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Abstract
The canonical computational model for the cognitive process underlying
two-alternative forced-choice decision making is the so-called drift–diffusion model
(DDM). In this model, a decision variable keeps track of the integrated difference in
sensory evidence for two competing alternatives. Here I extend the notion of a
drift–diffusion process to multiple alternatives. The competition between n
alternatives takes place in a linear subspace of n – 1 dimensions; that is, there are n – 1
decision variables, which are coupled through correlated noise sources. I derive the
multiple-alternative DDM starting from a system of coupled, linear firing rate
equations. I also show that a Bayesian sequential probability ratio test for multiple
alternatives is, in fact, equivalent to these same linear DDMs, but with time-varying
thresholds. If the original neuronal system is nonlinear, one can once again derive a
model describing a lower-dimensional diffusion process. The dynamics of the
nonlinear DDM can be recast as the motion of a particle on a potential, the general
form of which is given analytically for an arbitrary number of alternatives.

Keywords: Decision making; Networks; Winner-take-all

1 Introduction
Perceptual decision-making tasks require a subject to make a categorical decision based
on noisy or ambiguous sensory evidence. A computationally advantageous strategy in do-
ing so is to integrate the sensory evidence in time, thereby improving the signal-to-noise
ratio. Indeed, when faced with two possible alternatives, accumulating the difference in
evidence for the two alternatives until a fixed threshold is reached is an optimal strategy,
in that it minimizes the mean reaction time for a desired level of performance. This is
the computation carried out by the sequential probability ratio test devised by Wald [1],
and its continuous-time variant, the drift–diffusion model (DDM) [2]. It would be hard
to overstate the success of these models in fitting psychophysical data from both animals
and human subjects in a wide array of tasks, e.g. [2–5], suggesting that brain circuits can
implement a computation analogous to the DDM.

At the same time, neuroscientists have characterized the neuronal activity in cortical
areas of monkey, which appear to reflect an integration process during DM tasks [6], al-
though see [7]. The relevant computational building blocks, as revealed from decades of
in-vivo electrophysiology, seem to be neurons, the activity of which selectively increases

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13408-019-0073-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13408-019-0073-4&domain=pdf
mailto:aroxin@crm.cat


Roxin Journal of Mathematical Neuroscience             (2019) 9:5 Page 2 of 23

with increasing likelihood for a given upcoming choice. Attractor network models, built
on this principle of competing, selective neuronal populations, generate realistic perfor-
mance and reaction times; they also provide a neuronal description which captures some
salient qualitative features of the in-vivo data [8, 9].

While focus in the neuroscience community has been almost exclusively on two-
alternative DM (although see [10]), from a computational perspective there does not seem
to be any qualitative difference between two or more alternatives. In fact, in a model, in-
creasing the number of alternatives is as trivial as adding another neuronal population
to the competition. On the other hand, how to add an alternative to the DDM framework
does not seem, on the face of things, obvious. Several groups have sought to link the DDM
and attractor networks for two-alternative DM. When the attractor network is assumed
linear, one can easily derive an equation for a decision variable, representing the difference
in the activities of the two competing populations, which precisely obeys a DDM [11]. For
three-alternative DM previous work has shown that a 2D diffusion process can be defined
by taking appropriate linear combinations of the three input streams [12]. The general n-
alternative case for leaky accumulators has also been treated [13]. In the first section of
the paper I will summarize and build upon this previous work to illustrate how one can
obtain an equivalent DDM, starting from a set of linear firing rate equations which com-
pete through global inhibitory feedback. The relevant decision variables are combinations
of the activity of the neuronal populations, and which represent distinct modes of com-
petition. Specifically, I will propose a set of “competition” basis functions which allow for
a simple, systematic derivation of the DDMs for any n. I will also show how a Bayesian
implementation of the the multiple sequential probability ratio test (MSPRT) [14–16] is
equivalent in the continuum limit to these same DDMs, but with a moving threshold.

Of course, linear models do not accurately describe the neuronal data from experi-
ments on DM. However, previous work has shown that attractor network models for two-
alternative DM operate in the vicinity of pitchfork bifurcation, which is what underlies
the winner-take-all competition leading to the decision dynamics [17]. In this regime the
neuronal dynamics is well described by a stochastic normal-form equation which right at
the bifurcation is precisely equivalent to the DDM with an additional cubic nonlinearity.
This nonlinear DDM fits behavioral data extremely well, including both correct and error
reaction times. In the second part of the paper I will show how such normal-form equa-
tions can be derived for an arbitrary number of neuronal populations. These equations
can be thought of as nonlinear DDMs and, in fact, are identical to the linear DDMs with
the addition of quadratic nonlinearities (for n > 2). Amazingly, the dynamics of such a
nonlinear DDM can be recast as the diffusion of particle on a potential, which is obtained
analytically, for arbitrary n.

2 Results
The canonical drift diffusion model (DDM) can be written

τ Ẋ = μ + ξ (t), (1)

where X is the decision variable, and μ is the drift or the degree of evidence in favor of
one choice over the other: we can associate choice 1 with positive values of X and choice
2 with negative values. The Gaussian process ξ (t) represents noise and/or uncertainty in
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the integration process, with 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t′)〉 = σ 2δ(t – t′). I have also explicitly
included a characteristic time scale τ , which will appear naturally if one derives Eq. (1)
from a neuronal model. The decision variable evolves until reaching one of two boundaries
±θ at which point a decision for the corresponding choice has been made.

It is clear that a single variable can easily be used to keep track of two competing pro-
cesses by virtue of its having two possible signs. But what if there are three or more al-
ternatives? In this case it is less clear. In fact, if we consider a drift–diffusion process such
as the one in Eq. (1) as an approximation to an actual integration process carried out by
neuronal populations, then there is a systematic approach to deriving the corresponding
DDM. The value of such an approach is that one can directly tie the DDM to the neuronal
dynamics, thereby linking behavior to neuronal activity.

I will first consider the derivation of a DDM starting from a system of linear firing rate
equations. This analysis is similar to that found in Sect. 4.4 of [13], although the model
of departure is different. In this case the derivation involves a rotation of the system so as
to decouple the linear subspace for the competition between populations from the sub-
space which describes non-competitive dynamical modes. This rotation is equivalent to
expressing the firing rates in terms of a set of orthogonal basis functions: one set for the
competition, and another for the non-competitive modes. I subsequently consider a sys-
tem of nonlinear firing rate equations. In this case one can once again derive a reduced set
of equations to describe the decision-making dynamics. The reduced models have pre-
cisely the form of the corresponding DDM for a linear system, but now with additional
nonlinear terms. These terms reflect the winner-take-all dynamics which emerge in non-
linear systems with multi-stability. Not only do the equations have a simple, closed-form
solution for any number of alternatives, but they can be succinctly expressed in terms of
a multivariate potential.

