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ABSTRACT: A novel Ni-catalyzed regiodivergent re-
ductive carboxylation of allyl esters with CO2 has been 
developed. This mild, user-friendly and operationally-
simple method is characterized by an exquisite selectivi-
ty profile that is dictated by the ligand backbone. 

The ability to control the outcome of catalytic reactions 
by the fine-tuning of the catalyst structure is central in 
the cross-coupling arena.1 Despite the advances realized, 
the development of catalytic regiodivergent protocols 
from a common precursor in a rational and predictable 
manner remains a formidable challenge,2 thus offering a 
unique opportunity to improve our ever-growing chemi-
cal portfolio. Intriguingly, while allyl electrophiles have 
been successfully employed as coupling partners with 
nucleophilic counterparts,3 the utilization of these motifs 
in catalytic reductive protocols is not as commonly prac-
ticed as one might anticipate.4,5 This is probably due to 
the difficulty for discriminating at will both ends of the 
initially generated π-allyl metal complex,3 resulting in 
regioselectivity issues (Scheme 1, II vs III). Indeed, a 
catalyst-controlled regiodivergent reductive event for 
selectively obtaining II and III from a common allyl 
electrophile (I) remains an unexplored area of research. 

Scheme 1. Regiodivergency in Allyl Electrophiles  

 

Carbon dioxide (CO2) has emerged as a powerful 
synthon and renewable chemical feedstock for organic 
synthesis.6 The interest for designing new catalytic reac-
tions using CO2 arises from its low cost, high abundance 
and lack of toxicity and flammability. Nonetheless, the 
design of catalytic processes based on carbon dioxide is 
particularly challenging since CO2 is kinetically inert 
and not particularly soluble in commonly employed or-
ganic solvents at atmospheric pressure, thus resulting in 
competitive side-reactions. In recent years, we7 and oth-
ers8 launched a program to unravel the potential of cata-

lytic reductive carboxylation events using aryl or alkyl 
electrophiles en route to carboxylic acids, privileged 
motifs in a wide variety of pharmaceuticals and agro-
chemicals.9 Although these reactions have reached re-
markable levels of sophistication,7,8 a ligand-controlled 
selectivity in carboxylation events is unknown, leaving 
ample opportunities to improve upon existing carboxyla-
tion techniques. Herein, we summarize our investiga-
tions aiming at the development of an unprecedented 
regiodivergent catalytic reductive carboxylation strategy 
(Scheme 2).10 The protocol is inherently modular, allow-
ing for the introduction of the carboxylic motif at any 
site of the allyl terminus depending on the ligand em-
ployed (paths a & b). To the best of our knowledge, this 
constitutes the first time that the nature of the ligand 
dictates the outcome of carboxylation events.11 The 
transformation is mild and user-friendly, constituting an 
added value when compared with classical techniques 
based on well-defined allyl organometallic species,12,13 
halide counterparts and/or high CO2 pressures. 

Scheme 2. Regiodivergent Catalytic Carboxylation 

 

We started our investigations using 1a as the model 
substrate and the influence of all reaction components 
was systematically examined. As for other carboxylation 
reactions,7,8 we anticipated that the efficiency of the re-
action would be strongly ligand dependent. As shown in 
Table 1, this was indeed the case. After some experi-
mentation,14,15 we found that C2-substituted bipyridine 
L2 in DMF and Mn as reductant at atmospheric CO2 
pressure was particularly suited for our purposes (entry 
2). More importantly, such seemingly trivial modifica-
tion at C2 was critical for improving the reactivity and 
selectivity pattern (entry 1 vs 2). Although L3 and L4 
resulted in a decrease of selectivity (entry 3), a survey of 
additives revealed that both reactivity and 2a:3a ratio 
could be accentuated by adding MgCl2 with L3,16 afford-
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ing exclusively 2a in 77% isolated yield at 5 mol% cata-
lyst loading (entry 4).17,18 Intriguingly, the use of MgCl2 
did not have any influence for L2, thus showing the sub-
tleties of our system. Strikingly, the use of commercially 
available quaterpyridine L5 resulted in a selectivity 
switch under identical reaction conditions, favouring the 
formation of 3a, albeit in lower yields (entry 6). These 
results tacitly suggest that the ligand backbone exclu-
sively dictates the selectivity pattern. The fine-tuning of 
the Ni:L5 ratio, reductant, solvent and the inclusion of 
Na2CO3 as additive allowed for obtaining 3a in 72% 
isolated yield with an excellent 3a:2a ratio (entry 9).17,18 
While similar selectivity was observed for L6 and L7 
(entries 10 and 11), the best results were found with L5. 
As anticipated, control experiments revealed that all re-
action components were crucial for success.14 Taking 
into consideration the lack of precedents when using L5 
in the cross-coupling arena, we anticipate that L5 might 
open up perspectives in ligand design for effecting oth-
erwise inaccessible coupling processes. 

