = 1
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4.2.1. Covariance allocation principle
This subsection is intended to derive the Covariance allocation principle from

the general setting presented in the previous section by setting h(S ) = S − E(S )
and using the philosophy of the plug-in principle.

Setting h(S ) = S − E(S ) the aim is to determine E[Xih(S )] and E[S h(S )].

For E[Xih(S )] we have:

E[Xih(S )] = E[XiS − E(S )]
= Cov(Xi, S ).

For E[S h(S )] to be explicitly found we proceed as follows:

E[S h(S )] = E[S (S − E(S ))]

= E(S 2) − [E(S )]2

= Var(S ).

Once we have the expressions for E[Xih(S )] and E[S h(S )] we can now plug
them into (30) in order to have the expression for allocating capital K among the
different business units (Xi with i = 1, . . . , n) based on the Aggregate Portfolio
Driven idea. So the allocation principle has the form:

Ki =
K

Var[S ]
Cov(Xi, S ), i = 1, . . . , n. (31)

Precisely this is exactly the expression shown in (7) from this fact one can no-
tice that Covariance Principle is a special case of the Aggregate Portfolio Driven
Allocation when choosing h(S ) = S − E(S ).

4.2.2. Overbeck allocation principles
Within this subsection we provide an explicit expression for the Aggregate

Portfolio Driven Allocation principle based on [28]. We call Overbeck Type I
allocation principle to the principle obtained by setting h(S ) = 1 + aS−E(S )

σS
, a ≥ 0.

And we will call Overbeck Type II allocation principle to that when using h(S ) =
1

1−p I(S > F−1
S (p)), with p ∈ (0, 1).

As in the previous sections we now proceed to find an explicit expression for
Ki by setting h(S ) = 1 + aS−E(S )

σS
, a ≥ 0.
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For E[Xih(S )] we have:

E[Xih(S )] = E
[
Xi

(
1 + a

S − E(S )
σS

)]
= E(Xi) +

a
σS

Cov(Xi, S ).

Working on E[S h(S )] we find:

E[S h(S )] = E
[
S +

aS (S − E(S ))
σS

]
= E(S ) + aσS .

Applying the plug-in principle and substituting the respective expressions of
E[Xih(S )] and E[S h(S )] into the general framework presented in (30) we get the
allocation principle we’ve just called Overbeck Type I allocation principle whose
form is:

Ki =
K

E(S ) + aσS

[
E(Xi) +

a
σS

Cov(Xi, S )
]
. (32)

Overbeck Type II allocation principle is determined by letting h(S ) be 1
1−p I(S >

F−1
S (p)) with p ∈ (0, 1):

E[Xih(S )] =
1

1 − p
E[Xi|I(S > F−1

S (p))]

E[S h(S )] =
1

1 − p
E[S |I(S > F−1

S (p))] = CT Ep(S ).

Therefore, Ki could be written as:

Ki =
K

CT Ep(S )
E[Xi|I(S > F−1

S (p))]. (33)

Note this principle is exactly the same one presented in (6) in Section 3.2

4.2.3. Wang allocation principle
Let us consider h(S ) = eaS

E[eaS ] with a > 0, we can construct an allocation
principle based on [34] and give an expression for Ki. In order to achieve our goal
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the procedure is similar to the ones used in previous sections.
Once we consider h(S ) = eaS

E[eaS ] , the expression for E[Xih(S )] is found in the
following way:

E[Xih(S )] = E
[
S h(S ) =

eaS

E[eaS ]

]
=

1
E(eaS )

E(XieaS )

=
E(XieaS )
E(eaS )

.

Then E[S h(S )] is:

E[S h(S )] = E
[
Xih(S ) =

eaS

E[eaS ]

]
=

E(S eaS )
E(eaS )

.