2.1 Derivation of a DDM for two-alternative DM
The DDM can be derived from a set of linear equations which model the competition be-
tween two populations of neurons, the activity of each of which encodes the accumulated
evidence for the corresponding choice. The equations are

τ ṙ1 = –r1 + sr1 – crI + I1 + ξ1(t),

τ ṙ2 = –r2 + sr2 – crI + I2 + ξ2(t),

τI ṙI = –rI +
g
2

(r1 + r2) + II + ξI(t),

(2)

where rI represents the activity of a population of inhibitory neurons. The parameter s
represents the strength of excitatory self-coupling and c is the strength of the global inhi-
bition. The characteristic time constants of excitation and inhibition are τ and τI respec-
tively. A choice is made for 1 (2) whenever r1 = rth (r2 = rth).

It is easier to work with the equations if they are written in matrix form, which is

ṙ = LLLr + I + ξ , (3)
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where

r =

⎛
⎜⎝

r1

r2

rI

⎞
⎟⎠ ,

LLL =

⎛
⎜⎝

–(1 – s)/τ 0 –c/τ
0 –(1 – s)/τ –c/τ

g/2τI g/2τI –1/τI

⎞
⎟⎠ ,

I =

⎛
⎜⎝

I1/τ
I2/τ
II/τI

⎞
⎟⎠ , ξ =

⎛
⎜⎝

ξ1(t)/
√

τ

ξ2(t)/
√

τ

ξI(t)/√τI

⎞
⎟⎠ .

In order to derive the DDM, I express the firing rates in terms of three orthogonal basis
functions: one which represents a competition between the populations e1, a second for
common changes in population rates ec and a third which captures changes in the activity
of the inhibitory cells eI . Specifically I write

r(t) = e1X(t) + eCmC(t) + eImI(t), (4)

where e1 = (1, –1, 0) and eC = (1, 1, 0) and eI = (0, 0, 1). The decision variable will be X,
while mC and mI stand for the common mode and inhibitory mode respectively.

The dynamics of each of these modes can be isolated in turn by projecting Eq. (2) onto
the appropriate eigenvector. For example, the dynamics for the decision variable X are
found by projecting onto e1, namely

e1 · ṙ = e1 · (LLLr) + e1 · I + e1 · ξ , (5)

and similarly the dynamics for mC and mI and found by projecting onto eC and eI respec-
tively. Doing so results in the set of equations

τ Ẋ = –(1 – s)X +
I1 – I2

2
+

ξ1(t) – ξ2(t)
2

,

τṁC = –(1 – s)mC – cmI +
I1 + I2

2
+

ξ1(t) + ξ2(t)
2

,

τIṁI = –mI + gmC + II + ξI(t).

(6)

If the self-coupling sits at the critical value s = 1, then these equations simplify to

τ Ẋ =
I1 – I2

2
+

ξ1(t) – ξ2(t)
2

,

τṁC = –cmI +
I1 + I2

2
+

ξ1(t) + ξ2(t)
2

,

τIṁI = –mI + gmc + II + ξI(t),

(7)

from which it is clear that the equation for X describes a drift–diffusion process. It is for-
mally identical to Eq. (1) with μ = I1–I2

2 and ξ (t) = ξ1(t)–ξ2(t)
2 . Importantly, X is uncoupled
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from the common and inhibitory modes, which themselves form a coupled subsystem.
For s �= 1 the decision variable still decouples from the other two equations, but the pro-
cess now has a leak term (or ballistic for s > 1) [18]. It has therefore been argued that ob-
taining a DDM from linear neuronal models requires fine tuning, a drawback which can
be avoided in nonlinear models in which the linear dynamics is approximated via multi-
stability; see e.g. [19, 20]. If one ignores the noise terms, the steady state of this linear
system is (X, mC , mI) = (X0, Mc, MI) where

MC =
I1 + I2

2cg
–

II

g
,

MI =
I1 + I2

2c
.

(8)

One can study the stability of this solution by considering a perturbation of the form
(X, mC , mI) = (X0, Mc, MI) + (δX, δmC , δmI)eλt . Plugging this into Eq. (7) one finds that
there is a zero eigenvalue associated with the decision variable, i.e. λ1 = 0, whereas
the eigenvalues corresponding to the subsystem comprising the common and inhibitory
modes are given by

λ2,3 = –
1

2τI

(
1 ±

√
1 – 4

τI

τ
cg

)
, (9)

which always have a negative real part. Therefore, as long as τI is not too large, perturba-
tions in the common mode or in the inhibition will quickly decay away. This allows one
to ignore their dynamics and assume they take on their steady-state values. Finally, the
bounds for the decision variable are found by noting that r1 = X + MC and r2 = –X + MC .
Therefore, given that the neuronal threshold for a decision is defined as rth, we find that
θ = ±(rth – MC).

2.2 Derivation of a DDM for three-alternative DM
I will go over the derivation of a drift–diffusion process for three-choice DM in some
detail for clarity, although conceptually it is very similar to the two-choice case. Then the
derivation can be trivially extended to n-alternative DM for any n.

The linear rate equations are once again given by Eq. (3), with

r =

⎛
⎜⎜⎜⎝

r1

r2

r3

rI

⎞
⎟⎟⎟⎠ ,

LLL =

⎛
⎜⎜⎜⎝

–(1 – s)/τ 0 0 –c/τ
0 –(1 – s)/τ 0 –c/τ
0 0 –(1 – s)/τ –c/τ

g/3τI g/3τI g/3τI –1/τI

⎞
⎟⎟⎟⎠ ,

I =

⎛
⎜⎜⎜⎝

I1/τ
I2/τ
I3/τ
II/τI

⎞
⎟⎟⎟⎠ , ξ =

⎛
⎜⎜⎜⎝

ξ1(t)/
√

τ

ξ2(t)/
√

τ

ξ3(t)/
√

τ

ξI(t)/√τI .

⎞
⎟⎟⎟⎠ .
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One once again writes the firing rates in terms of orthogonal basis functions, of which
there must now be four. The common and inhibitory modes are the same as before,
whereas now there will be two distinct modes to describe the competition between the
three populations, in contrast to just a single decision variable. Any orthogonal basis in
the 2D space for competition is equally valid. However, in order to make the choice sys-
tematic, I assume that the first vector is just the one from the two-alternative case, namely
(1, –1, 0, 0), from which it follows that the second must be (up to an amplitude) (1, 1, –2, 0).
Then for n alternatives I will always take the first n – 2 basis vectors to be those from
the n – 1 case. The last eigenvector must be orthogonal to these. Specifically, for n = 3,
r = e1X1(t) + e2X2(t) + eCmC(t) + eImI , where

e1 = (1, –1, 0, 0),

e2 = (1, 1, –2, 0),

eC = (1, 1, 1, 0),

eI = (0, 0, 0, 1).

