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Abstract

On the domain of general assignment games (with possible reservation prices) the core is axiom-
atized as the unique solution satisfying two consistency principles: projection consistency and
derived consistency. Also, an axiomatic characterization of the nucleolus is given as the unique
solution that satisfies derived consistency and equal maximum complaint between groups. As a
consequence, we obtain a geometric characterization of the nucleolus. Maschler et al. (1979)
provide a geometrical characterization for the intersection of the kernel and the core of a coali-
tional game, showing that those allocations that lie in both sets are always the midpoint of certain
bargaining range between each pair of players. In the case of the assignment game, this means
that the kernel can be determined as those core allocations where the maximum amount, that
can be transferred without getting outside the core, from one agent to his/her optimally matched
partner equals the maximum amount that he/she can receive from this partner, also remaining
inside the core. We now prove that the nucleolus of the assignment game can be characterized
by requiring this bisection property be satisfied not only for optimally matched pairs but also for
optimally matched coalitions.

Key words:
cooperative games, assignment game, core, nucleolus

1. Introduction

The assignment game is a coalitional game introduced by Shapley and Shubik (1972) to
analyze a two-sided market situation. In this market there exists a finite set of sellers, each one
of them with an indivisible object on sell, and a finite set of buyers willing to buy at most one
object each. Objects are distinct and buyers may value them differently. From these valuations
we obtain a non-negative matrix A that gives the profit ai j that each buyer-seller pair (i, j) can
attain if they interchange the object. The worth of each coalition is the total profit that can be
obtained by optimally matching buyers and sellers in the coalition.

Cooperative game theory analyzes how the agents can share the profit of an optimal pairing,
taking into account the worth of all possible coalitions. The most studied solution concept in

1The authors acknowledge the support from research grants ECO2008-02344/ECON (Ministerio de Ciencia e Inno-
vación and FEDER), 2009SGR900 and 2009SGR960 (Generalitat de Catalunya).
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this model has been the core, the set of efficient allocations that are coalitionally stable (each
coalition gets at least its worth). Shapley and Shubik prove that the core of the assignment game
is non-empty and coincides with the set of dual optimal solutions of the assignment optimization
problem that solves the worth of the grand coalition. As a consequence, the core of the assign-
ment game coincides with the set of competitive equilibria and it can be described just in terms
of the assignment matrix, with no need of the coalitional worths.

Other solutions have been considered for the assignment game: the kernel or symmetrically
pairwise bargained allocations (Rochford, 1984), the tau value (Núñez and Rafels, 2002), the
Shapley value (Hoffmann and Sudhölter, 2007) and the von Neumann-Morgenstern stable sets
(Núñez and Rafels, 2009). However, as far as we know, axiomatic characterizations of solutions
in this framework have been focused on the core. A first axiomatization of the core of the
assignment game is due to Sasaki (1995).

Since our purpose is also axiomatization and most of the known solutions are covariant with
respect to strategic equivalence, it is desirable to work with a class of games that is closed un-
der strategic equivalence. To this end we consider assignment games with reservation prices
(when an agent is unmatched the profit she generates is her reservation price) and where the as-
signment matrix A is not constrained to be non-negative. In this more general framework Toda
(2005) provides two axiomatizations of the core of the assignment game in terms of Pareto op-
timality, consistency, pairwise monotonicity and either individual monotonicity or population
monotonicity. Here consistency refers to projection consistency and requires that, for each so-
lution outcome, the same outcome should be recommended for each subgame that results when
some agents leave with what they have received.

Davis and Maschler (1965) formulate a consistency axiom on the domain of general coali-
tional games, which is called max-consistency by Thomson (2003). It requires that for each
solution outcome, if some agents leave the game and the remaining coalitions reevaluate their
worth by considering the maximum profit they could obtain with some of the outside agents,
after paying them according to the solution, the same outcome should be recommended to this
max-reduced game. On the domain of coalitional games, solutions such as the core, the kernel
and the nucleolus satisfy max-consistency (Peleg, 1986; Sobolev, 1975).

The max-reduced game of an assignment game, even if the leaving agents are paid according
to a core element, need not be another assignment game since superadditivity may fail. However,
its superadditive cover is what Owen (1992) defines as the derived assignment game and it turns
out to be a general assignment game with reservation prices and arbitrary matrix. Thus, for
general assignment games, max-consistency is equivalent to derived consistency. Toda (2003)
gives characterizations of the core and the kernel on the domain of general assignment games,
by means of derived consistency, that parallel the axiomatizations of Peleg (1986) for the core
and the kernel of coalitional games.

In the present paper we also use derived consistency to give, on the domain of general assign-
ment games, an axiomatic characterization of the nucleolus and a new axiomatization of the core.
The core of the assignment game is axiomatized only by means of projection consistency and
derived consistency. The nucleolus is the unique solution on the domain of general assignment
games that satisfies derived consistency and equal maximum complaint between groups. This
second axiom requieres that at each solution outcome, the maximum over individual excesses
of buyers equals the maximum over individual excesses of sellers, and it is satisfied by other
solutions like for instance the tau value.

As a by-product of the axiomatic characterization of the nucleolus we obtain a geometric
characterization. Maschler et al. (1979) provide a geometrical characterization for the intersec-
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tion of the kernel and the core of a coalitional game, showing that those allocations that lie in
both sets are always the midpoint of certain bargaining range between each pair of players. In
the case of the assignment game, this means that the kernel can be determined as those core
allocations where the maximum amount, that can be transferred without getting outside the core,
from one agent to his/her optimally matched partner equals the maximum amount that he/she can
receive from this partner, also remaining inside the core. We now prove that the nucleolus of the
assignment game can be characterized by requiring this bisection property be satisfied not only
for optimally matched pairs but also for optimally matched coalitions.

Preliminaries on coalitional games and assignment games are in Section 2. Section 3 in-
troduces the derived-game consistency and proves the axiomatic characterization of the core in
terms of the two consistency properties. Section 4 is devoted to the axiomatic characterization of
the nucleolus. Section 5 concludes with the geometric characterization of the nucleolus.