Therefore, the allocation of the exogenously given aggregate capital K to n
parts K1, . . . ,Kn corresponding to the different business units can be carried out
using:

Ki =
K

E(S eaS )
E(XieaS ). (34)

4.2.4. Tsanaka allocation principle
If we let

∫ 1

0
eγaS

E(eγaS ) be h(S ) with a > 0, then this leads us to the [31] principle.
Expressions for constructing the Ki are as follow:

E[Xih(S )] = E
[
Xi

∫ 1

0

eγaS

E(eγaS )
dγ

]
,

E[S h(S )] = E
[
S

∫ 1

0

eγaS

E(eγaS )

]
,

where the Ki to be allocated takes the following form:

Ki =
K

E
[
S

∫ 1

0
eγaS

E(eγaS )dγ
]E

[
Xi

∫ 1

0

eγaS

E(eγaS )
dγ

]
. (35)
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Letting Ψ be
∫ 1

0
eγaS

E(eγaS )dγ, then Ki could be rewritten as:

Ki =
K

E(S Ψ)
E(XiΨ). (36)

Table 2 summarizes the Aggregate Portfolio Driven Allocations by providing
expressions for Ki.

Table 2: Aggregate Portfolio Driven Allocations
Reference h(S ) Ki

Covariance principle S − E(S )
K

Var[S ]
Cov(Xi, S )

Overbeck Type I [28] 1 + a
S − E(S )

σS
, a ≥ 0

K
E(S ) + aσS

[
E(Xi) +

a
σS

Cov(Xi, S )
]

Overbeck Type II [28]
1

1 − p
I(S > F−1

S (p)), p ∈ (0, 1)
K

CT Ep(S )
E[Xi |S > F−1

S (p)]

[34] eaS

E(eaS )
, a > 0

K
E(S eaS )

E(XieaS )

[31]
∫ 1

0
eγaS

E(eγaS )
dγ, a > 0

K

E
[
S

∫ 1
0

eγaS

E(eγaS )
dγ

] E
[
Xi

∫ 1
0

eγaS

E(eγaS )
dγ

]

5. An application to fraud analysis

We give the practical examples of capital allocation approaches and their im-
pact on amounts of allocated capital when considering a typocal case of opera-
tional risk. For this purpose, we use Public data risk no. 1 and Public data risk
no. 2 from [8], these data consist of 1000 and 400 observed loss amounts for
categories 1 and 2, respectively.

Let us consider these data as operational losses in a banking environment. For
Public data risk no. 1 to have some sense in this context we consider it as bank
transfer mistakes which means that a bank teller transfers more money than the
required to a client’s savings bank account and Public data risk no. 2 is to be
considered as fraudulent transactions, for instance, a client loses her credit card
and another person uses it, if the bank’s client reports this situation to bank then
the non-authorized use of the credit card will charge some losses to bank.

In this section, we quantify capital requirements based on risk measures for
those types of losses. Given an exogenous amount of total capital, K calculated
as the empirical Value at Risk at 99% of the aggregate loss (VaR99(S )), the goal
is allocating to each loss source an optimal portion of this capital and comparing
three well-known allocation principles: Haircut, Covariance and Overbeck type
II allocation principles, all of them belonging to the proportional allocations, note
that both the Covariance and Overbeck type II allocation principles belong to the
Aggregate portfolio allocation principle described in Section 4.2.
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Table 3: Descriptive statistics for numerical example data

Public data risk no. 1 Public data risk no. 2
nobs 1000.00 400.00
NAs 0.00 0.00
Minimum 0.00 0.00
Maximum 5122.14 1027.53
1. Quartile 2.24 2.67
3. Quartile 8.46 8.62
Mean 42.06 20.89
Median 3.47 4.29
Sum 42059.41 8357.32
SE Mean 9.23 4.80
Variance 85242.64 9199.45
Stdev 291.96 95.91
Skewness 13.61 9.10
Kurtosis 210.87 89.20

The reason why we decide to use aggregate portfolio driven allocations is that
we want to consider the dependence structure compared to the Haircut allocation
principle, which is based on a stand-alone risk measure which does not consider
the dependence structure. Dependence structures cannot be ignored in risk man-
agement [23, 24].