Table 1. Optimization of the Reaction Conditionsa 

 
Entry	   L	  (x	  mol%)	   Reductant	   Yield	  2+3	  (%)b	   2a:3ab	  

1	   L1	  (22)	   Mn	   8	   81:19	  

2	   L2	  (22)	   Mn	   47	   93:7	  

3	   L3	  (22)	   Mn	   58	   75:25	  

4	   L3	  (15)c,d	   Mn	   77e	   99:1	  

5	   L4	  (22)	   Mn	   70	   53:47	  

6	   L5	  (22)	   Mn	   10	   8:92	  

7	   L5	  (22)f	   Zn	   28	   5:95	  

	  8	   L5	  (15)f	   Zn	   41	   3:97	  

	  9	   L5	  (15)f,g	   Znh	   72e	   2:98	  

10	   L6	  (15)f,g	   Znh	   4	   1:99	  

11	   L7	  (15)f,g	   Znh	   11	   5:95	  

	   	   	   	   	  

 
a 1a (0.25 mmol), NiBr2·glyme (10 mol%), L (x mol%), 
reductant (2.40 equiv.), DMF (0.17 M), CO2 (1 atm) at 40 
ºC for 16 h. b Determined by GC using anisole as internal 
standard. c MgCl2 (2 equiv.) was added. d NiBr2·glyme (5 
mol%). e Isolated yield. f DMA (0.17 M). g Na2CO3 (20 
mol%) was added. h Zn (1.75 equiv.).	  

Table 2. Ligand-controlled Regiodivergent Carboxylation 

 
a Using L3: 1 (0.25 mmol), NiBr2·glyme (5 mol%), L3 (15 
mol%), Mn (0.60 mmol), MgCl2 (0.50 mmol) in DMF at 40 
ºC. b 2a-2j were obtained in ≥9:1 E:Z ratio. c Using L5: 1 
(0.25 mmol), NiBr2·glyme (10 mol%), L5 (15 mol%), Zn 
(0.44 mmol), Na2CO3 (20 mol%) in DMA at 40 ºC. d At 50 
ºC. e NiBr2·glyme (10 mol%) at 60 ºC. f 1.5:1 (E:Z). g 

NiBr2·glyme (10 mol%) and L4 (30 mol%). h 1:1 syn:anti. i 
NiBr2·glyme (3 mol%). j 2.3:1 (E:Z). 

