
This is the peer reviewed version of the following article: *Angew.Chem. Int. Ed.* **2016**, *55*, 7152 –7156, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/anie.201602569/full. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

## NH-heterocyclic aryliodonium salts: Synthesis and Access to N1aryl-5-iodoimidazoles

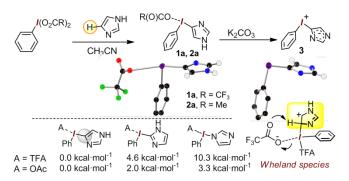
Yichen Wu,<sup>[a]</sup> Susana Izquierdo,<sup>[a]</sup> Pietro Vidossich,<sup>[b]</sup> Agustí Lledós<sup>\*[b]</sup> and Alexandr Shafir<sup>\*[a]</sup> Dedication ((optional))

**Abstract:** The synthesis of *N*-arylimidazoles substituted at the sterically encumbered 5 position is a challenge for modern synthetic approaches. Here we report a new family of imidazolyl aryliodonium salts that serve as stepping stones *on route* to the selective formation of *N*1-aryl-5-iodoimidazoles; the iodine can now act as a "universal" placeholder to be transformed into further substituents. These new  $\lambda^3$ -iodanes are produced by treating the *NH*-imidazole with Arl(OAc)<sub>2</sub>, and are converted to *N*1-aryl-5-iodoimidazoles by a selective Cu-catalyzed aryl migration. The method tolerates a variety of Ar fragments and is also applicable to substituted imidazoles.

Imidazole is a ubiquitous heterocyclic core present in a wide variety of biologically relevant molecules.[1] Although the synthesis of imidazole derivatives is commonly accomplished through a variety of cyclization routes, it is often desirable to obtain a particular derivative starting from a preformed heterocyclic ring. For this reason, imidazole derivatization has been the focus of attention from a number of laboratories. A particularly common challenge is the selective construction of the 1,4- and 1,5-disubstituted imidazoles. Thus, the NH-arylation of an imidazole substituted at the C4(5) position tends to produce a mixture of isomers favoring the sterically less encumbered NH position, i.e. that with a 1,4 substitution pattern.<sup>[2,3]</sup> This bias was recently perfected by Buchwald et al. through the use of highly bulky biaryl phosphine ligand in Pdcatalyzed imidazole N-arylation.[3b] A similar preference for the less encumbered NH position can also be seen in the oxidative Chan-Lam N-arvlation of imidazole (Scheme 1A).<sup>[4]</sup>

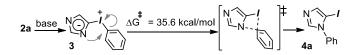


Scheme 1. Examples of common imidazole *N*-arylation strategies (A) and the relay arylation (B) proposed here.


[a] Y. Wu, Dr. S. Izquierdo, Dr. A. Shafir Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16, 43007, Tarragona, Spain E-mail: ashafir@iciq.es
[b] Dr. P. Vidossich, Prof. Dr. A. Lledós Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès, Spain E-mail: agusti@klingon.uab.es

Supporting information for this article is given via a link at the end of the document.

A challenge, however, remains to access selectively the corresponding 1,5-disubstituted imidazoles. Progress made in recent years includes the usage of well-designed protection/deprotection strategies,<sup>[5]</sup> and the C5-selective *CH*-borylation<sup>[6]</sup> and *CH*-arylation<sup>[7]</sup> reactions.


Here we present a new route to a versatile class of precursors for 1,5-disubstituted imidazoles. Specifically, the *N*1-aryl-5-iodoimidazoles are produced via a relay in which a hypervalent iodoarene fragment<sup>[8]</sup> serves as a trampoline for aryl transfer to the proximal *NH* site (Scheme 1B). We reasoned that if the iodane *I* could be generated, it can then undergo a phenyl transfer to produce *II*, perhaps akin the intramolecular *O*- and *N*-arylation observed in iodonium ylides.<sup>[9]</sup> Somewhat surprisingly, the *NH*-heterocyclic  $\lambda^3$ -iodanes have only received a limited attention beyond the early work by Neiland *et al* in the 1970's.<sup>[10,11]</sup> Recent reports, however, highlight the promise of hypervalent iodine reactivity in azole functionalization, including *via* heterocyclic  $\lambda^3$ -iodanes.<sup>[12]</sup>