(10)

One projects Eq. (3) onto the four relevant eigenvectors, which leads to the following
equations:

τ Ẋ1 = –(1 – s)X1 +
I1 – I2

2
+

ξ1(t) – ξ2(t)
2

,

τ Ẋ2 = –(1 – s)X2 +
I1 + I2 – 2I3

6
+

ξ1(t) + ξ2(t) – 2ξ3(t)
6

,

τṁC = –(1 – s)mC – cmI +
I1 + I2 + I3

3
+

ξ1(t) + ξ2(t) + ξ3(t)
3

,

τIṁI = –mI + gmC + II + ξI(t).

(11)

When s = 1 then the first two equations in Eq. (11) describe a drift–diffusion process in
a two-dimensional subspace, while the coupled dynamics of the common and inhibitory
modes are once again strongly damped. The DDM for three-alternative DM can therefore
be written

τ Ẋ1 =
I1 – I2

2
+

ξ1(t) – ξ2(t)
2

, (12)

τ Ẋ2 =
I1 + I2 – 2I3

6
+

ξ1(t) + ξ2(t) – 2ξ3(t)
6

. (13)

Note that the dynamics of the two decision variables X1 and X2 are coupled through the
correlation in their noise sources. The decision boundaries are set by noting that

r1 = X1 + X2 + MC ,

r2 = –X1 + X2 + MC ,

r3 = –2X2 + MC .

(14)

Therefore, given that the neuronal threshold for a decision is defined as rth we can set
three decision boundaries: 1 Population 1 wins if X2 = –X1 + rth – MC , 2 Population 2 wins
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if X2 = X1 + rth – MC and 3 Population 3 wins if X2 = –(rth – MC)/2. These three boundaries
define a triangle in (X,Y)-space over which the drift–diffusion process take place.

2.3 Derivation of DDMs for n-alternative DM
The structure of the linear rate equations Eq. (3) can be trivially extended to any num-
ber of competing populations. In order to derive the corresponding DDM one need only
properly define the basis functions for the firing rates, which was described above. The
common and inhibitory modes always have the same structure. If the basis functions are
ei and the corresponding decision variables Xi for i = [1, n – 1], then the firing rates are
r =

∑n–1
i=1 eiXi(t) and it is easy to show that the dynamics for the kth decision variable is

given by

τ Ẋk =
ek · I

ek · ek
+

ek · ξ
ek · ek

, (15)

as long as s = 1. The decision boundaries are defined by setting the firing rates equal to
their threshold value for a decision, i.e.

n–1∑
i=1

eiXi,b = rthu, (16)

where u = (1, 1, . . . , 1).
The basis set proposed here for n-alternative DM is to take for the kth eigenvector

ek = (1, 1, . . . , 1, –k, 0, . . . , 0), (17)

where the element –k appears in the (k + 1)st spot, and which is a generalization of the
eigenvector basis taken earlier for two- and three-alternative DM. With this choice, the
equation for the kth decision variable can be written

τ Ẋk =
ek · I
k + k2 +

ek · ξ
k + k2 . (18)

The firing rate for the ith neuronal population can then be expressed in terms of the de-
cision variables as

ri = –(i – 1)xi–1 +
n–1∑
l=i

xl + MC , (19)

which, given a fixed neuronal threshold rth, directly gives the bounds on the decision vari-
ables. Namely, the ith neuronal population wins when –(i – 1)xi–1 +

∑n–1
l=i xl + MC > rth.

The n-alternative DDM reproduces the well-known Hick’s law [21], which postulates
that the mean reaction time (RT) increases as the logarithm of the number of alternatives,
for fixed accuracy; see Fig. 1.

2.4 DDM for multiple alternatives as the continuous-time limit of the MSPRT
In the previous section I have illustrated how to derive DDMs starting from a set of linear
differential equations describing an underlying integration process of several competing
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Figure 1 Hick’s Law for multi-alternative DDMs. If the
accuracy is held fixed as the number of alternatives n
is increased, then the mean reaction time increases as
the logarithm of n. This is shown for both an accuracy
of 0.8 (circles) and 0.6 (squares). The inset shows that
the variance in the RT increases proportional to the
mean RT. Parameter values are σ = 1, τ = 20 ms. The
thresholds θPc=0.8 = 3 and θPc=0.6 = 0.9 for n = 2, and
are increased for n > 2 to achieve the same accuracy.
The initial condition is always taken to be Xi = 0 for all
i. The symbols are the average of 10,000 runs. The
solid curves in the main panel are fits to the function
RT = a + b ln (c + n). The solid lines in the inset are best-fit linear regressions

data streams. An alternative computational framework would be to apply a statistical test
directly to the data, without any pretensions with regards to a neuronal implementation.
In fact, the development of an optimal sequential test for multiple alternatives followed
closely on the heels of Wald’s work for two alternatives in the 1940s [22]. Subsequent work
proposed a Bayesian framework for a multiple sequential probability ratio test (MSPRT)
[14–16]. Here I will show how such a Bayesian MSPRT is equivalent to a corresponding
DDM in the continuum limit, albeit with moving thresholds.

I will follow the exposition from [16] in setting up the problem, although some notation
differs for clarity. I assume that there are n possible alternatives, and that the instantaneous
evidence for an alternative i is given by zi(t), which is drawn from a Gaussian distribution
with mean Ii and variance σ 2. The total observed input over all alternatives n and up to
a time t is written I and the hypothesis that alternative i has the highest mean Hi. Then,
using Bayes theorem, the probability that alternative i has the highest mean given the total
observed input is

Pr(Hi|I) =
Pr(I|Hi) Pr(Hi)

Pr(I)
. (20)

Furthermore one has Pr(I) =
∑n

k=1 Pr(I|Hk) Pr(Hk). Given equal priors on the different hy-
potheses, Eq. (20) can be simplified to

Pr(Hi|I) =
Pr(I|Hi)∑n

k=1 Pr(I|Hk)
. (21)

Finally, the log-likelihood of the alternative i having the largest mean up to a time t is
Li(t) = ln Pr(Hi|I), which is given by

Li(t) = ln
(
Pr(I|Hi)

)
– ln

( n∑
k=1

eln Pr(I|Hk )

)
. (22)

The choice of Gaussian distributions for the input leads to a simple form for the log-
likelihoods. Specifically, the time rate-of-change of the log-likelihood for alternative i is
given by

L̇i(t) = zi –
∑n

k=1 zkeyk∑n
k=1 eyk

, (23)
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where yi(t) =
∫ t

0 dt′zi(t′). Note that zi(t) = Ii + ξi(t), where ξi is a Gaussian white noise pro-
cess with zero mean and variance σ 2.

