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ON THE VOLUME ELEMENTS OF A MANIFOLD WITH TRANSVERSE ZEROES

ROBERT CARDONA AND EVA MIRANDA

ABSTRACT. Moser proved in 1965 in his seminal paper [Mo] that two volume forms on a
compact manifold can be conjugated by a diffeomorphism, that is to say they are equivalent,
if and only if their associated cohomology classes in the top cohomology group of a man-
ifold coincide. In particular, this yields a classification of compact symplectic surfaces in
terms of De Rham cohomology. In this paper we generalize these results for volume forms
admitting transversal zeroes. In this case there is also a cohomology capturing the classifi-
cation: the relative cohomology with respect to the critical hypersurface. We compare this
classification scheme with the classification of Poisson structures on surfaces which are sym-
plectic away from a hypersurface where they fulfill a transversality assumption (b-Poisson
structures). We do this using the desingularization technique introduced in [GMW1] and
extend it to bm-Nambu structures.

1. INTRODUCTION

Moser path method is one of the most commonly used methods in symplectic geom-
etry and topology to prove that two given symplectic structures are equivalent. It first
appeared in in Moser’s celebrated article [Mo] where volume forms on a compact mani-
fold are classified. In particular in dimension 2, a volume form determines a symplectic
structure on a surface and Moser’s theorem gives a classification of symplectic surfaces.
Moser’s classification is given in terms of De Rham Cohomology: two forms belong to
the same cohomology class if and only if there exists a diffeomorphism conjugating them.
Forms conjugated by a diffeomorphism are called equivalent for short in this paper.

If we allow the top degree form to have transverse zeroes, asking for the same cohomol-
ogy class is not enough to apply Moser’s path method. In this case relative cohomology
captures the additional information needed.

Following [G] recall that given a smooth manifold M and a closed submanifold Z, with
i : Z ↪→M the inclusion. The relative De Rham cohomology groups of Z are given by the
complex

Ωp(M,Z) = {α ∈
∧p

T ∗M | i∗α = 0}.

We will see that in this new scenario additionally having the same relative cohomology
allows to apply the Moser’s trick.

Even if the existence of transversal zeroes allows non-orientability in this picture, we
will assume our manifolds to be orientable. For the sake of simplicity and mimicking the
surface case we will call these volume forms folded volume forms.
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2 ROBERT CARDONA AND EVA MIRANDA

In the last part of this paper we study the compatibility between the classification of bm-
symplectic surfaces obtained by Geoff Scott in [S] and our classification scheme. This affin-
ity is studied using the desingularization procedure developed in [GMW1] for 2-forms.
When m is odd, the desingularized structure is a folded-symplectic one. We will see that
two equivalent b2k+1-symplectic structures are sent to equivalent folded-symplectic forms.
We extend this desingularization procedure to volume forms and prove an extension of
this result for volume forms.

Acknowledgements: We are thankful to Rui Loja Fernandes, Ralph Klaasse, Ioan Marcut
and Marco Zambon for useful comments on the first version of this paper.

2. PRELIMINARIES

2.1. Folded singularities and diffeomorphisms of hypersurfaces. We will be studying
top power forms that vanish satisfying a transversal condition1. Mimicking from the case
of 2-forms [CGP, C] we call these structures folded volume forms. As a consequence of
transversality, the vanishing set for the top power will always be a closed hypersurface
called the critical set and that may have several connected components. In order to have
an equivalence relation between these singular forms, the following condition will be im-
posed on this critical set.

Definition 2.1. Two sets of smooth disjoint oriented hypersurfaces (S1, ..., Sn) and (S′1, ..., S
′
n)

are diffeomorphically equivalent if there is an orientation-preserving diffeomorphism ϕ :
M →M mapping the first set to the second one preserving orientations.

In the space of n disjoint oriented hypersurfaces on a manifold M this condition defines
an equivalence relation. Then for a set of n disjoint oriented hypersurfaces (S1, ..., Sn) we
denote [(S1, ..., Sn)] its class in the space of diffeomorphically equivalent classes.

Remark 2.2. When the hypersurfaces are the same we denote by Diff(M,Z) the set of
diffemorphisms preserving the set of hypersurfaces Z.

