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A Mild ArI-catalyzed C(sp2)– and C(sp3)–H Functionalization/C–O 
Formation: An Intriguing Catalyst-controlled Selectivity Switch  
Xueqiang Wang[a], Joan Gallardo-Donaire[a] and Ruben Martin*[a,b]  

Abstract: A tandem C(sp2)– and C(sp3)–H functionalization/C–O 
bond-formation catalyzed by in situ generated I(III) reagents has 
been developed. The method shows a wide substrate scope under 
mild conditions while exhibiting an unprecedented selectivity profile 
that can be switched depending on the catalyst employed. 

The recent years have witnessed a dramatic progress in the field 
of C–H functionalization, allowing the design of unconventional 
synthetic strategies.[1] While a myriad of catalytic C–C and C–N 
bond-formation have been developed, the means to effect a C–
O bond-formation has received much less attention.[2] This is in 
part due to the large energy gap between the M–O HOMO and 
M–C LUMO frontier orbitals.[3] Thus, the development of an 
innovative, yet practical, C–H functionalization/C–O bond-
formation has become a goal for synthetic chemists. [4,5] The 
preparation of benzolactones represents an ideal target since 
compounds such as Lamellarin or Cytosporone, among others, 
show attractive biological properties. [6] 

 

Scheme 1. Benzolactones via catalytic C-H functionalization. 

We[7] and others[8]  have reported the synthesis of benzolac-
tones via Pt- or Pd-catalyzed C–H functionalization/C–O bond-
formation assisted by carboxylic acids (Scheme 1, path a). [9]  
However, these reactions are often air- or moisture-sensitive, 
and stoichiometric Ag(I), PhI(OR)2 or Cu(II) reagents are usually 
required. Recently, Cu-catalyzed oxidative protocols have 
shown to be powerful synthetic alternatives to these endeavors. 
[10] As global demand and prices for noble metals continue to 

rise, however, chemists are being challenged to design metal-
free processes. To such end, the use of well-defined I(III) 
reagents has recently gained considerable momentum at the 
Community.[11] Although the generation of substantial aryl iodide 
(ArI) residues constitute a significant barrier for the 
implementation of such protocols, early work by Kita, Ochiai and 
Togo showed that catalytic amounts of ArI in the presence of 
suitable oxidants could be equally effective.[12] Despite the 
advances realized, [13] at the outset of our investigations a C–H 
functionalization assisted by carboxylic acids and ArI catalysts 
en route to benzolactones did not have any literature precedents. 
[14] Herein, we describe a benign ArI-catalyzed C(sp2)– and 
C(sp3)–H functionalization/C–O bond-formation (Scheme 1, 
paths b and c). The method is user-friendly, operates with a 
wide substrate scope under mild conditions, and in open-air. 
Initial studies show an unprecedented and intriguing selectivity 
profile depending on the nature of the catalyst employed. [15] 

Table 1. C(sp2)–H Functionalization/C–O formation. [a,b] 

 

[a] Reaction conditions: 1 (0.20 mmol), I8 (20 mol%), AcOOH (2.20 equiv), 
HFIP (1 mL) at rt for 12 h. [b] Isolated yields, average of  two runs. [c] I11 (20 
mol%). [d] AcOOH (4.40 equiv), 80 ºC. [e] AcOOH (1.10 equiv). [f] Single 
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regioisomer. [g] 4:1 regioisomers under conditions of Ref. 10a. [h]  PIFA (1.0 
equiv). [i]  6:1 regio- isomers under conditions of Ref. 10a.  

We began our investigations by examining the reactivity of 1a. 
After some experimentation,[16] we found that I8 (20 mol%) in 
HFIP[17] and ACOOH as the oxidant allowed for obtaining 2a in 
nearly quantitative yield and in open air at rt. [18,19] Such finding is 
particulary remarkable, thus constituting an additional bonus, 
practicality aside, when compared with related metal-catalyzed 
protocols.[7,8,10] Encouraged by these findings, we set out to 
explore the preparative scope of our surprisingly facile I8-
catalyzed C(sp2)–H functionalization/ C–O bond-formation 
(Table 1)  As shown, the outcome was largely insensitive to 
changes in the electronic nature of the substrates. Thus, acetals 
(2c), nitro groups (2e), esters (2g, 2j and 2l) and aryl fluorides 
(2m) were well accommodated. Similarly, non-aromatic 
carboxylic acids (2i) or substrates prone to C(sp3)–H 
functionalization (2h) posed no problems. To put these results 
into perspective, we observed little conversion, if any, of 1c, 1d 
or substrates bearing electron-withdrawing groups such as 1e, 
1f, 1j and 1l under previously developed Cu-catalyzed 
conditions (Table 1). [10]  Interestingly, 2k-2n were isolated as 
single regioisomers, with 2m unambiguously characterized by X-
ray analysis.[20] These results are in sharp contrast with Cu-
catalyzed protocols that invariably provide regioisomeric 
mixtures of these compounds. [10] We believe these results nicely 
illustrate the complementarity of I8- and Cu-catalyzed oxidative 
processes. 

Table 2. C(sp3)–H Functionalization/C–O formation.[a,b] 

 

[a] Conditions: As for Table 1, but using I6 (20 mol%), at 40 ºC, open to air. [b] 
Isolated yields, average of two independent runs. c PIFA (2.5 equiv).  

