This is the peer reviewed version of the following article: *Angew. Chem. Int. Ed.* **2014**, 53, 11298 –11301, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/anie.201405982/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

An Alternative to the Classical α-Arylation: the Transfer of an Intact 2-Iodoaryl from ArI(O₂CCF₃)₂.

Zhiyu Jia, Erik Gálvez, Rosa María Sebastián, Roser Pleixats, Ángel Álvarez-Larena, Eddy Martin, Adelina Vallribera,* Alexandr Shafir*

((Dedication----optional))

Abstract: The α -arylation of carbonyl compounds is generally accomplished under basic conditions, both under metal catalysis and via aryl transfer from the diaryl λ^3 -iodanes. Here, we describe an alternative metal-free α -arylation using Arl(O_2CCF_3)₂ as the source of a 2-iodoaryl group. The reaction is applicable to activated ketones, such as α -cyanoketones and works with substituted aryliodanes. This formal CH functionalization reaction is thought to proceed via [3,3] rearrangement of an iodonium enolate. The final α -(2-iodoaryl)ketones are versatile synthetic building blocks.

The transfer of an aryl group to a position α to a carbonyl is an important class of the C-C bond-forming reactions, popularized with the introduction of the metal-catalysed (mainly Pd and Cu) coupling of the aryl halides (or equivalent) to enolates.^[1,2] Predating these advances, the metal-free α -arylation has been in use since the 1960's, following reports by Beringer *et al.* on the ability of the diaryl- λ^3 -iodanes (*e.g.* [Ph₂I]Cl) to transfer an aryl ligand to an enolate (Scheme 1).^[3,4] Recent studies revealed that both the *C*- and the *O*-iodonium enolate intermediates can lead to the product *via* a [1,2] or [2,3] shifts, respectively.^[5]

This methodology, including its asymmetric versions,^[6] has since gained importance as complementary to the cross-coupling, in turn stimulated further research into diaryl λ^3 -iodanes.^[7,8] Despite the attractiveness of the method, one of the two aryl groups must act as a "spectator" ligand extruded in the form of ArI. The choice of such group (*e.g.* mesityl) is often the key to a selective arylation using asymmetric diaryliodoanes.^[7b] Although the use of the mono-aryl iodonium species (*i.e.* PhIX₂) would thus be attractive, examples of such usage are scarce.^[9] As part of our own research on hypervalent iodine reactivity,^[10] we wish to report an α -arylation protocol that employs mono-aryl iodonium species, exemplified by phenyliodine bis(trifluoroacetate) (PIFA, **2a**).

[*]	Dr. Z. Jia, Dr. E. Gálvez, Prof. Dr. R. M. Sebastián, Prof. Dr.
	R. Pleixats, Prof. Dr. A. Vallribera
	Department of Chemistry and Centro de Innovación en
	Química Avanzada (ORFEO-CINQA)
	Universitat Autònoma de Barcelona, Bellaterra (Spain)
	E-mail: adelina.vallribera@uab.cat
	Dr. E. Martin, Dr. A. Shafir, Institute of Chemical Research of Catalonia (ICIO)

Avda. Països Catalans 16, 43007 Tarragona (Spain) E-mail: ashafir@iciq.es

[**] Work supported by ICIQ, MICINN (CTQ2011-22649), MEC (Cons. Ing. CSD2007-00006), Generalitat de Catalunya (2014SGR1192 and 2014SGR1105) and China Scholarship Council (fellowship to Z. J.). We thank MINECO for support through grant CTQ2013-46705-R and Severo Ochoa Excellence Accreditation 2014-2018 (SEV-2013-0319).

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.((Please delete if not appropriate))

Scheme 1. Beringer-type arylation of β-ketoesters using diaryliodonium salts.