2. Preliminaries

Let N be an arbitrary non-empty finite set of players, and 2N the set of all coalitions of N.
A transferable utility cooperative game (a game, for short) is a pair (N, v), where v : 2N −→ R,
with v(∅) = 0, is the characteristic function which assigns to each coalition S the worth v(S ) it
can attain. If no confusion arises, a game (N, v) is denoted by simply v. For any coalition S ⊆ N,
N \ S = {i ∈ N | i < S }. By |S | we denote the cardinality of the coalition S ⊆ N. A game (N, v) is
zero-monotonic if for any pair of coalitions S ,T , S ⊂ T ⊆ N, it holds v(S )+

∑
i∈T\S v({i}) ≤ v(T ).

Let (N, v) and (N,w) be two games on the same player set, then v ≤ w if and only if v(S ) ≤ w(S )
for all S ⊆ N. A game is superadditive if v(S ∪ T ) ≥ v(S ) + v(T ) for all disjoint S ,T ⊆ N. The
superadditive cover of (N, v) is the minimum superadditive game (N,w) such that v ≤ w. Two
games (N, v) and (N,w) are strategically equivalent if and only if there exist α > 0 and d ∈ RN

such that w(S ) = αv(S ) +
∑

i∈S di. Given a vector d ∈ RN , the game (N, v) with characteristic
function v(S ) =

∑
i∈S di is the modular game generated by d.

Given a game (N, v), a payoff vector is x ∈ RN , where xi stands for the payoff to player
i ∈ N. The restriction of a payoff vector to a coalition S is denoted by x|S . By the standard
notation, x(S ) =

∑
i∈S xi if S , ∅, and x(∅) = 0. Given x, y ∈ RN , we write y ≥ x if yi ≥ xi for

all i ∈ N, and y > x whenever y ≥ x and there exists i ∈ N such that yi > xi. An imputation
is a payoff vector x that is efficient, x(N) = v(N), and individually rational, xi ≥ v({i}) for all
i ∈ N. The set of all imputations of a game (N, v) is denoted by I(N, v), and when I(N, v) , ∅
the game is said to be essential. The core, denoted by C(N, v), is the set of imputations that
are efficient and coalitionally rational, that is, x(S ) ≥ v(S ) for all S ⊆ N. A game with a
non-empty core is called balanced. Given a balanced game, a well-known single–valued core
selection is the nucleolus (Schmeidler, 1969). The excess of a coalition S at an imputation
x ∈ I(N, v) is e(S , x) = v(S ) − x(S ). Let θ(x) ∈ R2n−2 be the vector of excesses of all coalitions
(different from the grand coalition and the empty set) at x , arranged in a nonincreasing order.
Then, the nucleolus of the game (N, v) is the imputation η(v) that minimizes θ(x) with respect
to the lexicographic order over the set of imputations: θ(η(v)) ≤Lex θ(x) for all x ∈ I(N, v) .
This means that, for all x ∈ I(N, v) , either θ(η(v)) = θ(x) or θ(η(v))1 < θ(x)1 or there exists
k ∈ {1, 2, . . . , 2n − 3} such that θ(η(v))i = θ(x)i for all 1 ≤ i ≤ k and θ(η(v))k+1 < θ(x)k+1 .

It is well known that if (N, v) is balanced and its superadditive cover (N,w) satisfies w(N) =

v(N), then C(N,w) = C(N, v). The analogous property is proved in Miquel and Núñez (2011) for
the nucleolus: if a balanced game has the same efficiency level as its superadditive cover, then
the nucleolus of both games coincide.

3



2.1. The assignment game

The assignment game is a coalitional form game that represents a two-sided market situation.
An assignment market is a quintuple γ = (M,M′, A, p, q) where M and M′ are two disjoint finite
sets (the two sides of a market) of cardinality |M| = m and |M′| = m′, A = (ai j)(i, j)∈M×M′ is a
real m × m′ matrix, and the vectors p ∈ Rm and q ∈ Rm′ are the reservation prices of buyers and
sellers respectively. For all (i, j) ∈ M × M′, the real number ai j denotes the join profit obtained
by the pair (i, j) if they trade.

If S ⊆ M and T ⊆ M′, a matching µ between S and T is a bijection from a subset Dom(µ)
of S , that we name the domain of µ, and a subset Im(µ) of T , that we name the image of µ.
If i ∈ S and j ∈ T are related by µ we indistinctly write (i, j) ∈ µ, j = µ(i) or i = µ−1( j).
We denote by M(S ,T ) the set of matchings between S and T . Given an assignment market
γ = (M,M′, A, p, q), for all S ⊆ M, T ⊆ M′ and µ ∈ M(M,M′) we write

v(S ,T ; µ) =
∑

i∈Dom(µ)

aiµ(i) +
∑

i∈S \Dom(µ)

pi +
∑

j∈T\Im(µ)

q j,

with the convention that any summation under an empty set of indices is zero.
A matching µ ∈ M(M,M′) is optimal for the assignment market γ = (M,M′, A, p, q) if

for all µ′ ∈ M(M,M′) it holds v(M,M′; µ) ≥ v(M,M′; µ′). The set of optimal matchings for the
assignment market γ is denoted byM∗γ(M,M′). Similarly,M(S ,T ) andM∗γ(S ,T ) denote respec-
tively the set of matchings and optimal matchings of the submarket γ′ = (S ,T, A|S×T , p|S , q|T ),
where A|S×T is the submatrix of A formed by rows corresponding to buyers in S and columns
corresponding to sellers in T .

To any assignment market γ = (M,M′, A, p, q), a game in coalitional form (assignment game)
is associated with player set M ∪ M′ and characteristic function wγ defined as follows: for all
S ⊆ M and T ⊆ M′,

wγ(S ∪ T ) = max {v(S ,T ; µ) | µ ∈ M(S ,T ) } .