In particular, we found only a single precedent of an imidazolvl- $\lambda^3$ -iodane: the species, however, was described as containing the imidazole fragment bound to iodine through the N atom.<sup>[13]</sup> A reaction between PhI(O<sub>2</sub>CCF<sub>3</sub>)<sub>2</sub> and imidazole (2 equiv) in acetonitrile at room temp. produced a white precipitate identified as [PhI(Imid)]TFA salt, 1a (58%). However, the presence of just two imidazolic resonances in <sup>1</sup>H NMR (1H each) strongly suggested a CH rather than NH functionalization of the imidazole; accordingly, X-Ray crystallography revealed a classical T-shaped diaryliodonium environment, with the imidazole bound to the iodine through the C4(5) carbon atom (Scheme 2). An analogous acetate salt 2a was obtained by employing PhI(OAc)<sub>2</sub>. A DFT analysis confirmed that both the C2 and the N-bound isomer are higher in energy than the observed C4(5) isomer. An N-bound species was found unlikely even as an intermediate en route to 1a; rather, the reaction appeared to proceed through a Wheland-type intermediate (see Supporting Information).



**Scheme 2.** Formation and structures of the imidazole-based  $\lambda^3$ -iodanes and of the neutral (betaine) **3.** Gibbs Energies (kcal\_mol<sup>-1</sup>) in CH<sub>3</sub>CN.

While sparingly soluble in CDCl<sub>3</sub>, **1a** and **2a** dissolved well in MeOH and water. They also underwent a facile deprotonation to a zwitterionic **3**, for which both the solid state and DFT structures show an essentially "normal" single  $C_{imid}$ -I bond (2.051 and 2.076 Å, respectively, *vs* 2.091 Å observed for in **1a**). We quickly discovered that the desired *I*-to-*N* phenyl transfer does not take place upon heating **1a**, **2a** or **3** in CH<sub>2</sub>Cl<sub>2</sub>, with or without Cs<sub>2</sub>CO<sub>3</sub>. Consistently, only a high energy transition state (35.6 kcal mol<sup>-1</sup>) could be identified for the direct (non-catalyzed) *I*-to-*N* **1**,3 phenyl migration in **3** (Scheme 3).



Scheme 3. Reaction path modelled for uncatalyzed 1,3 phenyl migration.

Gratifyingly, the addition of 5 mol% of Cu(OTf)<sub>2</sub> did allow for the formation of two regioisomeric N-phenyl iodoimidazoles, with a moderate selectivity towards the more hindered 4a achieved in fluorinated alcohols (Table 1, runs 1-3, both isomers confirmed X-Ray diffraction). The use of  $Cs_2CO_3$ bv in hexafluoroisopropanol (HFIP) led to a combined yield of 86% with a 4:1 ratio in favor of 4a (run 4). This ratio was further improved by employing catalytic amounts of certain heterocyclic additives (runs 5-7); e.g. the use of 20 mol% of N-Mebenzimidazole (run 6) led to an 8:1 selectivity and a 93% yield.

Table 1. Cu-catalyzed I-to-N phenyl transfer in 2a.[a]

|  | 5 mol% Cu(OTf) <sub>2</sub><br>20 mol% additive | N N  | +     |
|--|-------------------------------------------------|------|-------|
|  | solvent, 50 °C, 16 h                            | 🚺 4a | N= 5a |

| Run | Base       | Solvent                            | Additive           | Yield(%) <sup>[b]</sup> | <b>4a/5a</b> <sup>b</sup> |
|-----|------------|------------------------------------|--------------------|-------------------------|---------------------------|
| 1   |            | CH <sub>2</sub> Cl <sub>2</sub>    |                    | 39                      | 0.1:1                     |
| 2   |            | CF <sub>3</sub> CH <sub>2</sub> OH |                    | 51                      | 1.5:1                     |
| 3   |            | HFIP                               |                    | 53                      | 4.2:1                     |
| 4   | $Cs_2CO_3$ | HFIP                               |                    | 86                      | 4.1:1                     |
| 5   | $Cs_2CO_3$ | HFIP                               | 4-methylimidazole  | 90                      | 7.3:1                     |
| 6   | $Cs_2CO_3$ | HFIP                               | benzimidazole      | 90                      | 8.4:1                     |
| 7   | $Cs_2CO_3$ | HFIP                               | N-Me-benzimidazole | 93                      | 8.0:1                     |

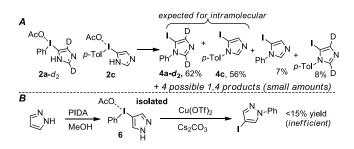
[a] Using 0.5 mmol **2a**, 5 mol% Cu(OTf)<sub>2</sub> and 1.6 equiv of base (if any) in 2.6 mL of solvent. [b] Total yield (%**4a+%5a**) and the ratio as determined by GC.