We found that exposing the β -ketoester **1** to **2a** in CH₃CN led to an unexpected *ortho*-iodoaryl species **4** in 17% yield (Scheme 2); in contrast, none of **4** was obtained using PhI(OAc)₂ or PhI(OH)(OTs) (entries 1-3, Table 1). The formation of **4** was found to be solventdependent (entries 1, 4-6), with a 48% yield achieved using a 1:1 CH₃CN/CF₃CO₂H mixture. The addition of the trifluoroacetic anhydride (1.5 equiv) led to a 57% yield of **4** after 2h at room temp.; other additives proved detrimental (entries 7-9). Under the new conditions, the use of other hypervalent iodine reagent was now possible (entries 10-12), likely *via* the *in situ* formation of **2a**. Oxidative degradation of **1** accounts for the reaction mass balance.

Scheme 2. The outcome of treating the β-ketoester 1 with PhI(O₂CCF₃)₂, 2a.

Table 1. Screening of conditions in the arylation of 1 with 2a (from Scheme 3).[a]

Entry	Solvent	PhIX ₂	Additive ^[b]	% 4 ^[c]
1	CH₃CN	2a	-	17
2	CH₃CN	PhI(OAc) ₂	-	
3	CH₃CN	PhI(OH)(OTs)	-	
4	CH_2CI_2	2a	-	14
5	CF ₃ CO ₂ H	2a	-	34
6	CH ₃ CN-CF ₃ CO ₂ H	2a	-	48
7	CH ₃ CN-CF ₃ CO ₂ H	2a	(CF ₃ CO) ₂ O	57 ^[d]
8	$CH_3CN-CF_3CO_2H$	2a	(CF ₃ SO ₂) ₂ O	<5
9	CH ₃ CN-CF ₃ CO ₂ H	2a	H ₂ O	<5
10	CH ₃ CN-CF ₃ CO ₂ H	PhI(OAc) ₂	(CF ₃ CO) ₂ O	23
11	$CH_3CN-CF_3CO_2H$	PhI(OH)(OTs)	(CF ₃ CO) ₂ O	26
12	CH ₃ CN-CF ₃ CO ₂ H	PhIO	(CF ₃ CO) ₂ O	52

[a] Using 1.0 mmol 1, 1.3 mmol 2a in 4 mL of solvent for 4h at rt; [b] 1.5 equiv; [c] GC yield corrected vs int. C₆H₁₁CN; [d] % Isolated yield.

To probe the reaction scope, the cyclic β -ketoesters 5-7 were transformed into products 11-13 in 2h at room temp (Scheme 3, X-Ray structure of 13 shown). Similarly, the α -(2-iodoaryl)-diketones 14-16 were synthesized from the corresponding β -diketones 8-10.

Scheme 3. The α -iodoarylation of β -dicarbonyl compounds using PIFA.

Particularly efficient was the arylation of α -cyanoketones (Table 2). Thus, the cyclic substrates 17-19 underwent a smooth reaction with PIFA to give a 76-80% yield of 20a, 21 and 22 after 6-8h.^[11] Next, 17 was exposed to eight additional ArI(O₂CCF₃) reagents (2b-2i) prepared by a method developed by Zhdankin et al.^[12]. The use of the halo derivatives 2b-2e led to the formation of the dihaloaryl derivatives 20b (63%), 20c (65%), 20d (71%) and 20e (50%), with 20e featuring the iodine flanked by a C-Br and a C-C bonds. A 76% yield of the carboxy-substituted 20f was achieved, while the p-NO2 derivative 20g was isolated in a 68% yield. The transfer of a 2-iodo-3-Me-phenyl group took place with a 49% yield (prod. 20h). The coupling at the two ortho CH sites of the meta-Br iodane 2i took place in a 3:1 ratio, with the minor isomer 20i' (17%) observed as two rotamers (70:30) at -20 °C (Supp. Info). Interestingly, while secondary cyanoketones, including benzoylacetonitrile, proved unsuitable, the 2-benzoylpropionitrile, which only differs by a 2-Me group, gave the expected 23 in 60% yields. Finally, the protocol was used to prepare a 19 g batch of **20a** (74%, Scheme 4).^[13]

Table 2. lodoarylation of the α-cyanoketones.[a]

 $^{[a]}$ 1.3:1 ratio of **2:17**. Using 1 mmol **17** in CH₃CN/CF₃COOH (1:1, 4 mL). $^{[b]}$ From *m*-Br-C₆H₄I(O₂CCF₃), **2i**. $^{[c]}$ at 60 °C for 48 h.