I can now write the Li in terms of the orthogonal basis used in the previous section,

L =
n–1∑
j=1

ejXj(t) + eCMC(t). (24)

Formally projecting onto each mode in turn leads precisely to the DDMs of Eq. (18) (with
τ = 1) for the decision variables, while the dynamics for the common mode is

ṀC =
1
n

n∑
j=1

zj –
∑n

k=1 zkeyk∑n
k=1 eyk

. (25)

For Bayes-optimal behavior, a choice i should be chosen if the log-likelihood exceeds a
given threshold, namely if

Li(t) = –(i – 1)Xi–1 +
n–1∑
l=i

Xl > θ – MC(t). (26)

Note that the log-likelihood is always negative and hence does not represent a firing rate,
as in the differential equations studied in the previous section. This does not pose a prob-
lem since we are simply implementing a statistical test. On the other hand, an important
difference with the case studied previously is the fact that, for the neuronal models, the
common mode was stable and converged to a fixed point. Therefore, the decision variable
dynamics was equivalent to the original rate dynamics with a shift of threshold. Here, that
is not the case. The common mode represents the normalizing effect of the log-marginal
probability of the stimulus, which always changes in time. Specifically, if we assume that
Il > Ii for all i, namely that the mean of the distribution is greatest for alternative l, then
the expected dynamics of the common mode at long times are

〈ṀC〉 =
1
n

n∑
j=1

Ij –
∑n

k=1 IkeIk t
∑n

k=1 eIk t

∼ 1
n

n∑
j=1

Ij – Il

= –
1
n

n∑
j=1

|Ij – Il|. (27)

Therefore the DDMs are only equivalent to applying the Bayes theorem if the threshold
is allowed to vary in time. In this case they are, in fact, mathematically identical and thus
give the same accuracy and reaction time distributions, as shown in Fig. 2.

On the other hand, an equivalent DDM with a fixed threshold has worse accuracy and
shorter reaction times. The way I choose the parameters for a fair comparison is to set the
fixed threshold such that the mean reaction time is identical to the Bayesian model for zero
coherence. Another important difference is that the error RTs are longer than the correct
RTs for the Bayesian model, see Fig. 2B, an effect which is commonly seen in experiment
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Figure 2 A Bayesian MSPRT is equivalent to DDMs with moving threshold. Accuracy and reaction time for
three alternatives. A. Accuracy as a function of the mean of input 1 for the Bayesian test, Eq. (23) (solid line), for
the DDM with moving threshold (dotted line) and the DDM with fixed threshold (dashed line). Note that the
Bayesian test and the DDM with MT give identical results and are, in fact, mathematically identical. B. Reaction
times for the Bayesian test (solid line), DDM with MT (dotted line) and DDM with fixed threshold (dashed line).
Orange lines are for error reaction times. Error bars indicate the standard error of the mean. Other parameter
values are: σ = 0.03, Ii = 0 for i = 2, 3, θ = 1.05 with MT and θ = 1.073 with fixed threshold. The thresholds were
chosen to give identical reaction times for I1 = 0. The values shown are averages over 10,000 trials for each
value of the input

(and is also reproduced by the nonlinear DDMs studied in the next section of the paper)
[17]. On the other hand correct and error RTs for the DDMs are always the same.

3 Derivation of a reduced model for two-choice DM for a nonlinear system
A more realistic firing rate model for a decision-making circuit allows for a nonlinear
input-output relationship in neuronal activity. For two-alternative DM the equations are

τ ṙ1 = –r1 + φ(sr1 – crI + I1) + ξ1(t),

τ ṙ2 = –r2 + φ(sr2 – crI + I1) + ξ2(t),

τI ṙI = –rI + φI

(
g
2

(r1 + r2) + II

)
+ ξI(t).

(28)

The nonlinear transfer function φ (φI ) does not need to be specified in the derivation.
The noise sources ξi are taken to be Gaussian white noise and hence must sit outside of
the transfer function; they therefore directly model fluctuations in the population firing
rate rather than input fluctuations. Input fluctuations can be modeled by allowing for a
non-white noise process and including it directly as an additional term in the argument of
the transfer function. Note that here I assume the nonlinearity is a smooth function. This
is a reasonable assumption for a noisy system such as a neuron or neuronal circuit. Non-
smooth systems, such as piecewise linear equations for DM, require a distinct analytical
approach; see, e.g., [23].

The details of the derivation for two alternatives can be found in [17], but here I give
a flavor for how one proceeds; the process will be similar when there are three or more
choices, although the scaling of the perturbative expansion is different. One begins by
ignoring the noise sources and linearizing Eq. (28) about a fixed-point value for which the
competing populations have the same level of activity, and hence also I1 = I2. Specifically
one takes (r1, r2, rI) = (R, R, RI) + (δr1, δr2, δrI)eλt , where δr � 1. In vector form this can be
written r = R + δreλt . Plugging this ansatz into Eq. (28) and keeping only terms linear in
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the perturbations leads to the following system of linear equations:

LLL(λ)δr = 0, (29)

where

LLL(λ) =

⎛
⎜⎝

τλ + 1 – sφ′ 0 cφ′

0 τλ + 1 – sφ′ cφ′

– g
2φ′

I – g
2φ′

I τIλ + 1

⎞
⎟⎠ (30)

and the slope of the transfer function φ′ is calculated at the fixed point. Note that the
matrix Eq. (30) has a very similar structure to the linear operator in Eq. (3). This system of
equations only has a solution if the determinant of the matrix is equal to zero; this yields
the characteristic equation for the eigenvalues λ. These eigenvalues are

λ1 = –
(1 – sφ′)

τ
, (31)

λ2,3 = –
(τ + τI(1 – sφ′))

2ττI
± 1

2ττI

√(
τ – τI

(
1 – sφ′))2 – 4ττIcgφ′φ′

I . (32)

Note that λ1 = 0 if 1 – sφ′ = 0, while the real part of the other two eigenvalues is always
negative. This indicates that there is an instability of the fixed point in which the activity
of the neuronal populations is the same, and that the direction of this instability can be
found by setting 1 – sφ′ = 0 and λ = 0 in Eq. (30). This yields LLL0 · δr = 0, where

LLL0 =

⎛
⎜⎝

0 0 cφ′

0 0 cφ′

– g
2φ′

I – g
2φ′

I 1

⎞
⎟⎠ , (33)

the solution of which can clearly be written δr = (1, –1, 0). This is the same competition
mode as found earlier for the linear system.

3.1 A brief overview of normal-form derivation
At this point it is still unclear how one can leverage this linear analysis to derive a DDM.
Specifically, and unlike in the linear case, one cannot simply rotate the system to uncouple
the competition dynamics from the non-competitive modes. Also, note that the steady
states in a nonlinear system depend on the external inputs, whereas that is not the case in
a linear system. In particular, the DDM has a drift term μ which ought to be proportional
to the difference in inputs I1 – I2, whereas to perform the linear stability we assumed I1 =
I2. Indeed, if one assumes that the inputs are different, then the fixed-point structure is
completely different. The solution is to assume that the inputs are only slightly different,
and formalize this by introducing the small parameter ε. Specifically, we write I1 = I0 +
ε2
I + ε3 Ī1, and I2 = I0 + ε2
I + ε3 Ī2. In this expansion, I0 is the value of the external
input which places the system right at the bifurcation in the zero-coherence case. In order
to describe the dynamics away from the bifurcation we also allow the external inputs to
vary. Specifically, 
I represents the component of the change in input which is common to
both populations (overall increased or decreased drive compared to the bifurcation point),
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while Īi is a change to the drive to population i alone, and hence captures changes in the
coherence of the stimulus. The particular scaling of these terms with ε is enforced by the
solvability conditions which appear at each order. That is, the mathematics dictates what
these are; if one chose a more general scaling one would find that only these terms would
remain.