A closer look into the literature indicates that harsh conditions 
are typically required to prepare benzolactones via metal-
catalyzed C(sp3)–H functionalization using carboxylic acids as 
directing groups. [7,8d] Challenged by such finding, we wondered 
whether the mild protocol in Table 1 could be adapted to a 
C(sp3)–H functionalization scenario.[21] To such end, we 
identified 5H-pyrrolo-[1,2-a][3,1]benzoxazinones (4a) as an ideal 
target to demonstrate the feasibility of such concept given the 
potential of these frameworks as lifespan-altering compounds 
and the ease for C(sp3)–H functionalization α to the nitrogen 
atom (Table 2). [22] Among all catalysts utilized, we found that I6 
was particularly competent for our purposes. [18,23] As shown in 
Table 2, the method tolerated a variety of substitution patterns 
without significantly influencing the reaction outcome. 
Interestingly, remote carboxylic acids (4d) or aryl halide entities 
were tolerated (4b and 4e-h), leaving ample opportunities for 
subsequent manipulation via cross-coupling techniques. The 
successful preparation of 4j-4l indicates that five-membered 
rings other than pyrrolidinone can be equally effective. Similarly, 
pyrido-benzoxazinones (4i) are also within reach, albeit in lower 
yields. Interestingly, 4l was obtained as a single 
diastereoisomer, whose stereochemistry was confirmed by X-ray 
crystallography.[24,25] Taken together, we believe the results in 
Tables 1-2 improve significantly the practicality of catalytic 
C(sp2)– and C(sp3)–H functionalization/C–O bond-formation 
protocols assisted by carboxylic acids. 

 

Scheme 2. Catalyst-controlled Selectivity Switch for 1o. 

The observed influence of the ArI backbone suggested that site-
selectivity could be accomplished under appropriate conditions. 
As shown in Scheme 2, we found an unprecedented catalyst-
controlled selectivity switch when using 1o. Although not yet fully 
optimized, we found that the use of I11 resulted in 37% yield of 
the expected 2o together with a minor regioisomer that was 
initially assigned as 2o’’; a careful NMR spectroscopical 
analysis, however, revealed that our assignment was premature 
and such minor regioisomer turned out to be 2o’, a species not 
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expected through a simple selectivity between the two ortho C–
H sites. Intriguingly, structurally related I6 resulted in a selectivity 
switch, obtaining predominantly 2o’ in 70% yield. [26-28] This result 
might suggest that an incipient positive charge is developed on 
the electron-rich aromatic ring, thus triggering a [1,2]-aryl shift.[29] 

The assignment of both 2o and 2o’ was univocally established 
by X-ray analysis (Scheme 2, top).[30] Importantly, the successful 
preparation of 2p’, 2q’ and 2r’ demonstrates the generality of 
such intriguing selectivity switch (Scheme 2, bottom). 

 

Next, we focused our attention on unraveling the origin of the 
selectivity switch shown in Scheme 2 by studying the reaction of 
1o with I(III) reagents derived from I6 and I11. Interestingly, we 
found that both I6(OAc)2 and I11(OAc)2 provided preferentially 
2o’ (Scheme 3, entries 1 and 5), with I6(OAc)2 providing a 
slightly better selectivity profile (entry 1). These findings were 
rather surprising since the I6- or I11-catalyzed event using 
AcOOH as the oxidant resulted in a much lower 2o:2o’ ratios 
(entries 4, 7 and Scheme 2). We speculated that AcOOH might 
not be a mere spectator and that could be acting with dual roles, 
both as an oxidant and as a modulator at the I(III) center. In line 
with this notion, the inclusion of AcOOH significantly eroded the 
selectivity profile using I6(OAc)2 (entries 2 and 3) or even 
caused a selectivity switch with I11(OAc)2 (entry 6). We believe 
these results tacitly suggest that the selectivity pattern is 
dictated by both the nature of the employed aryl iodide and the 
[AcOOH]. The role of the latter was nicely illustrated by careful 
analysis of the 2o’:2o ratio as a function of time when using 
catalytic amounts of I6,[16] clearly evidencing that the [AcOOH] 
had a profound influence on the 2o’:2o ratio. A similar behavior 
was observed for PhI(1o)2 (Scheme 3, bottom left), one of the 
potential reaction intermediates, in which the presence AcOOH 
had a deleterious effect on selectivity. Overall, we believe the 
results in Scheme 3 suggest the intermediacy of I-1 species 
within the catalytic cycle (Scheme 3, bottom right), revealing an 
intimate interplay between the aryl iodide motif and the inclusion 
of non-innocent additives.  

 

Scheme 3. Unraveling the Observed Selectivity Profile for 1o.  

In light of these results, we wondered whether a related 
selectivity switch could be applied in other C–H functionalization 
event. Gratifyingly, we found that 1s followed a distinctive 
pattern when using I6 or I8 as catalysts (Scheme 4).[31] While 
one might have anticipated that 1s would trigger a C(sp2)–H 
functionalization en route to 2s, this was not the case and 4a or 
4a’ were obtained exclusively, an assumption that was ultimately 
confirmed by X-ray analysis. [32,33] Whether these observations 
indicate a general trend in other substrate combinations or if it 
has other mechanistic implications is matter of ongoing studies. 

 

Scheme 4. Catalyst-controlled Selectivity Switch for 1s. 

In summary, we have developed a C(sp2)– and C(sp3)–H 
functionalization/C–O bond-formation event catalyzed by in situ 
generated hypervalent  I(III) reagents. The reaction occurs under 
mild conditions and with an exquisite and intriguing selectivity 
profile that can be switched depending on the catalyst 
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employed. This new air-insensitive method represents a cheap, 
practical, and a powerful alternative to related metal-catalyzed 
protocols. Further investigations into related processes are 
currently ongoing. 
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COMMUNICATION 

A tandem C(sp2)– and C(sp3)–H functionalization/C–O bond-formation catalysed by 
in situ generated I(III) reagents has been developed. The method shows a wide 
substrate scope under mild conditions while exhibiting an unprecedented selectivity 
profile that can be switched depending on the nature of the catalyst employed. 
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