Scheme 4. Gram-scale preparation of 20a; α -arylation conditions as in Table 2.

Although a mechanistic study is currently underway, this formal CH alkylation may arise *via* a [3,3] shift of an *O*-enolate **A** (Scheme 5), as seen in a related sulfoxide-mediated α -arylation.^[14] Alternatively, the selectivity could be explained by a [1,3] shift of a *C*-enolate **B**.

Scheme 5. Two of the possible enolate rearrangement paths leading to 4.

A priori, the [1,3] shift appears less likely. Indeed, while the Cenolates are intermediates in the formation of the iodonium ylides^[15,16], the quaternary analogs (such as \mathbf{B} in Scheme 3) are less frequent.^[5b] Furthermore, heating the isolated C-enolates typically leads to the formation of the α -C-O (e.g. C-OTs) bond.^[16] In our hands, the isolated phenyliododium ylide PhCOC(=IPh)CN, expected to give a C-enolate upon protonation,^[15c] failed to undergo the aryl transfer under the reaction conditions. Thus, we favour a [3,3] shift of an iodonium O-enolate (Scheme 3), akin the iodonio-Claisen rearrangement introduced by Ochiai et al. in 1990's.[17,18] Despite our efforts, such intermediates have so far proven elusive, possibly due to the rearrangement proceeding faster than the I-Oenolate formation.^[19] Not even the *o*,*o*-disubstituted 2j allowed for the trapping of the I-enolate, leading, instead, to non-arylative oxidation processes (Scheme 6A). We note that the iodine-free species 24 (5%), isolated during the synthesis of 20b, proved to be the para-fluoro regioisomer, rather than the initially assumed meta (Scheme 6B); the steps leading to 24 remain to be investigated.

Scheme 6. Additional observations in the arylation of 17.

The cyanoketones **20a** and **21** were readily converted to the amides **25** and **26**. While PIFA was unsuitable for the arylation of parent cyclohexanone, the arylketone **27** could, nevertheless, be obtained *via* the decarboxylation of **25** (Scheme 7, top). The substrates also underwent the Suzuki (Supp. Info) and Sonogashira coupling reaction (Scheme 7, bottom, prod. **28-30**).

Scheme 7. Functional group manipulation in the α -(2-iodoaryl) derivatives.

The reduction of **25** led to the alcohol **31** as a 4:1 *trans:cis* mixture (Scheme 8), with the solid state structures of both **25** and **31**-*trans* showing equatorial *o*-iodophenyl group.^[20] Preliminary tests showed that **31** can be converted to the hydroxy-spiroxindole **32** (X-Ray structure shown for *trans*) using Cu-catalyzed *C-N* coupling,^[21] with **32**-*cis* representing the spiroxindole portion of Gelsemine, a synthetically interesting natural product target (Scheme 8).^[22,23]

In summary, the ArI(O₂CCF₃)₂ reagents have been used in the α -arylation of β -dicarbonyls and α -cyanoketones. The aryl transfer takes place with retention of the iodide *ortho* to the newly formed C-C bond. The new method is complementary to the metal-catalyzed arylation, and could overcome the issues of the aryl loss associated with the use of the diaryliodonium salts. In a more general sense, the concept of a *reversible* formation of iodonium-based Claisen precursor, shown here with *O*-enolates, might open the door to the development of a range of new synthetic methods.