It was subsequently found that the highest yields of **2** were achieved in trifluoroethanol<sup>[14]</sup> and, notably, MeOH as solvents. CH<sub>3</sub>CN, however, remained convenient for large scale applications due to product precipitation, as seen in the synthesis of a 23 g batch of **2a** (Supp. Info). All the aryl(imidazolyl)- $\lambda^3$ -iodanes, **2**, exhibited the corresponding Ar-I(Imid)<sup>+</sup> cation in the HR (ESI+) mass spectra. These species were subsequently transformed into the *N1*-aryl-5-iodoimidazole, **4**, with good selectivities. As previously observed for **4a**, in all cases a characteristic <sup>13</sup>C resonance at 71-73 ppm was

observed for the <sup>13</sup>C-I unit in **4**, which is approx. 10 ppm lower than in the corresponding 1,4 species **5** (82-85 ppm). Given the synthetic potential of **4a**, the method was extended to structurally diverse aryl(imidazolyl)- $\lambda^3$ -iodanes (Table 2). The most robust protocol involves the use of 20 mol% of *N*-Mebenzimidazole in combination with 5 mol% of Cu(OTf)<sub>2</sub>.

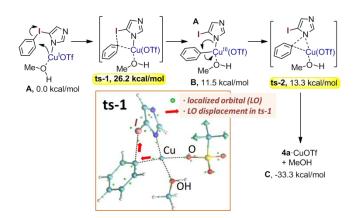
Table 2. Scope of the relay synthesis of N1-aryl-5-iodoimidazoles 4.