The firing rates are then also expanded in orders of ε and written

r = r0 + εe1X(T) + O
(
ε2), (34)

where r0 are the fixed-point values, e1 is the eigenvector corresponding to the zero eigen-
value and X is the decision variable which evolves on a slow-time scale, T = ε2t. The slow-
time scale arises from the fact that there is an eigenvector with zero eigenvalue; when we
change the parameter values slightly, proportional to ε, the growth rate of the dynamics
along that eigenvector is no longer zero, but still very small, in fact proportional to ε2 in
this case.

The method for deriving the normal-form equation, i.e. the evolution equation for X,
involves expanding Eq. (28) in ε. At each order in ε there is a set of equations to be solved;
at some orders, in this case first at order O(ε3), the equations cannot be solved and a
solvability condition must be satisfied, which leads to the normal-form equation.

3.2 The normal-form equation for two choices
Following the methodology described in the preceding section leads to the evolution equa-
tion for the decision variable X,

τ∂T X = η(Ī1 – Ī2) + μ
IX + γ X3 + ξ (t), (35)

where for the case of Eq. (28), η = φ′/2, ξ (t) = (ξ1(t) – ξ2(t))/2 and the coefficients μ and γ

are

μ =
s2φ′′

cgφ′
I
,

γ =
s3(φ′′)2

2cgφ′φ′
I

(
s – cgφ′

I
)

+
s3φ′′′

6
,

(36)

see [17] for a detailed calculation. Equation (35) provides excellent fits to performance and
reaction times for monkeys and human subjects; see Fig. 3 from [17].

It is important to note that the form of Eq. (35) only depends on there being a two-way
competition, not on the exact form of the original system. As an example, consider another
set of firing rate equations

τ ṙ1 = –r1 + φ(sr1 – cr2 + I1),

τ ṙ2 = –r2 + φ(sr2 – cr1 + I2),
(37)

where rather than model the inhibition explicitly, an effective inhibitory interaction be-
tween the two populations is assumed. In this case the resulting normal-form equation is
still Eq. (35). In fact, performing a linear stability analysis on Eq. (37) yields a null eigen-
vector e1 = (1, –1). This indicates that the instability causes one population to grow at the
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expense of the other, in a symmetric fashion, as before. This is the key point which leads to
the normal-form equation. More specifically we see that for both systems r1 = R + X while
r2 = R – X, which means that if we flip the sign on the decision variable X and switch the
labels on the neuronal populations, the dynamics is once again the same. This reflection
symmetry ensures that all terms in X will have odd powers in Eq. (35) [17]. It is broken
only when the inputs to the two populations are different, i.e. by the first term on the r.h.s.
in Eq. (35).

As we shall see, the stochastic normal-form equation, Eq. (35), which from now on I will
refer to as a nonlinear DDM, has a very different form from the nonlinear DDMs for n > 2.
The reason is, again, the reflection symmetry in the competition subspace for n = 2, which
is not present for n > 2. Therefore, for n > 2 the leading-order nonlinearity is quadratic,
and, in fact, a much simpler function of the original neuronal parameters.

4 Three-alternative forced-choice decision making
The derivation of the normal form, and the corresponding DDM for three-choice DM dif-
fers from that for two-alternative DM in several technical details; these differences con-
tinue to hold for n-alternative DM for all n ≥ 3. Therefore I will go through the derivation
in some detail here and will then extend it straightforwardly to the other cases.

Again I will make use of a particular system of firing rate equations to illustrate the
derivation. I take a simple extension of the firing rate equations for two-alternative DM
Eq. (28). The equations are

τ ṙ1 = –r1 + φ(sr1 – crI + I1) + ξ1(t),

τ ṙ2 = –r2 + φ(sr2 – crI + I2) + ξ2(t),

τ ṙ3 = –r3 + φ(sr3 – crI + I3) + ξ3(t),

τI ṙI = –rI + φI

(
g
3

(r1 + r2 + r3) + II

)
+ ξI(t).

(38)

I first ignore the noise terms and consider the linear stability of perturbations of the state
in which all three populations have the same level of activity (and so I1 = I2 = I3 = I0), i.e. r =
R + δreλt , where R = (R, R, R, RI). This once again leads to a set of linear equations LLL(λ)δr =
0. The fourth-order characteristic equation leads to precisely the same eigenvalues as in
the two-choice case, Eqs. (31) and (32), with the notable difference that the first eigenvalue
has multiplicity two. This means that if 1 – sφ′ = 0 then there will be two eigenvalues
identically equal to zero and two stable eigenvalues. This is the first indication that the
integration process underlying the DM process for three choices will be two-dimensional.
The eigenvectors for the DM process are found by solving LLL0δr = 0, where

LLL0 =

⎛
⎜⎜⎜⎝

0 0 0 cφ′

0 0 0 cφ′

0 0 0 cφ′

– g
3φ′

I – g
3φ′

I – g
3φ′

I 1

⎞
⎟⎟⎟⎠ . (39)

There are many possible solutions; a simple choice would be e1 = (1, –1, 0, 0) and e2 =
(1, 1, –2, 0), and so eT

1 · e2 = 0. Note that in this linear subspace any valid choice of eigen-
vector will have the property that the sum of all the elements will equal zero; this will be
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true whatever the dimensionality of the DM process and reflects the fact that all of the
excitatory populations excite the inhibitory interneurons in equal measure.

To derive the normal form I once again assume that the external inputs to the three
populations differ by a small amount, namely (I1, I2, I3) = (I0, I0, I0) + ε2(Ī1, Ī2, Ī3), and then
expand the firing rates as r = R + ε(e1X1(T) + e2X2(T)) + O(ε2), where the slow time is
T = εt. Note that the inputs are only expanded to second order in ε, as opposed to third
order as in the previous section. The reason is that the solvability condition leading to
the normal-form equation for the 2-alternative case arises at third order. This is due to
the fact that the bifurcation has a reflection symmetry, i.e. it is a pitchfork bifurcation and
so only odd terms in the decision variable are allowed. The lowest-order nonlinear term
is therefore the cubic one. On the other hand, for more than two alternatives there is no
such reflection symmetry in the corresponding bifurcation to winner-take-all behavior.
Therefore the lowest-order nonlinear term is quadratic, as in a saddle-node bifurcation.