This assignment game, that allows for agents’ reservation prices, is a generalization of the clas-
sical assignment game of Shapley and Shubik (1972) (that is, an assignment game with non-
negative matrix and null reservation prices) and has been considered for instance in Owen (1992)
and Toda (2005). Given an assignment market γ, with some abuse of notation we sometimes also
denote by γ its associated coalitional game. We denote by ΓAG the set of assignment games. Fol-
lowing Owen (1992), we allow that one side of the market could be empty.2 Unlike the set of
Shapley and Shubik’s classical assignment games, ΓAG is closed by strategic equivalence. In fact,
it can be shown that every assignment game is strategically equivalent to a classical assignment
game in the sense of Shapley and Shubik.3 As a consequence, Shapley and Shubik’s results on
the core of the assignment game extend to ΓAG.

The core of the assignment game is always nonempty and it is formed by those efficient
payoff vectors (u, v) ∈ RM ×RM′ that satisfy coalitional rationality for mixed-pair coalitions and

2If γ = (M, p), then the associated assignment game (M,wγ) is the modular game generated by the vector of reser-
vation prices p ∈ RM , that is, wγ(S ) =

∑
i∈S pi, for all S ⊆ M. Similarly, if γ = (M′, q), then wγ(S ) =

∑
i∈S qi, for all

S ⊆ M′.
3Let γ = (M,M′, A, p, q) be an assignment market where A = (ai j)(i, j)∈M×M′ , p ∈ Rm, q ∈ Rm′ , and let γ̃ = (M,M′, Ã)

be an assignment market with null reservation prices and matrix Ã = (ãi j)(i, j)∈M×M′ given by ãi j := max{0, ai j − pi − q j},
for all (i, j) ∈ M × M′. Then, as the reader can easily check, wγ(S ∪ T ) = wγ̃(S ∪ T ) +

∑
i∈S pi +

∑
j∈T q j, for all S ⊆ M

and T ⊆ M′.
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one-player coalitions:

C(M ∪ M′,wγ) =

(u, v) ∈ RM × RM′

∣∣∣∣∣∣∣∣
∑

i∈M ui +
∑

j∈M′ v j = wγ(M ∪ M′),
ui + v j ≥ ai j for all (i, j) ∈ M × M′,
ui ≥ pi for all i ∈ M, v j ≥ q j for all j ∈ M′.


If µ ∈ M∗γ(M,M′), any core allocation (u, v) ∈ RM × RM′ satisfies

ui + v j = ai j for all (i, j) ∈ µ, (1)

ui = pi for all i ∈ M \ Dom(µ), (2)

v j = q j for all j ∈ M′ \ Im(µ). (3)

There exists a buyer-optimal core allocation, (ūγ, v
¯
γ), where each buyer attains her maximum

core payoff and each seller his minimum one, and a seller-optimal core allocation, (u
¯
γ, v̄γ), with

the converse situation. By Roth and Sotomayor (1990),

ūγi = wγ(M ∪ M′) − wγ((M ∪ M′) \ {i}) f or all i ∈ M, (4)

and
v̄γj = wγ(M ∪ M′) − wγ((M ∪ M′) \ { j}) f or all j ∈ M′. (5)

The fair division point, τ
(
wγ

)
, is defined by Thompson (1981) as the midpoint between these

two extreme core allocations:

τ
(
wγ

)
=

1
2

(ūγ, v
¯
γ) +

1
2

(u
¯
γ, v̄γ). (6)

3. Derived consistency and another axiomatization of the core of the assignment game

We begin introducing the concept of a solution on the domain of assignment games. The next
definitions follow Toda (2005).

Definition 3.1. Let γ = (M,M′, A, p, q) ∈ ΓAG. A payoff vector (u, v) ∈ RM × RM′ is feasible if
there exists µ ∈ M(M,M′) such that

(i) ui = pi for all i ∈ M \ Dom(µ) , v j = q j for all j ∈ M′ \ Im(µ), and

(ii) ui + v j = ai j for all (i, j) ∈ µ.

In the above definition, µ is said to be compatible with (u, v).

Definition 3.2. A solution on ΓAG is a correspondence σ that associates a nonempty subset of
feasible payoff vectors with each γ ∈ ΓAG.

Consistency is a standard property used to analyze the behavior of solutions with respect
to reduction of population.4 To introduce consistency, first we need to define the concept of a
reduced game. The terminology is taken from Thomson (2006).

4For a comprehensive survey on the consistency principles, the reader is referred to Thomson (2006).
5



Definition 3.3. Let (N, v) be a game, x ∈ RN and ∅ , T ⊂ N.

1. The max reduced game (Davis and Maschler, 1965) relative to T at x is the game
(
T, rDM

T,x (v)
)

defined by

rDM
T,x (v)(S ) =


v(N) − x(N \ T ) if S = T,
maxQ⊆N\T {v(S ∪ Q) − x(Q)} if ∅ , S ⊂ T,
0 if S = ∅.

(7)

2. The projected reduced game relative to T at x is the game
(
T, rT,x(v)

)
defined by

rT,x(v)(S ) =

{
v(N) − x(N \ T ) if S = T,
v(S ) if S ⊂ T. (8)

Let σ be a solution on the domain of coalitional games Γ. We say that σ satisfies

• max consistency if for all (N, v) ∈ Γ, all ∅ , T ⊂ N and all x ∈ σ (N, v), then
(
T, rDM

T,x (v)
)
∈

Γ and x|T ∈ σ
(
T, rDM

T,x (v)
)
.

• projection consistency if for all (N, v) ∈ Γ, all ∅ , T ⊂ N and all x ∈ σ (N, v)) , then(
T, rT,x(v) ∈ Γ and x|T ∈ σ

(
T, rT,x(v).

Peleg (1986) uses max consistency to characterize the core on the domain of all coalitional form
games. The nucleolus is known to be max consistent in the class of zero-monotonic games
(Potters, 1991). The core is also projection consistent on the domain of coalitional games.

On the domain of assignment games, it is immediate to notice that given a feasible payoff

vector (u, v), the projection reduced game may not be an assignment game. Because of this, Toda
(2005) slightly modifies the definition of projection reduced game for the class of assignment
games.