Some descriptive insights are provided in Table 3 where one eye-catching fact
is the difference in the number of observations in each vector of losses, Public
data risk no. 1 has 1000 observations and Public data risk no. 2 has 400 which
represents a drawback for the configuration of the allocation principles where all
of them implicitly assume identical length for vector of losses, we overcome this
inconvenient by using two different re-sampling techniques: bootstrapping and
an uniformly pairwise random extraction. Another important characteristic of
these data is the strong non-normality suggested by the skewness and the kurtosis
coefficients. Data are characterized by a strong right asymmetry since the mean
is larger than the median for both vectors. This behaviour is typical in loss data
analysis and has been mentioned by many authors [13, 10].

The numerical exercises presented below consists of two cases: the first one
where the dependence structure between the two lines is removed by the simula-
tion procedure and in the second one a strong dependence structure between losses
is artificially created. The aim of these two scenarios is checking the performance
of the allocations principles when two extreme situations might happen.
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Table 4: Case I. Capital allocation based on different principles

HAP CAP Overbeck II
X∗ (dat1.boot) 62953.00 72497.53 66070.96
Y∗ (dat2.boot) 12620.96 3076.43 9503.00
Total 75573.96 75573.96 75573.96

5.1. Case I: Lack of dependence structure
In this subsection, we assess the performance of allocation principles we are

interested in when losses exhibit a low degree of linear dependence, this means
that the correlation coefficient between the losses is close enough to zero.

Let X and Y be vectors consisting of 1000 and 400 observations on individual
losses, moreover Public data risk no. 1 is now denoted by X and Public data
risk no. 2 is denoted by Y . We will estimate risk using a Montecarlo simulation
method as follows

1. Draw 1000 observations from X and 400 from Y using re-sampling with
replacement and obtain X1 and Y1.

2. Generate x∗1 =
∑1000

i=1 X1,i and y∗1 =
∑400

i=1 Y1,i.
3. Repeat steps 1) and 2) 10000 times to obtain two vectors of equal lengths:

X∗ and Y∗ with X∗ = {x∗i }
10000
i=1 and Y∗ = {y∗i }

10000
i=1 .

Once we have X∗ and Y∗, we knowthe distribution of losses in each unit, i.e
risk no. 1 and risk no. 2, respectively. We can now compute the allocations based
on the principles previously discussed.

Summarizing we generate for both vectors of losses 10000 replications of size
1000 and 400 for Public data risk no. 1 and for Public data risk no. 2, respec-
tively in order to obtain two vectors of length 10000 over which we can apply the
allocation principle we are interested in.

An aggregate capital amount of 50 416.738 monetary units would be enough
for facing the total loss for this particular sample comprised by X and Y (Public
data risk no. 1 and Public data risk no. 2, respectively). Nevertheless, in order to
guarantee a coverage even when large deviations might occur we use the empirical
VaR99(S ) = 75 573.96 that ensures 99% coverage of potential losses and this
is why we set the exogenous capital to be this value. Aggregate capital to be
allocated is 75 573.96 monetary units.

8This aggregate capital comes from summing 42059.41 and 8357.32, see row labelled Sum in
Table 3
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Table 4 shows the allocated capital to each vector of losses based on different
capital allocation principles, these results show the amount of capital to be set
aside for each risk source. Note that Haircut allocation principle (HAP) boils
down to a simple proportion when there is not any dependence structure (in a
linear sense) between the losses, this happens when the correlation coefficient
between X∗ and Y∗ is close to zero and in this particular case such correlation is
≈ 0.00014, therefore results obtained from HAP will be identical to those obtained
using:

Ki =
K∑n

i=1 Xi
Xi, (37)

recalling the fact that
∑n

i=1 Xi = S , this “simple proportional” allocation principle
(SPA) reduces to (K/S )Xi. When K = 1 and multiplying the result by 100 gives
us the percentage of Xi as a portion of the aggregate loss S as it is shown in Table
5.