Scheme 8. Some simple transformations of the ketoamide 25.

Received: ((will be filled in by the editorial staff)) Published online on ((will be filled in by the editorial staff))

Keywords: α-arylation • dehydrogenative C-C coupling • hypervalent iodine • iodonio-Claisen • C-H functionalisation

- a) M. Palucki, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 11108-11109; b) J. M. Fox, X. Huang, A. Chieffi, S. L. Buchwald, J. Am. Chem. Soc. 2000, 122, 1360-1370; c) B. C. Hamann, J. F. Hartwig, J. Am. Chem. Soc. 1997, 119, 12382-12383.
- For reviews, see: a) C. C. C. Johansson, T. J. Colacot, Angew. Chem. Int. Ed. 2010, 49, 676-707; Angew. Chem. 2010, 122, 686–718; b) F. Bellina, R. Rossi, Chem. Rev. 2010, 110, 1082–1146.
- [3] a) F. M. Beringer, P. S. Forgione, *J. Org. Chem.* **1963**, 28, 714-717; b)
 F. M. Beringer, W. J. Daniel, S. A. Galton, G. Rubin, *J. Org. Chem.*

1966, *31*, 4315-4318; c) C. H. Oh, J. S. Kim, H. H. Jung, *J. Org. Chem.* **1999**, *64*, 1338-1340.

- [4] For the related usage of the Ar-Pb and Ar-Bi species, see a) J. T.
 Pinhey, B. A. Rowe, *Aust. J. Chem.* 1979, *32*, 1561-1566; b) D. H. R.
 Barton, J.-C. Blazejewski, B. Charpiot, D. J. Lester, W. B.
 Motherwell, M. T. Barros Papoula, *J. Chem. Soc., Chem. Commun.* 1980, 827 829.
- [5] a) M. Ochiai, Y. Kitagawa, M. Toyonari, *Arkivoc* 2003, 43-48; b) P. O. Norrby, T. B. Petersen, M. Bielawski, B. Olofsson, *Chem. Eur. J.* 2010, *16*, 8251-8254.
- [6] a) M. Ochiai, Y. Kitagawa, N. Takayama, Y. Takaoka, M. Shiro, J. Am. Chem. Soc. 1999, 121, 9233-9234; b) V. K. Aggarwal, B. Olofsson, Angew. Chem. Int. Ed. 2005, 44, 5516-5519; Angew. Chem. 2005, 117, 5652–5655; c) A. E. Allen, D. W. C. MacMillan, J. Am. Chem. Soc. 2011, 133, 4260–4263.
- [7] a) E. A. Merritt, B. Olofsson, *Angew. Chem. Int. Ed.* 2009, *48*, 9052-9070; *Angew. Chem.* 2009, *121*, 9214–9234; b) J. Malmgren, S. Santoro, N. Jalalian, F. Himo, B. Olofsson, *Chem. Eur. J.* 2013, *19*, 10334-10342.
- [8] For further reading on hypervalent iodine chemistry, see: b) V. V. Zhdankin, Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds, Wiley, Chichester, 2014.
- [9] PhIX₂ is also a net 2e⁻ oxidants in the α-arylation using ArH: a) Y. Kita, H. Tohma, K. Hatanaka, T. Takada, S. Fujita, S. Mitoh, H. Sakurai, S. Oka, *J. Am. Chem. Soc.* **1994**, *116*, 3684-3691; b) T. C. Turner, K. Shibayama, D. L. Boger, *Org. Lett.* **2013**, *15*, 1100-1103.
- [10] E. Faggi, R. M. Sebastián, R. Pleixats, A. Vallribera, A. Shafir, A. Rodríguez-Gimeno, C. Ramírez de Arellano, J. Am. Chem. Soc. 2010, 132, 17980-17982.
- [11] The mass balance is made up by the ketone α-oxidation products C-OH and C-O₂CF₃ and those stemming from oxidative ring-opening.
- [12] A. A. Zagulyaeva, M. S. Yusubov, V. V. Zhdankin, J. Org. Chem. 2010, 75, 2119-2122.
- [13] For the synthesis of α-cyanoketones: H.-J. Liu, T. W. Ly, C.-L. Tai, J.-D. Wu, J.-K. Liang, J.-C. Guo, N.-W. Tseng, K.-S. Shia, *Tetrahedron* 2003, *59*, 1209-1226.
- [14] a) X. L. Huang, N. Maulide, J. Am. Chem. Soc. 2011, 133, 8510-8513;
 b) X. L. Huang, S. Klimczyk, N. Maulide, Synthesis-Stuttgart 2012, 44, 175-183; for a related Au-catalyzed process, see c) A. B. Cuenca, S. Montserrat, K. M. Hossain, G. Mancha, A. Lledós, M. Medio-Simón, G. Ujaque, G. Asensio, Org. Lett. 2009, 11, 4906-4909.
- [15] a) E. Malamidou-Xenikaki, S. Spyroudis, *Synlett*, **2008**, 2725-2740; b)
 S. R. Goudreau, D. Marcoux, A. B. Charette, *J. Org. Chem.* **2009**, *74*, 470–473; c) K. Gondo, T. Kitamura, *Molecules* **2012**, *17*, 6625-6632.
- [16] G. F. Koser, A. G. Relenyi, A. N. Kalos, L. Rebrovic, R. H. Wettach, J. Org. Chem. 1982, 47, 2487-2489.
- [17] a) M. Ochiai, T. Ito, Y. Takaoka, Y. Masaki, J. Am. Chem. Soc. 1991, 113, 1319-1323; b) M. Ochiai, T. Ito, J. Org. Chem. 1995, 60, 2274-2275; c) H. R. Khatri, J. L. Zhu, Chem. Eur. J. 2012, 18, 12232-12236.
- [18] The mechanism also invoked by Porco *et al.* to explain the formation of the species C: J. L. Zhu, A. R. Germain, J. A. Porco, *Angew. Chem. Int. Ed.* 2004, *43*, 1239-1243.