|                                                                   | AcO<br>r-I(OAc) <sub>2</sub>     |                               | Cu(OTf) <sub>2</sub><br>le-benzimida |                       | N                           |  |
|-------------------------------------------------------------------|----------------------------------|-------------------------------|--------------------------------------|-----------------------|-----------------------------|--|
|                                                                   | MeOH                             |                               | mol%)                                |                       | + <b>5</b><br>(1,4-isomer)  |  |
| <b>2</b> Cs <sub>2</sub> CO <sub>3</sub> , HFIP, 15-16 h <b>4</b> |                                  |                               |                                      |                       |                             |  |
| struc                                                             | ture <b>2</b>                    | yield <b>2</b> <sup>[a]</sup> | yield <b>4</b> <sup>[b]</sup>        | 4/5 <sup>[c]</sup>    | structure 4                 |  |
| OAc                                                               | <b>2a</b> , R = H                | 87% (78%)                     | <b>4a</b> , 74%                      | 8.1:1                 | 1                           |  |
|                                                                   | <b>2b</b> , R = OMe              | 81% (62%)                     | <b>4b</b> , 72%                      | 9.8:1                 | N N                         |  |
| NUNH (                                                            | <b>2c</b> , R = Me               | 91% (76%)                     | <b>4c</b> , 75%                      | 8.5:1                 |                             |  |
|                                                                   | 2d, R = Cl                       | 81% (68%)                     | <b>4d</b> , 60%                      | 8.4:1                 | R L                         |  |
| OAc                                                               | <b>2e</b> , R = OCF <sub>3</sub> | 91% (72%)                     | <b>4e</b> , 47%                      | 11.6:1 <sup>[d]</sup> | 1                           |  |
|                                                                   | 2f, R = OMe,                     | 81% (64%)                     | <b>4f</b> , 77%                      | 9.8 :1                | N                           |  |
| N∽ŃH ⟨¬⟩                                                          | <b>2g</b> , R = Br               | 87% (85%)                     | <b>4g</b> , 62 %                     | 8.2:1 <sup>[e]</sup>  |                             |  |
| R                                                                 |                                  |                               |                                      |                       |                             |  |
| OAc                                                               |                                  |                               |                                      |                       | Ŕ /                         |  |
| Me                                                                | 2h                               | 67% (57%)                     | <b>4h</b> , 85%                      | 8.5:1                 | Me N N                      |  |
| NUNH                                                              | 2.0                              | 07 /0 (07 /0)                 | <b>411</b> , 00 /0                   | 0.0.1                 |                             |  |
| OAc                                                               |                                  |                               |                                      |                       |                             |  |
| , I Br                                                            |                                  |                               |                                      |                       | BrNNN                       |  |
| NUNH ES                                                           | 2i                               | 96% (71%)                     | <b>4i</b> , 61%                      | 13.0:1 <sup>[d]</sup> |                             |  |
|                                                                   |                                  |                               |                                      |                       |                             |  |
|                                                                   |                                  |                               |                                      |                       |                             |  |
| └─NH \(                                                           | <sup>ə</sup> 2j                  | 90% (47%)                     | <b>4j</b> 51%                        | 9.4:1                 | Me N                        |  |
| Me-(                                                              | l                                |                               |                                      |                       | Me                          |  |
| OAc                                                               | Me                               |                               |                                      |                       | Me                          |  |
| ~\S                                                               |                                  |                               |                                      | [e]                   | N N                         |  |
| N NH TS                                                           | 2k                               | 75% (80%)                     | <b>4k</b> , 78%                      | 11.8:1 <sup>[e]</sup> | <sup>s</sup> T <sup>N</sup> |  |
| ~                                                                 |                                  |                               |                                      |                       |                             |  |
| , CAC                                                             |                                  |                               |                                      |                       | N                           |  |
| N NH                                                              | 21                               | 74% (72%)                     | <b>4I</b> , 79%                      | 13.5:1                | N_N_                        |  |
| s                                                                 |                                  |                               |                                      |                       | s-11                        |  |
| OAc                                                               |                                  |                               |                                      |                       | 1                           |  |
| $\sim$                                                            | 0                                | 000/ (700/)                   | Ann. 700/                            | 10.4.4                | N VN                        |  |
| N NH                                                              | 2m                               | 83% (79%)                     | <b>4m</b> , 70%                      | 10.4:1                | (T)                         |  |
|                                                                   | 'h                               |                               |                                      |                       | Ph                          |  |
| OAc                                                               |                                  |                               |                                      |                       |                             |  |
|                                                                   |                                  | 0004 (7004)                   |                                      | 5.0.4                 | NI N                        |  |
| NUNH                                                              | ) 2n                             | 82% (76%)                     | <b>4n</b> , 74%                      | 5.6:1                 |                             |  |
|                                                                   |                                  |                               |                                      | 5                     | Me                          |  |
| Me OAc                                                            |                                  |                               |                                      | 4                     |                             |  |
|                                                                   | 20                               | 79% (64%)                     | <b>4o</b> , 87%                      | 13.0:1 <sup>[f]</sup> | N N                         |  |
| N NH                                                              | _                                |                               |                                      |                       |                             |  |
| 1                                                                 |                                  |                               |                                      |                       |                             |  |
| N                                                                 | 20                               | 00% (50%)                     | In 210/                              | 1 1.1                 | )<br>N                      |  |
| <b>A</b>                                                          | 2p                               | 90% (59%)                     | <b>4p</b> , 31%                      | 4.4:1                 | Me                          |  |
| - • N                                                             | 2                                |                               |                                      |                       |                             |  |
|                                                                   | Ac 🖉                             | (700/)                        | 4 0001                               |                       | 1                           |  |
| 1/2                                                               | 2q                               | (73%)                         | <b>4q</b> , 82%                      |                       | N                           |  |
| N~NH (                                                            | ì                                |                               |                                      |                       |                             |  |
|                                                                   |                                  |                               | [c] .                                |                       |                             |  |


<sup>[a]</sup> <sup>1</sup>H NMR yield (isolated yield). <sup>[b]</sup> Isolated product. <sup>[c]</sup> 4/5 ratio determined by GC.
 <sup>[d]</sup> Benzimidazole (20 mol%) as additive. <sup>[e]</sup> 4-methylimidazole (20 mol%) as additive.
 <sup>[1]</sup> Ar-I(imid)\*OAc<sup>-</sup> was added before injection of the solvent; no additive was used.