According to Table 3 the losses seem to be non-normal, therefore both Haircut
and Overbeck type II allocations are computed using the normal and the t-student
distribution, for the t-student we used several degrees of freedom and results do
not differ from those ones reported when using a normal distribution, so in Table
4 only normal results are reported.

In order to assess how well the allocations fit, we now calculate the proportions
of capital to be set aside instead of the amount of capital, we reach this goal by
choosing K = 1 and the new results are reported in Table 5.

As it was expected, the Haircut allocation principle is a good choice since
it does not take into account the dependence structure and since the correlation
between X∗ and Y∗ is almost zero the best choice for this case is using (37) as
the allocation principle, because its results are the a good enough approximation
for HAP and its calculation is enormously simplified, furthermore it does not rely
on any distributional assumption. Table 5 shows how the approximation to HAP
using (37) performs compared to HAP results.

Table 5: Case I. Proportions of capital allocation based on different principles

SPA HAP CAP Overbeck II
dat1.boot 0.8344 0.833 0.9593 0.8743
dat2.boot 0.1656 0.167 0.0407 0.1257

In Table 5 there is an additional column: SPA which is the approximation to
the HAP when correlation tends to zero, we present this information in order to
compare the proportions based on each principle. We can see that HAP is iden-
tical to SPA, nevertheless the Covariance allocation principle overestimates the
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contribution of the first vector and underestimates the second one in a stronger
way than Overbeck II does. In a rough sense we can see that in absence of cor-
relation between losses, the estimates of the Covariance allocation principle are
more biased than those of Overbeck II.

Clearly in this part of the exercise we conclude that Covariance allocation
principle performs the worst compared to the other two principles.

In the next section we introduce a strong dependence structure in order to
assess the performance of the allocations which account for correlation among
losses.

5.2. Case II: Strong dependence structure
This section can be seen as the counterpart of the previous one as now we go

to the other extreme case where a strong dependence framework is involved.
In order to create two vectors of losses strongly correlated we base the sam-

pling scheme on quantiles-based extractions, this means for each probability pi

with i = 1, . . . , 10000, which is common for both vectors X and Y , recall that
X is the label for Public data risk no. 1 and Y is the label for Public data risk
no. 2, we take the value located at quantile given by F−1

X (pi) and F−1
Y (pi), each pi

was randomly drawn from a U(0, 1), to make this point clear, we go through the
following steps:

1. Draw randomly 10000 values from a U(0, 1) for probabilities such that p1

is one realization of U(0, 1), p2 is another, and so on until p10000.
2. Generate W and Z such that both are vectors of dimension 10000×1 holding

F−1
X (pi) and F−1

Y (pi).
3. Constructing W and Z this way guarantees that when we have a small value

for W we also have a small value for Z and when we have a large for one
W we also have a large one for Z. We store W and Z into a matrix M of
dimension 10000 × 2 so that W and Z are now matched (pairwise).

4. Resample row-wise with replacement from M and draw 10000 pairs of ob-
servations, sum them colwise and get m1 which is a 1 × 2 vector, repeat this
step 10000 times in order to get mi with i = 1, . . . , 10000.

5. The data set we are going to work with is the matrix M∗ consisting of the
colwise concatenation of mi with i = 1, . . . , 10000. M∗ should look like:

M∗ =


m1,1 m1,2
...

...
m10000,1 m10000,2


6. We call the first column of M∗ as X′ and the second one is called Y ′ where X′

is the resampled observations of the transfer mistakes (Public data risk no.
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1) and Y ′ is the resampled associated to the fraudulent transactions (Public
data risk no. 2). Here the apostrophe does not mean transpose, it is just a
way to name X and Y in order to distinguish them from the originals X and
Y .