Definition 3.4. Let γ = (M,M′, A, p, q) be an assignment market, x = (u, v) ∈ RM ×RM′ feasible
and µ a matchimg compatible with x. Let ∅ , T ⊆ M ∪ M′ such that µ(M ∩ T ) = M′ ∩ T. The
projection reduced assignment market (Toda, 2005) relative to T at x is

γ′ =
(
T ∩ M,T ∩ M′, A|(T∩M)×(T∩M′), p|T∩M , q|T∩M′

)
.

The projection reduced assignment game relative to T at x is the coalitional game associated
to the projection reduced assignment market γ′ and it will be denoted by

(
T, prT,x(wγ)

)
.

A solution σ on ΓAG satisfies

• projection consistency if for all γ = (M,M′, A, p, q) ∈ ΓAG, all ∅ , T ⊂ M ∪ M′ and all
x ∈ σ

(
M ∪ M′,wγ

)
, then

(
T, prT,x(wγ)

)
∈ ΓAG and x|T ∈ σ

(
T, prT,x(wγ)

)
.

It is straightforward to see that the core is projection consistent on the domain of assignment
games.

As for max consistency, it turns out again that the max reduced game of an assignment game
may not belong to the class of assignment games. To overcome this drawback, we introduce
Owen’s derived game.
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Definition 3.5. Let γ = (M,M′, A, p, q) be an assignment market, ∅ , T ⊂ M ∪ M′, and
x = (u, v) ∈ RM × RM′ . The derived assignment market (Owen, 1992) relative to T at x is
γ̂ =

(
T ∩ M,T ∩ M′, A|(T∩M)×(T∩M′), p̂, q̂

)
, where

p̂i = max
{

pi, max
j∈M′\T

{ai j − v j}

}
, for all i ∈ T ∩ M,

q̂ j = max
{

q j, max
i∈M\T

{ai j − ui}

}
, for all j ∈ T ∩ M′.

The derived assignment game relative to T at x is the coalitional game associated to the derived
assignment market γ̂ and it will be denoted by

(
T, dT,x(wγ)

)
.

The main result in Owen (1992) states that, if x ∈ C(M ∪ M′,wγ), then the derived game(
T, dT,x(wγ)

)
is the superadditive cover of the max reduced game

(
T, rDM

T,x (wγ)
)
.5

Next we define consistency with respect to this derived game. A solution σ on ΓAG satisfies

• derived consistency if for all γ = (M,M′, A, p, q) ∈ ΓAG, all ∅ , T ⊂ M ∪ M′ and all
x ∈ σ

(
M ∪ M′,wγ

)
, then

(
T, dT,x(wγ)

)
∈ ΓAG and x|T ∈ σ

(
T, dT,x(wγ)

)
.

The reader will easily check that the core satisfies derived consistency on the domain of assign-
ment games.

Besides the above consistency axioms, a desirable property for a solution on a class of bal-
anced games, as it is the case of assignment games, is that it lies in the core. A solution σ on ΓAG
satisfies

• core selection if for all γ = (M,M′, A, p, q) ∈ ΓAG, σ(M ∪ M′,wγ) ⊆ C(M ∪ M′,wγ).

We first prove that, on the domain ΓAG, any solution satisfying derived consistency selects
core elements.

Proposition 3.1. On the domain of assignment games, derived consistency implies core selec-
tion.

Proof. Let σ be a solution on ΓAG satisfying derived consistency. Let it be γ = (M,M′, A, p, q)
and z = (u, v) ∈ σ(M ∪ M′,wγ). If M , ∅ and M′ = ∅, then the game (M,wγ) is the modular
game generated by the vector p ∈ RM . Feasibility of the solution (Definition 3.1) implies z = p
and thus C(M,wγ) = {z}. Similarly, if M = ∅ and M′ , ∅, then z = q and C(M′,wγ) = {z}.

Assume now that M , ∅ and M′ , ∅. For all i ∈ M consider the derived game relative
to T = {i} at z. By derived consistency, ui ∈ σ({i}, d{i},z(wγ)) and by Definitions 3.1 and 3.2,
ui = p̂i = max{pi,max j∈M′ {ai j − v j}}, which implies that, for all i ∈ M, ui ≥ pi and ui + v j ≥ ai j

for all j ∈ M′. Similarly, for all j ∈ M′ let us consider the derived game relative to T = { j}
at z. Again by derived consistency, v j ∈ σ({ j}, dT,z(wγ)) and by Definitions 3.1 and 3.2, v j =

q̂ j = max{q j,maxi∈M{ai j − ui}} which implies v j ≥ q j for all j ∈ M′. Hence, z = (u, v) satisfies
coalitional rationality for all mixed-pair and individual coalitions. It only remains to check its
efficiency.

5See Owen (1992) and Thomson (2006) for an interpretation of the derived game.
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Let µ ∈ M∗γ(M,M′) be an optimal matching and µ′ ∈ M(M,M′) another matching that is
compatible with z = (u, v). Notice that such µ′ exists since z = (u, v) is feasible by Definition 3.2.
Then,∑
i∈Dom(µ)

aiµ(i) +
∑

i∈M\Dom(µ)

pi +
∑

j∈M′\Im(µ)

q j ≤
∑

i∈Dom(µ)

(
ui + vµ(i)

)
+

∑
i∈M\Dom(µ)

ui +
∑

j∈M′\Im(µ)

v j

=
∑

i∈Dom(µ′)

(
ui + vµ′(i)

)
+

∑
i∈M\Dom(µ′)

ui +
∑

j∈M′\Im(µ′)

v j

=
∑

i∈Dom(µ′)

aiµ′(i) +
∑

i∈M\Dom(µ′)

pi +
∑

j∈M′\Im(µ′)

q j.