2.2. A crash course on bm-manifolds. The category of b-manifolds was developed by Mel-
rose [Me], in order to study manifolds with boundary. Most of the definitions can be used
replacing the boundary by any given hypersurface of the manifold:

Definition 2.3. A b-manifold (M,Z) is an oriented manifold M with an oriented hyper-
surface Z.

In order to have the b-category we introduce the notion of b-map.

Definition 2.4. A b-map is a map

f : (M1, Z1) −→ (M2, Z2)

so that f is transverse to Z2 and f−1(Z2) = Z1.

Not only maps have to be redefined in the b-category, but also vector fields and differ-
ential forms:

Definition 2.5. A b-vector field on a b-manifold (M,Z) is a vector field which is tangent to
Z at every point p ∈ Z.

1 This condition can be generalized replacing standard tranversality by transversality à la Thom.
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These vector fields form a Lie subalgebra of vector fields on M . Let t be a defining
function of Z in a neighborhood U and let (t, x2, ..., xn) be a chart on it. Then the set of
b-vector fields on U is a free C∞(U)-module with basis(

t
∂

∂t
,
∂

∂x2
, . . . ,

∂

∂xn

)
.

We deduce that the sheaf of b-vector fields on M is a locally free C∞-module and therefore
it is given by the sections of a vector bundle on M . This vector bundle is called the b-
tangent bundle and denoted by bTM . Its dual bundle is called the b-cotangent bundle
and is denoted bT ∗M .

By considering sections of powers of this bundle, we can form the so-called b-forms.

Definition 2.6. Let (M2n, Z) be a b-manifold and ω ∈ bΩ2(M) a closed b-form. We say that
ω is b-symplectic if ωp is of maximal rank as an element of Λ2( bT ∗pM) for all p ∈M .

In the class of Poisson manifolds a distinguished subclass is that of b-Poisson manifolds
which is indeed formed by b-symplectic manifolds together with a bi-vector field naturally
associated to the b-symplectic forms.

Definition 2.7. Let (M2n,Π) be an oriented Poisson manifold. Let the map

p ∈M 7→ (Π(p))n ∈ Λ2n(TM)

be transverse to the zero section. Then Π is called a b-Poisson structure on M . The hyper-
surface Z where the multivectorfield Πn vanishes,

Z = {p ∈M |(Π(p))n = 0}
is called the critical hypersurface of Π. The pair (M,Π) is called a b-Poisson manifold.

Asking the transversality condition is equivalent to saying that 0 is a regular value of
the map p −→ (Π(p))n. The hypersurface Z has a defining function obtained by dividing
this map by a non-vanishing section of

∧2n(TM).
The set of b-symplectic manifolds is in one-to-one correspondence with the set of b-

Poisson manifolds.
This correspondence is proved in [GMP2] and can be formulated as

Proposition 2.8. A two-form ω on a b-manifold (M,Z) is b-symplectic if and only if its dual
bivector field Π is a b-Poisson structure.

In this context we have a normal form theorem analogous to Darboux theorem for sym-
plectic manifolds. This results is also proved in [GMP2].

Theorem 1 (b-Darboux theorem). Let (M,Z, ω) be a b-symplectic manifold. Then, on a neigh-
borhood of a point p ∈ Z, there exist coordinates (x1, y1, ..., xn, yn) centered at p such that

ω =
1

x1
dx1 ∧ dy1 +

n∑
i=2

dxi ∧ dyi.

Note that with this chart, the symplectic foliation of (M,Π) has a specific form. It has
two open subsets where the Poisson structure has maximal rank given by {x1 > 0} and
{x1 < 0}. The hyperplane {x1 = 0} contains leaves of dimension 2n− 2 given by the level
sets of y1.

One of the research directions has been to generalize b-structures and consider more
degenerate singularities of the Poisson structure. This is the case of bm-Poisson structures,
for which ωn has a singularity of An-type in Arnold’s list of simple singularities [A1] [A2].
It is convenient, as in the b-case, to consider the dual approach and work with forms for
their study.
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Definition 2.9. A symplectic bm-manifold is a pair (M2n, Z) with a closed bm-two form ω
which has maximal rank at every p ∈M .

