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ABSTRACT: A Pd-catalyzed C(sp3)-H functionaliza-
tion/carbenoid insertion is described. The method allows 
for the rapid synthesis of bicyclic frameworks, generat-
ing all-carbon quaternary centers via multiple C–C 
bond-formations in a straightforward manner.  

Over the last few years, there has been a growing con-
sensus that C–H functionalization has profoundly 
changed the landscape of organic synthesis while estab-
lishing new paradigms in retrosynthetic analysis.1 While 
spectacular advances have been realized, this area of 
expertise primarily relies on the utilization of directing 
groups, particularly via C(sp2)–H functionalization. In-
deed, a close inspection into the literature data reveals 
that the preparation of all-carbon quaternary centers2 via 
C(sp3)–H functionalization in the absence of directing 
groups still remains rather elusive.3,4  

Scheme 1. C(sp3)–H Functionalization/Carbenoid Insertion. 
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While originally designed for cyclopropanation events, 
carbenoid species have shown to be superb synthons in a 
myriad of relevant transformations.5 Indeed, these rea-
gents have successfully been employed in C–H func-
tionalization without the need for directing groups, al-
lowing for installing secondary or tertiary carbon cen-
ters via single C–C bond-formation (Scheme 1, path a).6 
To the best of our knowledge, all-carbon quaternary ste-
reocenters derived from the corresponding carbenoid 

species are beyond reach in C–H functionalization.7,8 
Undoubtedly, the ability to promote multiple C–C bond-
formations initiated by C(sp3)–H functionalization while 
installing all-carbon quaternary centers would be of par-
ticular interest (Scheme 1, path b).9 If successful, such a 
protocol would not only represent an unconventional, 
yet powerful, technique for our synthetic arsenal, but 
also a unique opportunity to improve our ever-growing 
knowledge in C–H functionalization. However, the dif-
ficulty for effecting C(sp3)–H functionalization in the 
absence of directing groups3 and the inherent propensity 
of carbenoids towards competitive dimerization5,6 con-
stitute serious drawbacks to be overcome. To such end, 
we hypothesized that the intermediacy of in situ generat-
ed Pd-I10 via C(sp3)–H functionalization would be criti-
cal for success (Scheme 2). At the outset of our investi-
gations, it was unclear whether such scenario could ever 
be conducted given the known proclivity of Pd-I to-
wards C–C reductive elimination (path b)11,12 or compet-
itive [1,4]-shifts en route to 4 (path a).13 Herein, we re-
port a mild catalytic C(sp3)–H functionaliza-
tion/carbenoid insertion en route to indanes 3 bearing 
all-carbon quaternary centers (path c). This protocol is 
distinguished by a wide scope and excellent chemoselec-
tivity profile, thus constituting a unique tool to rapidly 
build up molecular complexity. 

Scheme 2. Intermediacy of Pd-I in C-H Functionalization. 
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We initiated our study by investigating the reaction of 
1a with 2a (Table 1). After considerable experimenta-
tion,14 a protocol based on PdCl2(SMe2)2, L1, PivOH 
and Cs2CO3 in DMF at 80 ºC provided the best results 
(entry 1). Although the structure of 3aa was evident by 
NMR spectroscopy, we univocally assigned its structure 
by comparison with 3aa’ derived from the hydrolysis of 
3aa by X-ray crystallography.14 Not surprisingly, the 
ligand backbone had a critical impact on both reactivity 
and selectivity (entries 2-6). While the significant lower 
reactivity of L2 and L3 might suggest an intimate inter-
play of steric and electronic effects, care must be taken 
when generalizing this since we found that L4 was 
equally effective. The use of monodentate phosphines 
(entries 5 and 6) had a deleterious effect; strikingly, the 
utilization of PtBu3 resulted in a selectivity switch, ob-
taining exclusively 5a.11c Similarly, the base and the 
solvent exerted a profound influence on reactivity (en-
tries 7-10), with toluene favoring the formation of 5a 
(entry 9). Interestingly, inferior results were found for 
protocols based on Pd(OAc)2 (entry 11). The higher re-
activity of PdCl2(SMe)2 is tentatively attributed to its 
high solubility; at present, we cannot rule out that Me2S 
facilitates the reduction to Pd(0) while forming DMSO. 
Additionally, otherwise related aryl chlorides, iodides 
and triflate congeners failed to deliver 3aa. As anticipat-
ed, control experiments univocally revealed that all pa-
rameters were essential for the reaction to occur.14,15  