By optimality of µ, the above inequality implies∑
i∈Dom(µ)

aiµ(i) +
∑

i∈M\Dom(µ)

pi +
∑

j∈M′\Im(µ)

q j =
∑

i∈Dom(µ′)

aiµ′(i) +
∑

i∈M\Dom(µ′)

pi +
∑

j∈M′\Im(µ′)

q j

and thus
∑

i∈M ui +
∑

j∈M′ v j = wγ(M ∪ M′) which concludes the proof of z = (u, v) ∈ C(M ∪
M′,wγ)).

Making use of the above proposition, we characterize the core on the domain of assignment
games only in terms of two consistency axioms.

Theorem 3.1. On the domain of assignment games, the only solution satisfying derived consis-
tency and projection consistency is the core.

Proof. It only remains to prove uniqueness. Let σ be a solution on ΓAG satisfying derived consis-
tency and projection consistency. By Proposition 3.1, σ is a subcorrespondence of the core. And
from Lemma 3.1 in Toda (2005), every subcorrespondence of the core that satisfies projection
consistency coincides with the core.

4. An axiomatic characterization of the nucleolus of the assignment game

In this section, we characterize axiomatically the nucleolus by means of two axioms: derived
consistency with respect to the reduced game introduced by Owen (1992), and equal maximum
complaint between groups. As a by-product, we characterize the locus of the nucleolus within
the core.

Due to the bilateral feature of the market, we look for an axiom that guarantees some stability
between groups. A not much demanding property is the equal maximum complaint between both
sides of the market that requires that the individual excess of the most dissatisfied buyer (seller)
is no less that the individual excess of the most dissatisfied seller (buyer).

A solution σ on ΓAG satisfies

• equal maximum complaint between groups if for all γ = (M,M′, A, p, q) ∈ ΓAG with
|M| = |M′| and all x ∈ σ(M ∪ M′,wγ), then

max
i∈M
{e({i}, x)} = max

j∈M′
{e({ j}, x)}. (9)

Next we prove that the nucleolus satisfies derived consistency and equal maximum complaint
between groups.
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Proposition 4.1. On the domain of assignment games, the nucleolus satisfies derived consis-
tency.

Proof. Let it be γ = (M,M′, A, p, q), ∅ , T ⊂ M ∪ M′ and let η = η(wγ) be the nucleolus of the
assignment game (M∪M′,wγ). Let

(
T, rDM

T,η (wγ)
)

and
(
T, dT,η(wγ)

)
be the max reduced game and

the derived game relative to T at η, respectively. By Potters (1991) we know that the nucleolus
of the assignment game satisfies η|T = η

(
rDM

T,η (wγ)
)
.6 Since η ∈ C(M ∪ M′,wγ), by Owen (1992)

we know that the derived game (T, dT,η(wγ)) is the superadditive cover of the max reduced game.
Moreover, it is known from Miquel and Núñez (2011) that if a balanced coalitional game and its
superadditive cover have the same efficiency level, then they have the same nucleolus. Thus, we
only need to prove that rDM

T,η (wγ)(T ) = dT,η(wγ)(T ) to obtain η|T = η
(
dT,η(wγ)

)
.

Since (T, dT,η(wγ)) is the superadditive cover of
(
T, rDM

T,η (wγ)
)
, rDM

T,η (wγ)(T ) ≤ dT,η(wγ)(T ).
To see the converse inequality notice the following: for all i ∈ T ∩ M, it follows from (7) that
rDM

T,η (wγ)({i}) ≥ wγ({i}) = pi and also rDM
T,η (wγ)({i}) = maxQ⊆(M∪M′)\T

{
wγ({i}) ∪ Q) − η(Q)

}
≥

max j∈M′\T

{
ai j − η j

}
. Hence,

rDM
T,η (wγ)({i}) ≥ max

{
pi, max

j∈M′\T
{ai j − η j}

}
= p̂i. (10)

Similarly, for all j ∈ T ∩ M′,
rDM

T,η (wγ)({ j}) ≥ q̂ j. (11)

Now, let µ ∈ M(T ∩ M,T ∩ M′) be an optimal matching for the derived assignment game
(T, dT,η(wγ)). Then,

dT,η(wγ)(T ) =
∑

i∈Dom(µ)

aiµ(i) +
∑

i∈(T∩M)\Dom(µ)

p̂i +
∑

j∈(T∩M′)\Im(µ)

q̂ j

≤
∑

i∈Dom(µ)

aiµ(i) +
∑

i∈(T∩M)\Dom(µ)

rDM
T,η (wγ)({i}) +

∑
j∈(T∩M′)\Im(µ)

rDM
T,η (wγ)({ j})

≤
∑

i∈Dom(µ)

(
ηi + ηµ(i)

)
+

∑
i∈(T∩M)\Dom(µ)

ηi +
∑

j∈(T∩M′)\Im(µ)

η j

=
∑
k∈T

ηk = rDM
T,η (wγ)(T ),

where the first inequality follows from (10) and (11), the second inequality follows from the fact
that η ∈ C(M ∪ M′,wγ) and η|T ∈ C

(
T, rDM

T,η (wγ)
)
, and the last equality from efficiency of the

nucleolus η|T of the max reduced game.

Proposition 4.2. On the domain of assignment games, the nucleolus satisfies equal maximum
complaint between groups.

Proof. Let it be γ = (M,M′, A, p, q) with |M| = |M′| and let η = η(wγ) be the nucleolus of the
assignment game (M ∪ M′,wγ). Let ε1 = maxi∈M{e({i}, η)}, ε2 = max j∈M′ {e({ j}, η)} and assume,
without loss of generality, that ε1 < ε2. Now define the payoff vectors

(u′, v′) = (η|M − ε1 · eM , η|M′ + ε1 · eM′ ) and (u′′, v′′) = (η|M + ε2 · eM , η|M′ − ε2 · eM′ ), (12)

6However, Owen (1992) provides an example showing that, in general, the max reduced
(
T, rDM

T,η (wγ)
)

need not be an
assignment game.
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where eM = (1, . . . , 1) ∈ RM and eM′ = (1, . . . , 1) ∈ RM′ .
It can be easily checked that (u′, v′), (u′′, v′′) ∈ C(M ∪ M′,wγ). Now take z = (u, v) =

1
2 (u′, v′) + 1

2 (u′′, v′′). By substitution from (12), for all (i, j) ∈ M × M′,

e({i, j}, z) = ai j − ui − v j = ai j −

(
ηi +

1
2

(ε1 − ε2)
)
−

(
η j +

1
2

(ε2 − ε1)
)

= ai j − ηi − η j = e({i, j}, η).