- [19] Only the $PhI(O_2CCF_3)_2$ and the coupling product detected by NMR.
- [20] CCDC 1005725 -1005728 contains the supplementary crystallographic data for this paper.
- [21] For a review on Cu-catalyzed coupling, see: I. P. Beletskaya, A. V. Cheprakov, *Coord. Chem. Rev.* 2004, 248, 2337–2364; for Cu-catalyzed *N*-arylation of amides, see A. Klapars, J. C. Antilla, X. H. Huang, S. L. Buchwald, *J. Am. Chem. Soc.* 2001, 123, 7727–7729.
- [22] For strategies in Gelsemine synthesis: H. Lin, S. J. Danishefsky, *Angew. Chem.* 2003, 115, 38 – 53; *Angew. Chem. Int. Ed.* 2003, 42, 36 – 51.
- [23] In both cases, a competing C-O coupling yielded small amounts (5-15%) of the dihydrobenzofuran 33 (Figure 2, Supp. Info).

((Catch Phrase))

Z. Jia, E. Gálvez, R. M. Sebastián, R. Pleixats, Á. Álvarez-Larena, E. Martin, A. Vallribera,* A. Shafir* _____ Page – Page

An Alternative to the Classical α -Arylation: the Transfer of an Intact 2-Iodoaryl from ArI(O₂CCF₃)₂

Activated ketone derivatives, including β -dicarbonyl and α -cyanoketones, react with Arl(O₂CCF₃)₂ reagents to give an α -arylated product with the iodine atom retained *ortho* to the new C-C bond. The reaction takes place under acidic conditions. This formal CH functionalization reaction is thought to proceed via [3,3] rearrangement of an iodonium enolate. The final α -(2-iodoaryl)ketones are versatile synthetic building blocks.