Table 1. Optimization of the Reaction Conditions.a 

Entry Deviation from the standard conditions
1
2
3
4
5
6
7
8
9
10
11

none
using L2 as the ligand
using L3 as the ligand
Using L4 as the ligand
Using PtBu3·HBF4 (15 mol%) as the ligand
Using PCy3 (15 mol%) as the ligand
Using CsOPiv (1.30 equiv) as the based

Using CsOAc as the base
Using PhMe instead of DMF
Using DMA instead of DMF
Using 5 mol% Pd(OAc)2

93 (80)c

36
0
83
0
0
43
38
15
49
73

3aa (%)b

PdCl2(SMe2)2 (5 mol%)
L1 (7.5 mol%)

Cs2CO3 (1.30 equiv)
DMF, 80 ˚C

Me
Me

Ph
CO2MeBr

Me Me

PivOH (50 mol%)

PhC(N2)CO2Me (2a)

Me
Me

1a 3aa 5a

+

O
PR2PR2

R = Cy, L1
R = Ph, L2

PPh2

PPh2

L4

O

Me Me

PPh2 PPh2L3

0
0
0
0

58
0
0
0

73
0
0

5a (%)b

3aa'

H

 
a 1a (0.10 mmol), 2a (0.18 mmol), PdCl2(SMe2)2 (5 mol%), 
L1 (7.50 mol%), PivOH (50 mol%), Cs2CO3 (0.13 mmol), 
DMF (0.25 M) at 80 ºC. b GC yields using o-xylene as 
standard. c Isolated yield. d No PivOH was added. 

Prompted by these results, we sought to examine the 
influence of the carbenoid species (Table 2). As shown, 
the scope was insensitive to electronic changes at the 
para and meta positions on the aromatic ring (2f-2l). 
Likewise, the substitution pattern on the ester motif was 
inconsequential to the reactivity profile (2a-2c), invaria-
bly leading to the targeted products in high yields. The 
chemoselectivity profile of our protocol is nicely illus-
trated by the fact that a wide variety of diazoester de-
rivatives bearing aryl halides (2f, 2j and 2m), esters (2e 
and 2h), ketones (2l) or acetals (2o) were all well ac-
commodated. Notably, nitrogen-containing heterocycles 
posed no problems (2p). Particularly interesting was the 
observation that the presence of alkene on the side chain 
did not interfere, affording 3ad in high yields without 
traces of intramolecular cyclopropanation being ob-
served in the crude mixtures. Gratifyingly, the diazo 
compound derived from Isoxepac (2l),16 a nonstereoidal 
anti-inflammatory drug (NSID), could be employed with 
equal ease. Notably, this transformation was not limited 
to diazoester derivatives, as diaryldiazomethanes could 
also be coupled, albeit in lower yields (2q-r). Unfortu-
nately, donor/donor diazocompounds and monosubsti-
tuted carbene precursors could not participate in the tar-
geted reaction, recovering starting material unaltered. 

Table 2. Scope of Diazo Compounds.a,b 
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a  As Table 1 (entry 1), 0.50 mmol scale. b  Isolated yields, 
average of at least two independent runs. c PdCl2(SMe)2 (10 
mol%) at 100 ºC. d PdCl2(SMe)2 (10 mol%). 

