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Ni-Catalyzed Reductive Amidation of Unactivated Alk

Eloisa Serrano,® Ruben Martin*@H"!

Abstract: A user-friendly Ni-catalyzed reductive amidation of
unactivated primary, secondary and tertiary alkyl bromides with
isocyanates is described. This catalytic strategy offers an efficient
synthesis of a wide range of aliphatic amides under mild conditions
and with an excellent chemoselectivity profile while avoiding the use
of stoichiometric and sensitive organometallic reagents.

Although unactivated alkyl halides are inherently disposed
towards destructive p-hydride elimination and homodimerization
pathways, these counterparts have successfully been employed
in a myriad of metal-catalyzed cross-coupling reactions.!"! At
present, the vast majority of these processes are based on
stoichiometric, well-defined, and in many instances, air-sensitive
organometallic species. Challenged by these drawbacks, the
recent years have witnessed the development of cross-
electrophile coupling processes,? becoming powerful and
practical synthetic alternatives to classical cross-coupling
reactions, achieving an otherwise similar molecular complexity
under milder reaction conditions while avoiding the need
organometallic reagents.

Despite the advances realized, the palette of electrophilic
partners in cross-electrophile processes remains rathegali
when compared with classical nucleophile/electrophil
It comes as a surprise that isocyanates, privileged
industrial settings,” have been virtually unexplo
electrophile events with organic (pseudo)halides.!
due to the strong binding properties of isocyan
transition metal complexes, leading to unproductive
or trimerization pathways.® At present, cross-electr
coupling reactions with isocyanates as coupling partners remai
confined to substrates that rapidly undergo oxidative addyi
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Scheme 1. Amide synthesis via C—C bond-formation using isocyanates.

We began our investigations by studying the reaction of 1a
with isocyanate 2a (Scheme 2). The choice of 2a was not
arbitrary, as primary amides can be prepared by simple
deprotection of the tert-butyl group.'" After judicious evaluation
of the reaction parameters,”'® we found that a combination of
inexpensive NiBr, (3 mol%), L2 (4.5 mol%)'® and Mn as
reducing agent in DMF at rt, delivered 3a in 86% isolated yield.
Importantly, only traces of B-hydride elimination and
homodimerization products were observed in the crude mixtures.
Notably, ligand optimization revealed a crucial influence of the
substitution pattern on the aromatic ring, with bipyridine ligands
lacking ortho substituents (entry 2) or structurally-similar
phenanthroline ligands L4-L5 providing inferior results (entries 4
and 5).'"""® Strikingly, the utilization of L3 had a deleterious



impact on yield when using 2a as substrate (entry 3),!'

revealing an interesting effect of the substituents located at the
ortho position. As shown in entries 6-12, the use of other
solvents, precatalysts, reducing agents or 1a-l/1a-OTs
analogues resulted in diminished yields of 3a,%" thus showing
the subtleties of our protocol. As expected, control experiments
revealed that all of the reaction parameters were critical for
success.!"

NiBr; (3 mol%)
L2 (4.5 mol%)

+  tBuNCO Mn (1.5 equiv)
Br DMF, rt NHBu
1a 2a 3a o
Entry Devation from standard conditions 3a (%)@}®]

1  none 95 (86)lc! A\ —
2 L1instead of L2 39 o N\
3  L3instead of L2 55 R N N R2
4 L4 instead of L2 33 R"R?2=H, L1
5 L5 instead of L2 30 R'=Me; RZ=H, L2
6  NiCly-glyme instead of NiBr, 80 R'R?=Me, L3
7 Ni(COD), instead of NiBr, 45 R? R?
8  MecCN instead of DMF 0
9 DMSO instead of DMF 0
10  Zninstead of Mn 0 R? R?
11 Using 1a-l instead of 1a 0 R'=Me; R?=H, L4
12 Using 1a-OTs instead of 1a 40 R'=Me; R"=Ph, LS

Scheme 2. Optimization of the Ni-catalyzed reductive amidation of 1a
ligand (4.5 mol%), Mn (0.75 mmol), DMF (1 mL) at rt, 16 h. ™ GC

n-decane as internal standard. ¥ Isolated yield. 1a-l = 1-iodo-4-p,
1a-OTs = 4-phenylbutyl 4-methylbenzenesulfonate.
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identical reaction conditions (3t-3x). A noteworthy observation
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Scheme 3. Scope of alkyl bromides and isocyanates. Reaction conditions: as
for Scheme 2, entry 1; Isolated yields, average of at least two independent
runs.” 1a (4.69 mmol). ' NiBr, (10 mol%), L2 (15 mol%). ! [(TMEDA)Ni(o-
toly)CI] (15 mol%), L2 (30 mol%). “ NiBr, (10 mol%), L3 (20 mol%), RNCO
(0.5 mmol). ! NiBr, (5 mol%), L2 (7.5 mol%).

A close survey of the literature data reveals that a unified
metal-catalyzed strategy for accessing primary, secondary and
tertiary amides remains elusive. In a final venture to unlock the
full potential of our protocol, we sought to intercept the in situ
generated IV upon subsequent addition of a proper electrophile,
thus accessing tertiary aliphatic amides in a one-pot fashion



(Scheme 4, top left). Although counterintuitive at first sight, the
preparation of 4a-4d illustrates the feasibility of this approach,
constituting a formal cross-coupling reaction of three different
electrophiles. On the other hand, primary amides could easily be
obtained by deprotection of the tert-butyl group with Sc(OTf);
(4e).”® Importantly, such a design principle allowed us to rapidly
convert 1a into 4f, thus constituting a powerful alternative
platform for handling flammable and toxic MeNCO in amidation
technologies (Scheme 4, bottom).?"! Taken together, the results
in Schemes 3-4 illustrate the prospective impact of our catalytic
amidation protocol for accessing a wide variety of amides from
simple starting materials in a straightforward manner.
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Scheme 4. Iterative C—C bond-forming scenarios.
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A versatile Ni-catalyzed reductive amidation of unactivated primary, secondary and pmides

tertiary alkyl bromides with isocyanates gives access to a wide range of aliphatic
amides. The reaction proceeds under mild conditions and is characterized by an
excellent chemoselectivity profile while avoiding the use of stoichiometric and
sensitive organometallic reagents.