The improved selectivity with these additives is likely due to the formation of Cu-heterocycle complexes. Indeed, best results were achieved by pre-mixing  $Cu(OTf)_2$  with the additive and base for 20 min, presumably favoring complex formation. We

observed that while  $Cu(OTf)_2$  alone did not dissolve in HFIP, a green solution formed upon addition of *N*-Me-benzimidazole.


Both electron-donating and mildly electron-withdrawing substituents were well tolerated on the aryl fragment (4b-i, Table 2). In fact, even a di-ortho substitution was tolerated, as illustrated in the successful synthesis of the highly hindered Nmesityl-5-iodoimidazole, 4j. We were particularly pleased with the successful incorporation of a second heterocycle, as in the 2- and 3-thienyl derivatives 4k and 4l. The 4-iodobiphenyl and 2iodonaphthalene derivatives could also be obtained in 70% and 74% yield, respectively (4m and 4n). In the case of the 4-Meimidazolyl iodane 20, a 13:1 4/5 selectivity was achieved, affording the target 4o in an 87% yield, with the selectivity benefiting from hindrance at the competing N site. The aryl transfer in the 2-Me derivative 2p was less efficient, providing 4p in 31% yield. The method was also applied to produce an 82% of the 4,5-diiodo derivative 4g. In general, separation between 4 and 5 proved rather straightforward.

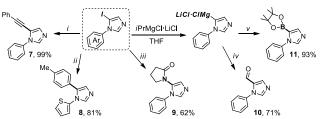
As mentioned earlier (see Scheme 1), the high selectivity towards **4** would stem from an intramolecular aryl migration from iodine to the proximal nitrogen.<sup>[16]</sup> Accordingly, a cross-over experiment between **2a**- $d_2$  and **2c** revealed a predominant formation of **4a**- $d_2$  and **4c** expected for an intramolecular process (Scheme 4A).<sup>[15]</sup> Small amounts of the 1,4 isomers were also produced, and for these, full aryl/imidazole scrambling was observed, indicating their origin in a bimolecular process. Indirect support for an intramolecular manifold was also obtained from the poor performance of the pyrazole-derived iodane **6** (<15% yield, Scheme 4B) lacking a proximal *NH* site.



Scheme 4. Cross-over experiment (A), and the assay with pyrazol (B).

We envisaged that **3** (formed upon deprotonation of **2**), binds a Cu(I)-OTf fragment through *N1* (Scheme 5).<sup>[17,18]</sup> Indeed, despite employing a Cu(II) precatalyst, the true catalytic species is likely a Cu(I) center.<sup>[18,19]</sup> The inclusion of MeOH in the coordination sphere of Cu (as a stand-in for a solvent molecule) was found to be beneficial to properly describe the Cu intermediate, and, given that the process was already moderately selective (up to 4:1) in the absence of an additive, this initial DFT study was performed in the absence of an added heterocycle. In the first step, the Ph group in **A** is transferred from I to Cu, leading to a formal Cu(III)-phenyl intermediate **B**.<sup>[19,20]</sup> This step features an activation barrier of 26.2 kcal mol<sup>-1</sup> (ts-1). A Localized Orbital analysis supports the change in Cu oxidation state and allows visualizing the flow of electrons (see small green spheres of ts-1 in Scheme 5 and Supporting Information). The final C-N bond is formed through an essentially barrierless reductive elimination step (Scheme 5, **ts-2**). Given the energetic proximity between **B** and **ts-2**, the mechanism resembles a Cu-guided concerted I-to-N phenyl migration. A preliminary investigation also revealed that the coordination of *N*-Me-benzimidazole to the Cu(I) center may disfavor the binding of two molecule of **3** to the same Cu center, hence enforcing an intramolecular Ph transfer.<sup>[21]</sup>




**Scheme 5.** A DFT profile for the Cu(I)-catalyzed aryl migration. Relative Gibbs energies in methanol (kcal mol<sup>-1</sup>).