Next, we turned our attention to study the substitution 
pattern on the aryl halide backbone (Table 3). As shown, 
the preparative scope was rather general regardless of 
whether electron-donating or electron-withdrawing 
groups were present or not. Notably, a variety of aryl 
fluorides (3da), aldehydes (3ea), esters (3fa), amines 
(3ga and 3ha) or silyl ethers (3ka) could perfectly be 
tolerated. Importantly, even free amines could be em-
ployed as substrates, albeit in lower yields (3ga). Alt-
hough the presence of an ortho t-butyl group statistically 
accelerates the key C(sp3)–H functionalization,17 we 
found that a variety of ortho substituents other than t-
butyl groups could be equally accommodated (3ia-3na). 
In all cases analyzed, the targeted C(sp3)–H functionali-
zation occurred exclusively at the primary C(sp3)–H 
bonds of methyl groups, leaving the corresponding 
methylene positions intact. In line with this notion, no 
reaction occurred when employing 3ka’. Unfortunately, 
no diastereoselection was observed in the presence of 
gem-dimethyl groups (3ia-3ka), even in the presence of 
bulky silyl or aromatic motifs (3ja-3ka).18 Likewise, 
tertiary benzylic carbons (R2=H) resulted in β-hydride 
elimination, even with bulkier mesityl groups. Taken 
together, the results in Tables 2 and 3 show the prospec-
tive impact of our protocol for rapidly preparing indane 
skeletons bearing all-carbon quaternary centers. 

Table 3. Scope of Aryl Bromides.a,b  

PdCl2(SMe2)2 (5 mol%)
L1 (7.5 mol%)

Cs2CO3 (1.30 equiv)
DMF, 80 ˚C
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R3

Ph
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R2 R3
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Me Me
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Me Me
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Me Me
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R

Me Me
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Ph CO2MePh CO2Me
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Ph CO2Me

R
R
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3ba-3ma
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Me

d

Me
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R

R
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R

R

 
a As for Table 1 (entry 1), but at 0.50 mmol scale.b Isolated 
yields, average of at least two independent runs. c 1:1 dia-
stereomeric ratio. d PdCl2(SMe)2 (10 mol%) at 100 ºC. 

Scheme 3. Mechanistic Experiments. 
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Next, we decided to gather indirect evidence on the 
mechanism by examining the reactivity of 1a with Piv-
OD. Interestingly, a non-negligible deuteration at ortho 
position of 3aa was observed, suggesting that Pd-I 
(Scheme 2) might coexist in equilibrium with homoben-
zylic Pd(II) intermediates generated upon protonolysis 
with PivOD via [1,4]-shift.10c,11c,13,14 Next, we studied 
the reactivity of the putative metallacycle Pd-I. Follow-
ing the methodology described by Cámpora,10b we pre-
pared 6 from 7 in high yield (Scheme 3, bottom), which 
was fully characterized by X-ray structure analysis.14 

Interestingly, while 6 rapidly underwent reductive elim-
ination en route to 5a in the absence of 2a,11 3aa was 
exclusively obtained with 2a (Scheme 3, bottom).19,20 
Notably, 3aa was not obtained from 5a, thus ruling out 
the possibility of a C–C cleavage event. We believe the-
se results reinforce a scenario consisting of Pd-I via 
concerted metallation-deprotonation from II (Scheme 
4).11,21 While Pd-I might coexist in equilibrium with III 
upon protonolysis with PivOH, a 1,2-insertion of a diazo 



 

compound10a,22,23 might generate IV that ultimately de-
livers the targeted product via reductive elimination. At 
present, we cannot rule out the intermediacy of V via 
rapid equilibration with III and Pd-I,24 as traces of cy-
clopropane derivatives via reductive elimination from V 
were detected in reactions of aryl bromides possessing 
bulky groups at the geminal position.25  

Scheme 4. Mechanistic Hypothesis. 
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In conclusion, we have developed a mild and robust Pd-
catalyzed C(sp3)-H functionalization/carbenoid insertion  
event. This technique represents a unique synthetic tool 
in the C(sp3)–H functionalization arena for building up 
bicyclic frameworks in which the all-carbon quaternary 
center is derived from carbenoid species.  
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