I expand Eq. (38) in orders of ε. In this case a solvability condition first arises at order ε2,
which also accounts for the different scaling of the slow time compared to two-choice DM.
Note that there are two solvability conditions, corresponding to eliminating the projection
of terms at that order onto both of the left-null eigenvectors of LLL0. As before, the left-null
eigenvectors are identical to the right-null eigenvectors. Applying the solvability condition
yields the normal-form equations

τ Ẋ1 =
φ′

2
(Ī1 – Ī2) + s2φ′′X1X2 +

1
2
(
ξ1(t) – ξ2(t)

)
,

τ Ẋ2 =
φ′

6
(Ī1 + Ī2 – 2Ī3) +

s2φ′′

6
(
X2

1 – 3X2
2
)

+
1
6
(
ξ1(t) + ξ2(t) – 2ξ3(t)

)
.

(40)

The nonlinear DDM Eq. (40) provides an asymptotically correct description of the full
dynamics in Eq. (38) in the vicinity of the bifurcation leading to the decision-making be-
havior. Figure 3(A) shows a comparison of the firing rate dynamics with the nonlinear
DDM right at the bifurcation. The appropriate combinations of the two decision variables
X1 and X2 clearly track the rate dynamics accurately, including the correct choice (here

Figure 3 Decision-making dynamics for three alternatives. (A) A comparison of the dynamics from
integration of the coupled firing rate equations Eq. (38) (solid lines) and from the DDM, Eq. (40) (dotted lines).
(B) The dynamics from three separate simulations of the DDM, Eq. (40), indicating three different winning
alternatives. Parameters are τ = 20 ms, τI = 10 ms, s = c = g =1, σ = 0.01. The function φ(x) = 0 for x < 0, x2 for
0≤ x ≤ 1 and 2

√
x – 3/4 for x > 1. For this choice of transfer function and these parameter values, there is a

bifurcation for I0 = 1/2, which is the value taken here. The steady-state firing rate R = 1/4. The threshold
θ = 1/2
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population 2) and reaction time. The nonlinear drift–diffusion process evolves in a trian-
gular section of the plane; see Fig. 3(B).

4.1 A note on the difference between the nonlinear DDM for 2A and 3A DM
The dynamics of the nonlinear DDM for 2A, Eq. (35), depends strongly on the sign of the
cubic coefficient γ . Specifically, when γ < 0 the bifurcation is supercritical, while for γ > 0
it is subcritical, indicating the existence of a region of multi-stability for 
I < 0. In fact, in
experiment, cells in parietal cortex which exhibit ramping activity during perceptual DM
tasks, also readily show delay activity in anticipation of the sacade to their response field
[24]. One possible mechanism for this would be precisely this type of multi-stability. When

I = 0, i.e. when the system sits squarely at the bifurcation, Eq. (35) is identical to its linear
counterpart with the sole exception of the cubic term. For γ < 0 the state X = 0 is stabilized.
In fact, the dynamics of the decision variable can be viewed as the motion of a particle in a
potential, which for γ < 0 increases rapidly as X grows, pushing the particle back. On the
other hand, for γ > 0 the potential accelerates the motion of X, pushing it off to ±∞. This
is very similar to the potential for the linear DDM with absorbing boundaries. Therefore,
the nonlinear DDM for two-alternatives is qualitatively similar to the linear DDM when
it is subcritical, and hence when the original neuronal system is multi-stable.

On the other hand, the nonlinear DDM for three alternatives, Eq. (40), has a much sim-
pler, quadratic nonlinearity. The consequence of this is that there are no stable fixed points
and the decision variables always evolve to ±∞. Furthermore, to leading order there is no
dependence on the mean input, indicating that the dynamics is dominated by the behav-
ior right at the bifurcation.a The upshot is that Eq. (40) is as similar to the corresponding
linear DDM with absorbing boundaries as possible for a nonlinear system without fine
tuning. This remains true for all n > 2.

This also means that neuronal systems with inhibition-mediated winner-take-all dy-
namics are generically multi-stable for n > 2, although for n = 2 they need not be. This is
due to the reflection symmetry present only for n = 2.

5 n-alternative forced-choice decision making
One can now extend the analysis for three-alternative DM to the more general n-choice
case. Again I start with a set of firing rate equations

τ ṙ1 = –r1 + φ(sr1 – crI + I1) + ξ1(t),

τ ṙ2 = –r2 + φ(sr2 – crI + I2) + ξ2(t),

...

τ ṙn = –rn + φ(srn – crI + In) + ξn(t),

τI ṙI = –rI + φI

(
g
n

n∑
j=1

rj + II

)
+ ξI(t).

A linear stability analysis shows that the eigenvalues of perturbations of the state r =
(R, R, . . . , R, RI) are given by Eqs. (31) and (32), where the first eigenvalue has multiplic-
ity n – 1. Therefore the decision-making dynamics evolves on a manifold of dimension
n – 1. The linear subspace associated with this manifold is spanned by n – 1 eigenvectors
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which are mutually orthogonal and the elements of which sum to zero. For n alternatives,
we take n – 1 eigenvectors of the form ek = (1, 1, . . . , 1, –k, 0, . . . , 0), for the kth eigenvector
(again, the –k sits in the (k+1)-st spot). Therefore one can write

r = R + ε

n–1∑
i=1

eiXi(T) + O
(
ε2). (41)

Following the same procedure as in the case of three-choice DM and applying the n – 1
solvability conditions at order O(ε2), one arrives at the following normal-form equation
for the kth decision variable for n alternatives:

τ Ẋk = φ′ eT
k · I

k + k2 +
s2φ′′

2(k + k2)

( k–1∑
j=1

(
j + j2)X2

j – k
(
k2 – 1

)
X2

k + 2
(
k + k2)Xk

n–1∑
j=k+1

Xj

)

+
eT

k · ξ (t)
k + k2 . (42)

It is illuminating to write this formula out explicitly for some of the decision variables:

τ Ẋ1 = φ′ 1
2

(Ī1 – Ī2) + s2φ′′X1

n–1∑
j=2

Xj,

τ Ẋ2 = φ′ 1
6

(Ī1 + Ī2 – 2Ī3) +
s2φ′′

6

(
X2

1 – 3X2
2 + 6X2

n–1∑
j=3

Xj

)
,

τ Ẋ3 = φ′ 1
12

(Ī1 + Ī2 + Ī3 – 3Ī4) +
s2φ′′

12

(
X2

1 + 3X2
2 – 12X2

3 + 12X3

n–1∑
j=4

Xj

)
,

...