Given that we suffer from different lengths for vectors of losses, we base this
part of the exercise on a resampling technique using a uniform distribution as de-
scribed above, this consists of generating 10000 random numbers from a uniform
distribution, U(0, 1), then we use this numbers to extract the empirical quantiles
from each vectors, this way we obtain two vector of length 10000 with a strong
dependence structure since each time we draw a “small” value from the first vec-
tor we also get a “small” value from the second one, the same happens with “big”
values, this is because we are using the 10000 uniform number as index for the
inverse distribution function to retrieve those numbers.

The correlation coefficient enrolled in this case is ≈ 0.8875, this is the correla-
tion between X′ and Y ′, which is the “strong” dependence structure giving name
to this section.

Following the same idea from the previous section, we consider the total cap-
ital to be allocated as exogenously determined and taken as given, so we consider
this capital to be the empirical Value at Risk at 99% which is 628 724.6 monetary
units.

Table 6: Case II. Capital allocation based on different principles

HAP CAP Overbeck II
X′ 412897.2 464021.7 414842.6
Y ′ 215827.3 164702.9 213882.0
Total 628724.6 628724.6 628724.6

Table 6 presents the total capital and the amounts to be allocated to each busi-
ness units. Note that the first business unit, called X′ is again the riskiest one, so
more capital is allocated to it. One important point, when linear dependence be-
tween these two business unit becomes higher, is that all allocation principles are
very close to each other, we were aware of this fact for both CAP and Overbeck
II since they takes into account the dependence structure. Looking at the Hair-
cut allocation principle (HAP) we can see that when correlation between losses
is close to one then its results quietly differ from those obtained with (37), it is
clearly seen since now risks are dependent each other and this is the key reason
why allocations based on (the approximation to HAP) surely leads us to mislead-
ing allocations. Note that approximation provided by (37), when correlation is
high, becomes biased.
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Table 7: Case II. Proportions of capital allocation based on different principles

SPA HAP CAP OverbeckII
X′ 0.6503 0.6567 0.7380 0.6598
Y ′ 0.3497 0.3433 0.2620 0.3402

In terms of proportions, Table 7 gives a picture of how the principles distribute
the total capital between the business units. The first column represents the results
using (37), this would be the allocation if correlation between risk sources were
zero, in this case the optimal distribution of the total capital should be 65.03%
allocated to the first business line (bank transfer mistakes) and 34.97% to the
loss caused by fraudulent transactions. Since correlation between risk sources is
0.8910, then allocation based on (37) is biased, so principles that includes the
linear dependence in its calculations are needed.

In spite of the fact that HAP is based on the idea of measuring stand-alone
losses using a VaR (normal VaR in this case) it performs well enough even if the
correlation is high, but one has to have in mind that VaR is not a coherent risk
measure so in this case it is better off using a coherent risk measure for capital
allocation, from this point we can choose either Covariance allocation principle
or Overbeck type II allocation principle, but in practice HAP and CAP results are
not so different.

6. Conclusions and Future Research

In this study we present the allocation problem and based on [16] we provide
explicit formulation for Ki when using different specifications for business unit
driven principles as well as aggregate portfolio driven allocations.

The numerical exercise carried out shows that the configuration of the alloca-
tions depends on the degree of linear dependence. Haircut allocation principle,
even being a principle based on a non-coherent risk measure, experiences a good
performance and it is less affected by the “correlation effect” (changes in the cor-
relations). Haircut allocations are very similar to those suggested by Overbeck
type II principle when correlation is high, this confirms the good performance of
Haircut allocation principle.

We conclude that failure to account for correlation may lead to risk managing
practices that are unfair to the units contributing to risk. An example using data
from the banking sector, shows that operational risk evaluation and allocation of
costs due to this sort of events depends significantly on the choice of the allocation
principle.
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