In agreement with Scheme 5, the preformed zwitterionic **3** was also an excellent substrate even in the absence of a base (Eq 1).

$$\begin{array}{c} 5 \mod \% \operatorname{Cu}(\operatorname{OTf})_2 \\ N-\operatorname{Me-bemzimidazole} \\ (20 \mod \%) \\ 3 & HFIP, 50 \ ^\circ\mathrm{C}, \ \textit{no base} \end{array} \qquad \begin{array}{c} N \ N \\ + 5a \end{array} \qquad \begin{array}{c} \operatorname{Yield:} 72\% \ (4a) \\ \operatorname{Selectivity:} 12.8:1 \end{array} \qquad (1)$$

The reason for the poor performance of solvents such as  $CH_2CI_2$  is likely twofold. The deprotonation of **2** in  $CH_2CI_2$  appears sluggish, which negatively affects the selectivity, giving rise to by-molecular cross-over events (see Supporting Info). In addition, while the use of **3** does render the reaction moderately selective, the rate in  $CH_2CI_2$  remains low.

lodine introduced at the C5 position ushers the synthesis of a wide spectrum 1,5-imidazole derivatives (Scheme 6).



i) PhCCH, PdCl<sub>2</sub>/Cul, Ph<sub>3</sub>P, Et<sub>3</sub>N at 60 °C; ii) tol-B(OH)<sub>2</sub>, Pd(OAc)<sub>2</sub>, XanPhos, K<sub>3</sub>PO<sub>4</sub>, toluene, 120 °C; iii) pyrrolidinone, Cul, Cs<sub>2</sub>CO<sub>3</sub>, N,N'-dimethylenediamine in dioxane, 105 °C; iv) DMF in THF, -15 °C to rt (from Het-MgX); v) from **4a**: iPrMgCl·LiCl, iPrOBPin in THF

**Scheme 6.** Versatility of the 1-aryl-5-iodoimidazoles in the synthesis of 1,5-substituted imidazoles.

Thus, the 5-alkynyl and 5-aryl derivatives **7** and **8** were prepared *via* Pd-catalyzed C-C coupling reactions. In addition, a Cucatalyzed *C-N* bond formation was readily accomplished to give **9**.<sup>[22]</sup> The 5-iodoimidazole **2a** was also readily converted to an organomagnesium species,<sup>[23]</sup> which served as precursor to the 5-formyl and the 5-borylderivatives **10** and **11**.<sup>[23b,c]</sup>

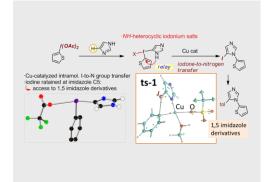
In conclusion, we have shown that the new (*NH*imidazolyI)aryl iodonium cation, readily obtained from imidazole and aryliodine diacetate, ArI(OAc)<sub>2</sub>, serves as an excellent stepping stone for the formation of *N*-arylimidazoles bearing an iodine substituent at the strategic C5 position. The method complements common existing protocols known to produce the sterically favored 1,4-derivatives. The method was tolerant of a variety of aryl substitution patterns, including mono- or bis-*ortho* substitution. Through subsequent transformation of the iodine group, the newly formed *N*1-aryl-5-iodoimidazole constitutes a valuable precursor to a wide range of products. Experimental and DFT data suggest that the selectivity is likely the result from an intramolecular copper-catalyzed iodine-to-nitrogen migration of the aryl fragments.

## Acknowledgements

This work was funded by Fundació ICIQ, MINECO (CTQ2013-46705-R, CTQ2014-54071-P and 2014-2018 Severo Ochoa Excellence Accreditation SEV-2013-0319) and the Generalitat de Catalunya (2014 SGR 1192). The CELLEX Foundation is gratefully acknowledged for a post-doctoral contract to S. I. and for support through the CELLEX-ICIQ HTE platform.