τ Ẋn–1 = φ′ 1
n(n – 1)

( n–1∑
j=1

Īj – (n – 1)Īn

)

+
s2φ′′

n(n – 1)

( n–2∑
j=1

(
j + j2)X2

j – n(n – 1)2X2
n

)
,

(43)

where I have left off the noise terms for simplicity.
Surprisingly, the n – 1 equations for the decision variables in n-alternative DM can all

be derived from a single, multivariate function:

f (X1, . . . , Xn) = –a
n–1∑
j=1

〈ej · I〉Xj –
b
2

( n–2∑
j=1

(
j + j2)X2

j

n–1∑
i=j+1

Xi –
n–1∑
j=1

j(j2 – 1)
3

X3
j

)
. (44)

For the system of firing rate equations studied here the parameters a = φ′ and b = s2φ′′.
Then the equation for the kth decision variable is simply

τ Ẋk = –
1

k + k2
∂f
∂Xk

+
ek · ξ (t)
k + k2 . (45)
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The dynamics of the function f is given by

τ
∂f
∂t

=
n–1∑
j=1

∂f
∂Xj

Ẋj

= –
n–1∑
j=1

1
k + k2

(
∂f
∂Xj

)2

< 0, (46)

where I have ignored the effect of noise. Therefore the dynamics of the decision variables
can be thought of as the motion of a particle on a potential landscape, given by f . Noise
sources lead to a diffusion along this landscape.

6 Discussion
In this paper I have illustrated how to derive drift–diffusion models starting from mod-
els of neuronal competition for n-alternative decision-making tasks. In the case of linear
systems, the derivation consists of nothing more than a rotation of the dynamics onto a
subspace of competition modes. This idea is not new, e.g. [13], although I have made the
derivation explicit here, and have chosen as a model of departure one in which inhibition
is explicitly included as a dynamical variable. It turns out that a Bayesian implementation
of a multiple sequential probability ratio test is also equivalent to a DDM in the continuum
limit, albeit with time-varying thresholds.

For nonlinear systems, the corresponding DDM is a stochastic normal form, which is
obtained here using the method of multiple-scales [25]. The nonlinear DDM was obtained
earlier for the special case of two-alternative DM [17]. For four-alternative DM the nonlin-
ear DDM was obtained with a different set of competitive basis functions [26] to describe
performance and reaction time from experiments with human subjects. This led to a dif-
ferent set of coupled normal-form equations from those given by Eq. (42), although the
resulting dynamics is, of course, the same. The advantage of the choice I have made in
this paper for the basis functions, is that they are easily generalizable for any n, leading
to a simple, closed-form expression for the nonlinear DDM for any arbitrary number of
alternatives, Eq. (42).

An alternative approach to describing the behavior in DM tasks, is to develop a statisti-
cal or probabilistic description of evidence accumulation; see, e.g., [1, 13, 15, 22, 27]. Such
an approach also often leads to a drift–diffusion process in some limit, as is the case for
the Bayesian MSPRT studied here, and see also [28]. In fact, recent work has shown that
an optimal policy for multiple-alternative decision making can be approximately imple-
mented by an accumulation process with time-varying thresholds, similar to the Bayesian
model studied in this manuscript [29]. From a neuroscience perspective, however, it is
of interest to pin down how the dynamics of neuronal circuits might give rise to animal
behavior which is well described by a drift–diffusion process. This necessitates the anal-
ysis of neuronal models at some level. What I have shown here is that the dynamics in
a network of n neuronal populations which compete via a global pool of inhibitory in-
terneurons, can in general be formally reduced to a nonlinear DDM of dimension n – 1.
The nonlinear DDMs differ from the linear DDMs through the presence of quadratic (or
cubic for n = 2) nonlinearities which accelerate the winner-take-all competition. In prac-
tical terms this nonlinear acceleration serves the same role as the hard threshold in the
linear DDMs. Therefore the two classes of DDMs have quite similar behavior.
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The DDM is one of the most-used models for fitting data from two-alternative forced-
choice decision-making experiments. In fact it provides fits to decision accuracy and re-
action time in a wide array of tasks, e.g. [2, 3, 30]. Here I have illustrated how the DDM
can be extended to n alternatives straightforwardly. It remains to be seen if such DDMs
will fit accuracy and reaction times as well as their two-alternative cousin, although one
may refer to promising results from [12] for three alternatives. Note also that the form of
the nonlinear DDMs, Eqs. (44) and (45) does not depend on the details of the original neu-
ronal equations; this is what is meant by a normal-form equation. The only assumptions
needed for the validity of the normal-form equations are that there be global, nonlinear
competition between n populations. Of course, if the normal form is derived from a given
neuronal model, then the parameters a and b of the nonlinear potential Eq. (44) will de-
pend on the original neuronal parameters.

As stated earlier, the nonlinear DDMs can have dynamics quite similar to the standard,
linear DDM with hard thresholds. Nonetheless, there are important qualitative differences
between the two classes of models. First of all, both correct and error reaction-time dis-
tributions are identical in the linear DDMs, given unbiased initial conditions, whereas the
nonlinear DDMs generically show longer error reaction times [17], also a feature of the
Bayesian MSPRT. Because error reaction times in experiment indeed tend to be longer
than correct ones, the linear DDM cannot be directly fit to data. Rather, variability in the
drift rate across trials can be assumed in order to account for differences in error and cor-
rect reaction times; see, e.g., [30]. Secondly, nonlinear DDMs exhibit intrinsic dynamics
which reflect the winner-take-all nature of neuronal models with strong recurrent con-
nectivity. As a consequence, as the decision variables increase (or decrease) from their
initial state, they undergo an acceleration which does not explicitly depend on the value of
the external input. This means that the response of the system to fluctuations in the input
is not the same late in a trial as it is early on. Specifically, later fluctuations will have lesser
impact. Precisely this effect has been seen in the response of neurons in parietal area LIP
in monkeys in two-alternative forced-choice decision-making experiments; see Fig. 10B
in [31]. Given that network models of neuronal activity driving decision-making behavior
lead to nonlinear DDMs, fitting such models to experimental data in principle allows one
to link behavioral measures to the underlying neuronal parameters. In fact, it may be that
the linear DDM has been so successful in fitting behavioral data over the years precisely
because it is a close approximation to the true nonlinear DDM which arises in neuronal
circuits with winner-take-all dynamics.

Appendix
A.1 Derivation of the normal form for three-alternative DM
I assume the inputs to the three competing neuronal populations in Eq. (38) are slightly
different, namely Ii = I0 +ε2 Īi for i = {1, 2, 3}, which defines the small parameter ε � 1. The
firing rates are expanded as r = R + εr1 + ε2r2 + O(ε3) where R are the values of the rates
at the fixed point. Finally, we define a slow time T = εt. Plugging the expansions for the
inputs and rates into Eq. (38) and expanding leads to the following system of equations:

(LLL0 + εLLL1)
(
εr1 + ε2r2 + · · · ) = ε2N2 + · · · , (47)
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where to place the system at the bifurcation to winner-take-all behavior I choose 1 – sφ′ =
0. Then we have the linear operator

LLL0 =

⎛
⎜⎜⎜⎝

0 0 0 cφ′

0 0 0 cφ′

0 0 0 cφ′

–gφ′
I/3 –gφ′

I/3 –gφ′
I/3 1

⎞
⎟⎟⎟⎠ (48)

and

L1 =

⎛
⎜⎜⎜⎝

τ∂T 0 0 0
0 τ∂T 0 0
0 0 τ∂T 0
0 0 0 τI∂T

⎞
⎟⎟⎟⎠ , (49)