Thus, to lexicographically minimize the vector of ordered excesses we only need to consider
excesses of individual coalitions. First,

max
k∈M∪M′

{e({k}, z)} = max
{
max
k∈M
{pk − uk},max

k∈M′
{qk − vk}

}
= max

{
max
k∈M
{pk − ηk} +

1
2

(ε2 − ε1),max
k∈M′
{qk − ηk} +

1
2

(ε1 − ε2)
}

= max
{
ε1 +

1
2

(ε2 − ε1), ε2 +
1
2

(ε1 − ε2)
}

=
1
2

(ε1 + ε2),

where the second equality follows from (12). Moreover, ε2 = maxk∈M∪M′ {e({k}, η)} since ε1 < ε2.
But then, maxk∈M∪M′ {e({k}, z)} = 1

2 (ε1 + ε2) < ε2 = maxk∈M∪M′ {e({k}, η)}, in contradiction with η
being the nucleolus. Hence, ε1 = ε2 and this concludes the proof.

We are now in disposition to state and prove the axiomatic characterization of the nucleolus.

Theorem 4.1. On the domain of assignment games, the only solution satisfying derived consis-
tency and equal maximum complaint between groups is the nucleolus.

Proof. From Propositions 4.1 and 4.2 we know that the nucleolus satisfies both properties. To
show uniqueness assume there exists a solution σ on ΓAG satisfying derived consistency and
equal maximum complaint between groups.

Let it be γ = (M,M′, A, p, q) and z = (u, v) ∈ σ(M ∪ M′,wγ). From Proposition 3.1, σ
satisfies core selection and thus z ∈ C(M∪M′,wγ). If M , ∅ and M′ = ∅ (or M = ∅ and M′ , ∅)
the assignment game is a modular game generated by p (or q) and from Definition 3.2 we have
z = η. Assume then M , ∅, M′ , ∅ and z , η.

Let µ ∈ M∗γ(M,M′) be an optimal matching. For any ∅ , S ⊆ M such that |S | = |µ(S )|
let us consider the derived game relative to T = S ∪ µ(S ) at z. By derived consistency of σ,
z|T ∈ σ(T, dT,z(wγ)). Since |S | = |µ(S )|, by equal maximum complaint between groups of σ
applied to the derived game (T, dT,z(wγ)), we have

max
i∈S
{e({i}, z)} = max

j∈µ(S )
{e({ j}, z)}, (13)

where e({i}, z) = dT,z(wγ)({i})− zi = p̂i − zi and e({ j}, z) = dT,z(wγ)({ j})− z j = q̂ j − z j, for all i ∈ S
and all j ∈ µ(S ). From the definition of p̂i, we obtain

max
i∈S
{e({i}, z)} = max

i∈S

{
max

{
pi, max

k∈M′\µ(S )
{aik − zk}

}
− zi

}
= max

i∈S
k∈M′\µ(S )

{pi − zi, aik − zi − zk}. (14)

Similarly, making use of the definition of q̂ j,

max
j∈µ(S )
{e({i}, z)} = max

j∈µ(S )
k∈M\S

{q j − z j, ak j − z j − zk}, (15)
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and, as a consequence of (14) and (15), expression (13) is equivalent to

max
i∈S

k∈M′\µ(S )

{pi − zi, aik − zi − zk} = max
j∈µ(S )
k∈M\S

{q j − z j, ak j − z j − zk}, (16)

for all S ⊆ M with |S | = |µ(S )| and all z ∈ σ(M ∪ M′,wγ), being σ a solution satisfying derived
consistency and equal maximum complaint between groups. Since the nucleolus also satisfies
these two axioms, we have

max
i∈S

k∈M′\µ(S )

{pi − ηi, aik − ηi − ηk} = max
j∈µ(S )
k∈M\S

{q j − η j, ak j − η j − ηk}, (17)

for all S ⊆ M with |S | = |µ(S )|. Now, from z , η, either there exists a nonempty coalition S ⊆ M
such that zi > ηi for all i ∈ S and zi ≤ ηi for all i ∈ M \ S , or there exists a nonempty coalition
S ⊆ M such that zi < ηi for all i ∈ S and zi ≥ ηi for all i ∈ M \ S . Let us assume without
loss of generality that the first case holds, since the proof in the second case is analogous. From
z ∈ C(M ∪ M′,wγ) follows z j < η j for all j ∈ µ(S ) and z j ≥ η j for all j ∈ M′ \ µ(S ). Moreover,
all agents in S are matched by µ. Indeed, if i ∈ S \ Dom(µ), from z ∈ C(M ∪ M′,wγ) we have
zi = pi > ηi, in contradiction with the nucleolus being in the core. Then,

max i∈S
j∈M′\µ(S )

{pi − zi, ai j − zi − z j} < max i∈S
j∈M′\µ(S )

{pi − ηi, ai j − ηi − η j}

= max j∈µ(S )
i∈M\S
{q j − η j, ai j − ηi − η j}

< max j∈µ(S )
i∈M\S
{q j − z j, ai j − zi − z j},

(18)

in contradiction with (16). Hence, z = η.

The following examples show that in Theorem 4.1 the axioms are independent:

Example 4.1. (A solution violating equal maximum complaint between groups).
For each γ = (M,M′, A, p, q), let σ1(M ∪ M′,wγ) = C(M ∪ M′,wγ). We already know that the
core satisfies derived consistency on ΓAG. To see that the core does not satisfy equal maximum
complaint between groups, take for instance the assignment market γ = ({1, 2}, {1′, 2′}, A, 0, 0)

where the assignment matrix is A =

(
1 0
0 1

)
. Take the feasible payoff vector z = (uγ, vγ) =

(1, 1; 0, 0) ∈ C(M ∪ M′,wγ). Notice that maxi∈M{e({i}, z)} = −1 , 0 = max j∈M′ {e({ j}, z)}.