**Keywords:** imidazoles • hypervalent iodine • CH functionalization • copper catalysis • C-N coupling • DFT

- a) L. Zhang, X. M. Peng, G. L. V. Damu, R. X. Geng, X. H. Zhou, *Med. Research Rev.*, **2014**, *34*, 340–437; b) M. Gaba, C. Mohan, *Med. Chem. Res.* **2016**, *25*, 173–210.
- [2] For a review on metal-catalyzed imidazole functionalization, see F. Bellina, R. Rossi, Adv. Syn. Catal. 2010, 352, 1223-1276.
- For examples, of catalytic imidazole *N*-arylation, see: a) R. A. Altman, E.
   D. Koval, S. L. Buchwald, *J. Org. Chem.* 2007, 72, 6190–6199; b) S.
   Ueda, M. Su, S. L. Buchwald, *J. Am. Chem. Soc.* 2012, 134, 700–706.
- [4] a) J. P. Collman, M. Zhong, Org. Lett. 2000, 2, 1233-1236; b) X. O. Yu,
   Y. Yamamoto, N. Miyaura, Chem. Asian J. 2008, 3, 1517–1522; c) for a review, K. Sanjeeva Rao, T.-S. Wu, Tetrahedron 2012, 68, 7735-7754.
- [5] a) B. Delest, P. Nshimyumukiza, O. Fasbender, B. Tinant, J. Marchand-Brynaert, F. Darro, R. Robiette, *J. Org. Chem.* 2008, 73, 6816–6823; b)
  E. Van Den Berge, R. Robiette, *J. Org. Chem.* 2013, 78, 12220–12223; c) during the preparation of this manuscript, a method appeared for *N1*-alkylation of unprotected 1,3-azoles (at Amgen): S. Chen, R. F. Grace, A. A. Boezio, *Org. Lett.* DOI: 10.1021/acs.orglett.5b02994.
- [6] M. R. Smith, R. E. Maleczka, V. A. Kallepalli, E. Onyeozili, US 7,709,654 B2, May 4, 2010.
- [7] a) F. Bellina, S. Cauteruccio, L. Mannina, R. Rossi, S. Viel, J. Org. Chem. 2005, 70, 3997-4005; b) F. Bellina, M. Lessi, C. Manzini, Eur. J. Org. Chem. 2013, 5621–5630; c) F. Bellina, N. Guazzelli, M. Lessi, C. Manzini, Tetrahedron 2015, 71, 2298-2305.