Encouraged by these precedents, we turned our attention 
to the preparative scope of our Ni-catalyzed regiodiver-
gent carboxylation protocol (Table 1). As shown, a vari-
ety of allyl acetates were all carboxylated in good yields 
and excellent regioselectivities depending on the ligand 
utilized. As expected, the carboxylation strategy based 
on L3 resulted in the predominant formation of E-
configured isomers (2a-k).19 Remarkably, a high selec-
tivity profile was obtained regardless of whether linear 
or α-branched allyl acetates were utilized. These results 
reinforce the notion that our regiodivergent protocol 
does not operate under substrate-control and that the 
ligand exclusively dictates the selectivity pattern. As 
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shown for 1c-1d, the inclusion of substituents on the 
allyl motif did not have a deleterious effect on selectivi-
ty. The preparation of carboxylic acids bearing a quater-
nary center (3d and 3k) is particularly noteworthy since 
Ni-catalyzed reductive coupling reactions of tertiary 
alkyl electrophiles are virtually inexistent.20 The 
chemoselectivity profile of our method is further illus-
trated by the presence of ethers (1e), acetals (1i), esters 
(1f), thioethers (1h) or alkenes (1j and 1k). Strikingly, 
while the inclusion of thioether motifs in the side chain 
had a negative impact for 2h, no erosion in selectivity 
was found when operating under a L5 regime, hence 
suggesting that thioethers compete with substrate bind-
ing with L3. Interestingly, the selectivity towards 3i was 
not affected by substituents in the α position of the allyl 
acetate fragment (1i), albeit 3i was obtained in lower 
yield.21 The successful preparation of 2k and 3k from 
naturally ocurring farnesyl acetate 1k highlights the ro-
bustness of our protocol in the presence of multiple dou-
ble bonds. Moreover, the carboxylation could be con-
ducted without affecting the aryl chloride entity, provid-
ing an additional functional handle via cross-coupling 
techniques (2g and 3g). Importantly, we found that the 
carboxylation of 1j could be conducted without noticea-
ble 5-exo-trig cyclization (2j and 3j).22 Overall, the data 
in Table 2 demonstrates the robustness and prospective 
impact of our regiodivergent carboxylation protocol. 

Scheme 3. Convergent Synthesis of 2l and 3l from 1l-1n 

 

Guided by the assumption that the reaction might not be 
substrate-controlled, we speculated that a different set of 
constitutional and configurational isomers could con-
verge to a single carboxylic acid with a protocol based 
on L3 and L5. In line with our expectations, 1l-1n were 
exclusively converted into either 2l or 3l in good yields 
with variable E/Z ratios (Scheme 3).19 We believe these 
results suggest common reaction intermediates23 and 
increase the flexibility in synthetic design for preparing 
carboxylic acids from different precursors. Although a 
mechanistic study should await further investigations, 
we set out to explore the intermediacy of L3- and L5-Ni 
complexes. Following a procedure described by Noc-
era,24 we prepared air-sensitive 4 and 5 by reacting L3 
or L5 with Ni(COD)2 in THF and their structures were 
univocally characterized by X-ray crystallography 
(Scheme 4).14,25 Intriguingly, while 2a could only be 
obtained in the presence of a reducing agent by using 4, 
3a was cleanly produced with 5, even in the absence of 

reductant.26 These experiments confirm that the ligand 
backbone dictates the selectivity pattern and strongly 
suggest a different mechanistic pathway for L5 that dif-
fers from other reductive coupling events. At present, we 
believe that L5 might behave similarly to pincer-type 
ligands in related carboxylation events via η1-allyl in-
termediates27 and that the additional pyridine motif 
might be acting as a hemilabile ligand, thus tempering 
the catalytic activity on the Ni center and preventing 
decomposition pathways. 

Scheme 4. Stoichiometric Experiments 

 

In summary, we have described a novel, mild and user-
friendly Ni-catalyzed regiodivergent carboxylation of 
allyl acetates with CO2. This protocol constitutes the 
first regiodivergent catalytic reductive coupling of allyl 
electrophiles and provides consistent evidence that the 
ligand dictates the selectivity pattern. We anticipate that 
this study will lead to new knowledge in catalyst design 
by using unconventional ligand backbones. Further in-
vestigations into the mechanism and the development of 
an asymmetric version are currently underway. 
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η1-allyl metal complexes, see: (a) Suh, H.–W.; Guard, L. 
M.; Hazari, N. Chem. Sci. 2014, 5, 3859. (b) Takaya, J.; 
Iwasawa, N. J. Am. Chem. Soc. 2008, 130, 15254. 
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