Before presenting the next example, let us remark that, equal maximum complaint between
groups could also be interpreted in geometric terms when combined with core selection. Notice
first that saying that solution σ on ΓAG satisfies (9) is equivalent to saying

min
i∈M
{ui − pi} = min

j∈M′
{v j − q j}, (19)

for all x = (u, v) ∈ σ(M ∪ M′,wγ). Suppose now that σ(M ∪ M′,wγ) ⊆ C(M ∪ M′,wγ). For all
S ⊆ M, let the vector eS ∈ RM be defined by (eS )i = 1 for all i ∈ S and (eS )i = 0 for all i ∈ M \S .
The vector eT ∈ RM′ , for all T ⊆ M′, is defined analogously. Take ε1(u, v) = mini∈M{ui − pi}

and notice that ε1(u, v) = max{ε ≥ 0 | (u − ε · eM , v + ε · eM′ ) ∈ C(M ∪ M′,wγ)}. The reason is
that, for all ε ≥ 0, efficiency and coalitional rationality for mixed-pair coalitions holds trivially
for the payoff vector (u− ε · eM , v + ε · eM′ ) and, as long as ε ≤ ε1(u, v), individual rationality also
holds. Similarly, if we write ε2(u, v) = min∈M′ {v j − q j}, we can check that ε2(u, v) = max{ε ≥
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0 | (u + ε · eM , v − ε · eM′ ) ∈ C(M ∪ M′,wγ)}. As a consequence, if σ satisfies core selection,
then for each chosen allocation (u, v) ∈ RM × RM′ , the largest per capita amount that sector M
can transfer to sector M′ without leaving the core equals the largest per capita amount that sector
M′ can transfer to sector M without getting outside the core. This means that core elements
satisfying (9) are at the midpoint of a certain 45-slope range within the core. Next Example 4.2
shows that this bisection property between sectors also holds for the tau value.

Example 4.2. (A solution violating derived consistency).
For each γ = (M,M′, A, p, q), let σ2(M ∪ M′,wγ) = τ(wγ), as defined in (6). Denote τ =

τ(wγ). To check equal maximum complaint between groups suppose |M| = |M′|. Recall that
conditions (9) and (19) are equivalent. If there exists µ ∈ M∗γ(M,M′) such that Dom(µ) , M,
then mini∈M{τi − pi} = min j∈M′ {τ j − q j} = 0. Assume then Dom(µ) = M for all µ ∈ M∗γ(M,M′).
As we have noted before, ε1 = mini∈M{τi − pi} is the largest amount to guarantee that the vector
z =

(
τ|M − ε1 · eM , τ|M′ + ε1 · eM′

)
remains in the core. Equivalently, we could impose zi =

τi − ε1 ≥ u
¯ i for all i ∈ M, and get, for any µ ∈ M∗γ(M,M′), ε1 ≤ τi − u

¯ i = aiµ(i) − τµ(i) −(
aiµ(i) − v̄µ(i)

)
= v̄µ(i) − τµ(i), where the first equality comes from the fact that τ and (u

¯
, v̄) are core

allocations. Thus, mini∈M{τi− pi} = min j∈M′ {v̄ j−τ j}. A symmetric argument, taking into account
that ε2 = min j∈M′ {τ j − q j} is the largest amount to guarantee

(
τ|M + ε2 · eM , τ|M′ − ε2 · eM′

)
∈

C
(
M ∪ M′,wγ

)
, leads to min j∈M′ {τ j − q j} = mini∈M{ūi − τi}. Thus, equal maximum complaint

between groups, when applied to the tau value, can be written as mini∈M{ūi−τi} = min j∈M′ {v̄ j−τ j}

or, equivalently, by (4) and (5) we obtain

max
i∈M

{
wγ(N \ {i}) + τi

}
= max

j∈M′

{
wγ(N \ { j}) + τ j

}
, (20)

where N = M ∪ M′.
We now check that τ satisfies (20). From expressions (4), (5) and (6), for all i ∈ M and all

µ ∈ M∗γ(M,M′),

τi =
wγ(N) − wγ(N \ {i}) + wγ(N \ {µ(i)}) − wγ(N \ {i, µ(i)})

2

τµ(i) =
wγ(N) − wγ(N \ {µ(i)}) + wγ(N \ {i}) − wγ(N \ {i, µ(i)})

2
.

Thus, for all i ∈ M

wγ(N \ {i}) + τi = wγ(N \ {i}) +
wγ(N) − wγ(N \ {i}) + wγ(N \ {µ(i)}) − wγ(N \ {i, µ(i)})

2

=
wγ(N) + wγ(N \ {i}) + wγ(N \ {µ(i)}) − wγ(N \ {i, µ(i)})

2
= wγ(N \ {µ(i)}) + τµ(i),

which concludes that τ satisfies equal maximum complaint between groups.

5. A geometric characterization of the nucleolus of the assignment game

The kernel (Davis and Maschler, 1965) is another set-solution concept for cooperative games.
The kernel, K(v), of an essential cooperative game (N, v) is always nonempty and it contains the
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nucleolus. For zero–monotonic games,7 as it is the case of assignment games, the kernel can be
described by

K(v) = {z ∈ I(v) | sv
i j(z) = sv

ji(z) for all i, j ∈ N , i , j } ,

where the maximum surplus sv
i j(z) of player i over another player j with respect to the impu-

tation z is defined by

sv
i j(z) = max {ev(S , z)| S ⊆ N , i ∈ S , j < S } .