- [8] For reading on the chemistry of λ<sup>3</sup>-iodanes, see: a) Hypervalent Iodine Chemistry. Modern Developments in Organic Synthesis, Editor: T. Wirth, Springer 2003; b) A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328–3435.
- [9] Examples include: a) I. Papoutsis, S. Spyroudis, A. Varvoglis, *Tetrahedron Lett.* **1996**, *37*, 913-916; b) I. Papoutsis, S. Spyroudis, A. Varvoglis, C. P. Raptopouloub, *Tetrahedron* **1997**, *53*, 6097-6112; for a mechanistic study, see: c) R. M. Moriarty, S. Tyagi, D. Ivanov, M. Constantinescu, J. Am. Chem. Soc. **2008**, *130*, 7564–7565.
- [10] a) B. Y. Karele, S. V. Kalnin', I. P. Grinberga, O. Ya. Neiland, *Chem. Heter. Comp.* **1973**, *9*, 226-229; b) for a review, see: O. Neilands, *Chem. Heterocyclic Comp.* **2003**, *39*, 1555-1569.
- [11] For the diaryliodonium renaissance: a) E. A. Merritt, B. Olofsson, Angew. Chem. Int. Ed. 2009, 48, 9052–9070; for recent examples of NH-pyrazole-based species, see b) M. Bielawski, J. Malmgren, L. M. Pardo, Y. Wikmark, B. Olofsson, ChemistryOpen 2014, 3, 19–22.
- [12] a) K. Morimoto, Y. Ohnishi, A. Nakamura, K. Sakamoto, T. Dohi, Y. Kita, *Asian J. Org. Chem.* 2014, *3*, 382 386; also see: b) T. Dohi, K. Morimoto, N. Takenaga, A. Goto, A. Maruyama, Y. Kiyono, H. Tohma, Y. Kita, *J. Org. Chem.* 2007, *72*, 109–116; c) D. Lubriks, I. Sokolovs, E. Suna, *J. Am. Chem. Soc.* 2012, *134*, 15436–15442; d) I. Sokolovs, D. Lubriks, E. Suna, *J. Am. Chem. Soc.* 2014, *136*, 6920–6928; e) G. L. Tolnai, A. Székely, Z. Makó, T. Gáti, J. Daru, T. Bihari, A. Stirling, Z. Novák, *Chem. Commun.* 2015, *51*, 4488-4491; f) R. Samanta, R. Narayan, J. O. Bauer, C. Strohmann, S. Sievers, A. P. Antonchick, *Chem.Commun.* 2015, *51*, 925; g) S. G. Modha, M. F. Greaney, *J. Am. Chem. Soc.* 2015, *137*, 1416–1419.
- [13] E. A. Veretennikov, A. E. Gavrilov, Chem. Heterocycl. Compd. 2007, 43, 1081-1082.
- [14] a) T. Dohi, M. Ito, K. Morimoto, Y. Minamitsuji, N. Takenaga, Y. Kita, *Chem. Commun.* **2007**, 4152–4154; b) T. Dohi, N. Yamaoka, I. Itani, Y. Kita, *Aust. J. Chem.* **2011**, *64*, 529–535.
- [15] No scrambling between 2a-d<sub>2</sub> and 2c was observed at 50 °C in the absence of Cu catalyst; see: a) B. Wang, R. L. Cerny, S. Uppaluri, J J. Kempinger, S. G. DiMagno, *J. Fluorine Chem.* 2010, *131*, 1113, b) J. Malmgren, S. Santoro, N. Jalalian, F. Himo, B. Olofsson, *Chem. Eur. J.* 2013, *19*, 10334.
- [16] A 1,3 migration has also been proposed in pyrazole arylation by Ar<sub>2</sub>I<sup>+</sup>: Z. Gonda, Z. Novák, *Chem. Eur. J.* **2015**, *21*, 16801–16806.
- [17] The DFT calculations show equi-energetic binding of Cu(I)OTf to either of the two N site.
- [18] For Cu-catalyzed N-arylation of azoles using diaryliodonium salts: S. K. Kang, S. H. Lee, D. Lee, Synlett 2000, 7, 1022-1024.
- [19] a) For an early mechanistic study, see: T. P. Lockhart, *J. Am. Chem.* Soc. **1983**, *105*, 1940-1946; for a Cu(I)-Cu(III) cycle with hypervalent iodonium, see b) R. J. Phipps, M. J. Gaunt, *Science* **2009**, *323*, 1593; c) B. Chen, X. L. Hou, Y. X. Li, Y. D. Wu, *J. Am. Chem. Soc.* **2011**, *133*, 7668–7671; d) A. J. Hickman, M. S. Sanford, *Nature*, *484*, 177–185; e) N. Ichiishi, A. J. Canty, B. F. Yates, M. S. Sanford, *Organometallics* **2014**, *33*, 5525–5534; f) M. G. Suero, E. D. Bayle, B. S. L. Collins, M. J. Gaunt, *J. Am. Chem. Soc.* **2013**, *135*, 5332–5335.
- [20] For Cu(III), see: A. Casitas, X. Ribas, Chem. Sci. 2013, 4, 2301-2318.
- [21] All solid state X-Ray structures have been deposited with Cambridge Structural Database as CCDC entries 1465191 - 1465196
- [22] a) A. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 7727–7729; b) M.; Wang, Z.; Zhang, F.; Xie, W. Zhang, Chem. Commun. 2014, 50, 3163-3165.
- [23] a) A. Krasovskiy, P. Knochel, *Angew. Chem. Int. Ed.* 2004, *43*, 3333–3336; for the use of *i*PrMgCl-LiCl in borylation, see: b) E. Demory, V. Blandin, J. Einhorn, P. Y. Chavant, *Org. Process Res. Dev.* 2011, *15*, 710-716; c) P. A. Bethel, A. D. Campbell, F. W. Goldberg, P. D. Kemmitt, G. M. Lamont, A. Suleman, *Tetrahedron* 2012, *68*, 5434-5444.

## Entry for the Table of Contents (Please choose one layout)

Layout 1:

## COMMUNICATION

A new family of imidazolyl aryliodonium salts serves as stepping stones *on route* to the *N*1-aryl-5-iodoimidazoles; the iodine substituent can now act as a "universal" placeholder to be transformed into further substituents. These new  $\lambda^3$ -iodanes are produced by treating the *NH*-imidazole with Arl(OAc)<sub>2</sub>, and are converted to *N*1-aryl-5-iodoimidazoles by a selective Cu-catalyzed aryl migration.



Yichen Wu, Susana Izquierdo, Pietro Vidossich, Agustí Lledós\* and Alexandr Shafir\*

Page No. – Page No.

NH-heterocyclic aryliodonium salts: a stepping stone to N1-aryl-5-iodoimidazoles