N2 = φ′

⎛
⎜⎜⎜⎝

Ī1

Ī2

Ī3

0

⎞
⎟⎟⎟⎠ +

1
2

⎛
⎜⎜⎜⎝

φ′′(sr11 – crI1)2

φ′′(sr21 – crI1)2

φ′′(sr31 – crI1)2

φ′′
I

g2

9 (r11 + r21 + r31)2

⎞
⎟⎟⎟⎠ . (50)

Now one solves the equations order by order. At O(ε)

LLL0r1 = 0. (51)

The solution can be written r1 = e1X1(T) + e2X2(T), where the right-null eigenvectors
of LLL0 are e1 = (1, –1, 0, 0) and e2 = (1, 1, –2, 0). The left-null eigenvectors, which satisfy
LLLT

0 e† = 0 are identical to the right-null eigenvectors in this case. Up to O(ε2):

LLL0r2 + LLL1r1 = N2. (52)

Given the solution r1, the forcing term has the form

N2 = φ′

⎛
⎜⎜⎜⎝

Ī1

Ī2

Ī3

0

⎞
⎟⎟⎟⎠ +

s2φ′′

2

⎛
⎜⎜⎜⎝

(X1 + X2)2

(–X1 + X2)2

4X2
2

0

⎞
⎟⎟⎟⎠ . (53)

This forcing term contains a projection in the left-null eigenspace of LLL0. This projection
cannot give rise to a solution in r2 and so must be eliminated. The solvability conditions
are therefore

e1 · (LLL1r1) = e1 · N2, e2 · (LLL1r1) = e2 · N2, (54)

which yield Eq. (40). Note that the resulting normal form has detuning or bias terms, pro-
portional to differences in inputs; these would be called ‘drifts’ in the context of a DDM,
but no term linearly proportional to the normal-form amplitudes, or ‘decision variables’,
as in the normal form for two-choice DM. Such a term describes the growth rate of the
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critical mode away from the bifurcation point: attracting to one side and repelling to the
other. To derive these terms we will need to continue the calculation to next order. First,
we must solve for r2. We note that, while r2 cannot have components in the directions e1

or e2, the components in the directions eC = (1, 1, 1, 0) and eI = (0, 0, 0, 1) (the common
and inhibitory modes which we discussed in the section on DDMs) can be solved for.

Therefore we take r2 = eCR2C + eIR2I and project

ec · (LLL0r2) = ec · N2, eI · (LLL0r2) = eI · N2, (55)

which yields

R2C =
1

gφ′
I
R2I , R2I =

1
3c

(Ī1 + Ī2 + Ī3) +
s2φ′′

3cφ′
(
X2

1 – X2
2
)
. (56)

Up to O(ε3):

LLL0r3 + LLL1r2 = N3, (57)

where

N3 =

⎛
⎜⎜⎜⎝

sφ′′(X1 + X2)((s – cgφ′
I)R2C + Ī1)

sφ′′(–X1 + X2)((s – cgφ′
I)R2C + Ī2)

–2sφ′′X2((s – cgφ′
I)R2C + Ī3)

0

⎞
⎟⎟⎟⎠

+
s3φ′′′

6

⎛
⎜⎜⎜⎝

(X1 + X2)3

(–X1 + X2)3

–8X3
2

0

⎞
⎟⎟⎟⎠ . (58)

Applying the solvability conditions gives the equations

0 = e1 · N3, 0 = e2 · N3. (59)

If we add the resulting terms to the normal-form equations derived at O(ε2) we have

τ∂T X1 =
φ′

2
(Ī1 – Ī2) + sφ′′

(
Ī1 + Ī2

2
+

(s – cgφ′
I)

3cgφ′
I

(Ī1 + Ī2 + Ī3)
)

X1

+
sφ′′

2
(Ī1 – Ī2)X2 + sφ′′X1X2

+
(s – cgφ′

I)
3cgφ′φ′

I
s3(φ′′)2X1

(
X2

1 – X2
2
)

+
s3φ′′′

6
X1

(
X2

1 + 3X2
2
)
,

τ∂T X2 =
φ′

6
(Ī1 + Ī2 – 2Ī3) + sφ′′

(
Ī1 + Ī2 + 4Ī3

6
+

(s – cgφ′
I)

3cgφ′
I

(Ī1 + Ī2 + Ī3)
)

X2

+
sφ′′

6
(Ī1 + Ī2)X1 +

s2φ′′

6
(
X2

1 – 3X2
2
)

+
(s – cgφ′

I)
3cgφ′φ′

I
s3(φ′′)2X2

(
X2

1 – X2
2
)

+
s3φ′′′

6
X2

(
X2

1 + 3X2
2
)
.

(60)
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A.1.1 Normal form for three-choice DM starting with a different neuronal model
If we consider a different neuronal model for three-choice DM we can still arrive at the
same normal-form equations. The only important factor is the presence of a linear sub-
space associated with a zero eigenvalue of multiplicity two and which is spanned by eigen-
vectors representing competition modes. As an example, consider the model

τ ṙ1 = –r1 + φ

(
sr1 –

c
2

(r2 + r3) + I1

)
,

τ ṙ2 = –r2 + φ

(
sr2 –

c
2

(r1 + r3) + I2

)
,

τ ṙ3 = –r3 + φ

(
sr3 –

c
2

(r1 + r2) + I3

)
,

(61)

in which the inhibition is not explicitly modeled as before. A linear stability analysis re-
veals that there is a zero eigenvalue with multiplicity two when cφ′

2 = 1 – sφ′ and 1 – sφ′ > 0.
Therefore, the instability mechanism here is the cross-inhibition, while before it was
the self-coupling. Nonetheless, it is only the structure of the corresponding eigenvectors
which matters. In this case the two eigenvectors with zero eigenvalue are e1 = (1, –1, 0) and
e2 = (1, 1, –2). Following the methodology described above leads to the identical normal-
form equations Eq. (40) with s replaced by s + c/2.

A.2 Normal-form equations for n-choice DM
A neuronal model for n-choice DM (n > 3) is

τ ṙ1 = –r1 + φ(sr1 – crI + I1) + ξ1(t),

τ ṙ2 = –r2 + φ(sr2 – crI + I2) + ξ2(t),

...

τ ṙn = –rn + φ(srn – crI + In) + ξn(t),

τI ṙI = –rI + φI

(
g
n

n∑
j=1

rj + II

)
+ ξI(t).

(62)

I again consider small differences in the inputs, Ii = I0 + ε2
Ii for i = [1, n], expand the
rates as r = R+εr1 +O(ε2), where R are the rates at the fixed point, and define the slow time
T = εt. If we take 1 – sφ′ = 0 then the matrix of the linearized system has a zero eigenvalue
with multiplicity n – 1. Carrying out an expansion up to O(ε2) as described above and
applying the n – 1 solvability conditions leads to the normal-form equations Eq. (42).
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