We will just write si j(z) when no confusion regarding the game v can arise.
Given an arbitrary coalitional game (N, v), with any core allocation z ∈ C(v) and any pair

of agents i, j ∈ N, there is associated a non-negative real number δv
i j(z) designating the largest

amount that can be transferred from player i to player j with respect to the core allocation z while
remaining in the core of the game (N, v):

δv
i j(z) = max{ε ≥ 0 | z − εei + εe j ∈ C(v)},

where, for all i ∈ N, ei ∈ RN is the vector defined by ei
i = 1 and ei

k = 0 for all k , i, k ∈ N. This
critical number δv

i j(z) was introduced by Maschler et al. (1979). For any core element z ∈ C(v),
this number δv

i j(z) is related to the excess sv
i j(z) in the definition of the kernel by δv

i j(z) = −sv
i j(z).

They prove in the aforementioned paper that a bisection property characterizes those elements in
the intersection of the kernel and the core: z ∈ C(v) ∩ K(v) if and only if z is the midpoint of the
core segment with extreme points z − δv

i j(z)ei + δv
i j(z)e j and z + δv

ji(z)ei − δv
ji(z)e j, for all i, j ∈ N.

In this section we introduce a stronger bisection property that characterizes the nucleolus of the
assignment game.

As for the kernel of assignment games, it turns out that it is always included in the core,
K(wA) ⊆ C(wA) (Driessen, 1998). Moreover, if (u, v) ∈ C(wA), then (a) si j(z) = 0 whenever
i, j ∈ M or i, j ∈ M′, and (b) if i ∈ M and j ∈ M′, then si j(z) is always attained at the excess of
some individual coalition or mixed–pair coalition:

si j(u, v) = max
k∈M′\{ j}

{−ui, aik − ui − vk}.

As a consequence, given (u, v) ∈ C(wA), we get that (u, v) ∈ K(wA) if and only if si j(u, v) =

s ji(u, v) for all (i, j) belonging to all the optimal matchings, since the remaining equalities hold
trivially.

The above proof of Theorem 4.1’s suggest that the locus of the nucleolus inside the core can
be determined by requiring this bisection property be satisfied not only for optimally matched
pairs but also for optimally matched coalitions.

By adding dummy players, that is, null rows or columns in the assignment matrix and null
reservation prices, we can assume from now on, without loss of generality, that the number of
buyers equals the number of sellers, since this does not modify the nucleolus payoff of the non-
dummy agents.8

Let γ = (M,M′, A, p, q) be an assignment market with |M| = |M′|. For each ∅ , S ⊆ M,
∅ , T ⊆ M′, |S | = |T |, we define the largest amount that can be transferred from players in S to

7A game (N, v) is zero-monotonic if for any pair of coalitions S ,T , S ⊂ T ⊆ N it holds v(S ) +
∑

i∈T\S v({i}) ≤ v(T ).
8See Núñez (2004) for a detailed argument.
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players in T with respect to the core allocation (u, v) while remaining in the core of (M∪M′,wγ)
by

δ
wγ

S ,T (u, v) = max{ε ≥ 0 | (u − εeS , v + εeT ) ∈ C(M ∪ M′,wγ)}. (21)

Similarly,
δ

wγ

T,S (u, v) = max{ε ≥ 0 | (u + εeS , v − εeT ) ∈ C(M ∪ M′,wγ)}. (22)

We write δS ,T (u, v) and δT,S (u, v), respectively, if no confusion arises regarding the assignment
game (M ∪ M

′

,wγ).
Notice that if there exists an optimal matching µ ∈ M∗γ(M,M′) such that S and T do not

correspond each other by this optimal matching (µ(S ) , T ), then δS ,T (u, v) = δT,S (u, v) = 0 for
all (u, v) ∈ C(M∪M′,wγ). The reason is that if there exists i ∈ S such that µ(i) < T (and similarly
for j ∈ T such that µ−1( j) < S ) we have that the payoff vector (u′, v′) = (u− εeS , v + εeT ) will lie
outside the core for all ε > 0. Indeed, if i < Dom(µ), then u′i = ui − ε = pi − ε < pi. Otherwise,
u′i + v′µ(i) = ui − ε+ vµ(i) , aiµ(i). This is why it is enough to consider transfers between coalitions
S ⊆ M and T ⊆ M′ such that T = µ(S ) for all µ ∈ M∗γ(M,M′). Thus, for a given square
assignment market γ = (M,M′, A, p, q), we define

S(γ) =
{
∅ , S ⊆ M | µ(S ) = µ′(S ) for all µ, µ′ ∈ M∗γ(M,M′)

}
. (23)

Theorem 5.1. Let γ = (M,M′, A, p, q) be a square assignment market and µ ∈ M∗γ(M,M′).
Then, the nucleolus is the unique core allocation satisfying δS ,µ(S )(η(wγ)) = δµ(S ),S (η(wγ)), for all
S ∈ S(γ).

Proof. Let γ = (M,M′, A, p, q) be a square assignment market, η = η(wγ) its nucleolus, and
S ∈ S(γ). Notice first that, for all x ∈ C(M ∪ M′,wγ) and all µ ∈ M∗γ(M,M′), δS ,µ(S )(x) =

min i∈S
k∈M′\µ(S )

{xi − pi, xi + xk − aik} and δµ(S ),S (x) = min j∈µ(S )
k∈M\S
{x j − q j, xk + x j − ak j}. Thus, δS ,µ(S )(x) =

δµ(S ),S (x) is equivalent to max i∈S
k∈M′\µ(S )

{pi − xi, aik − xi − xk} = max j∈µ(S )
k∈M\S
{q j − x j, ak j − x j − xk}.

Expression (17) shows that the nucleolus satisfies the above equality. Suppose there is z ∈ C(M∪
M′,wγ), z , η, such that δS ,µ(S )(z) = δµ(S ),S (z), for all S ∈ S(γ) and all µ ∈ M∗γ(M,M′). Since for
all S < S(γ), δS ,µ(S )(z) = δµ(S ),S (z) = 0, we have that δS ,µ(S )(z) = δµ(S ),S (z), for all S ⊆ M and all
µ ∈ M∗γ(M,M′). Now uniqueness follows by using the same argument that leads to expression
(18) in Theorem 4.1’s proof.
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