Such as in the b-symplectic case, a bm-Darboux theorem holds,

Theorem 2 (bm-Darboux theorem, [GMW1]). Let ω be a bm-symplectic form on (M2n, Z) and
p ∈ Z. Then we can find a coordinate chart (x1, y1, ..., xn, yn) centered at p such that the hyper-
surface Z is locally defined by {y1 = 0} and

ω = dx1 ∧ dy1
ym1

+

n∑
i=2

dxi ∧ dyi.

Dualizing we obtain the Darboux form for the bm-Poisson bivector field,

Π = ym1
∂

∂x1
∧ ∂

∂y1
+

n∑
i=2

∂

∂x1
∧ ∂

∂y1
.

A decomposition for these forms is given in [S].

Definition 2.10. A Laurent Series of a closed bm-form ω is a decomposition of ω in a tubular
neighborhood U of Z of the form

ω =
dx

xm
∧ (

m−1∑
i=0

π∗(α̂i)x
i) + β,

where π : U → Z is the projection, where each α̂i is a closed form on Z, and β is form on
U.

And there is a result concerning this decomposition of ω.

Proposition 2.11. In a tubular neighborhood of Z, every closed bm-form ω can be written in a
Laurent form and the restriction of

∑m−1
i=0 π∗(α̂i)x

i and β to Z are well-defined closed 1 and 2-
forms respectively.

3. A MOSER TRICK FOR TRANSVERSALLY VANISHING VOLUME FORMS

In order to apply the Moser’s path method in this case, we need to prove a few auxiliary
lemmas. Let Ω be a transversally vanishing volume form with critical set Z̄. In what
follows we will denote Z any of the connected components of the critical set and denote
by t a defining function of it.

Observe that given a top degree form µ on U , a neighborhood of Z, the form tµ is a
transversally vanishing volume form (in a possibly smaller neighborhood) having Z as
critical set if and only if µ is non-vanishing along Z.

Let Ω0 and Ω1 stand for two transversally vanishing volume forms at Z̄ which for sim-
plicity will be denoted as folded volume forms. In what follows we assume that the ori-
entation induced on each component of Z̄ is the same for both forms.

Lemma 3.1. For 0 ≤ s ≤ 1, the form

Ωs = (1− s)Ω0 + sΩ1

is a folded volume form having Z as critical set.

Proof. By the argument described above we may write Ω0 = tµ0 and Ω1 = tµ1 for µ0 and
µ1 not vanishing at Z and positive (because of matching orientations). Consider the path
µs = (1 − s)µ0 + sµ1 for 0 ≤ s ≤ 1. Observe that Ωs = tµs and thus µs does not vanish at
Z. �
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A consequence is that ιvΩs vanishes along Z, where v is any non-vanishing section of
TM (or TU ). By this lemma we deduce,

Claim 3.2. Given α ∈ Ωn−1(U), there exists a vector field u such that

ιuΩs = α

if and only if α|Z = 0.

Observe that since in M\Z̄ the form defines a volume, if the vector field exists it is
unique.

Assume now that both the usual and relative cohomology class with respect to Z of Ω0

and Ω1 coincide. Then there is β such that Ω0 − Ω1 = dβ. By definition we have that
i∗β = 0, where i : Z ↪→M is the inclusion of Z in M .

Lemma 3.3. We can assume that β satisfies β|Z = 0.

Proof. For this we need to recall the relative Poincaré lemma for which we follow [W].

Theorem 3 (Relative Poincaré lemma). Let N ⊂ M be a closed submanifold of M , and ω a
closed k-form of M whose pullback to N is zero. Then there is a (p− 1)-form λ on a neighborhood
of N such that dλ = ω and λ satisfies i∗λ = 0. If ω satisfies ω|N = 0 then λ can be chosen such
that λ|N = 0.

Since the relative cohomology vanishes, we have β such that i∗β = 0. In a neighborhood
U(Z) of Z, we can apply the relative Poincaré lemma and there exist a 1-form λ in this
neighborhood such that Ω0 − Ω1 = dλ and λ|Z = 0. In this neighborhood dβ = dλ and
i∗(β − λ) = 0 so the relative Poincaré lemma yields the existence of a form α such that
β − λ = dα. Observe that in Z we have dα|Z = β|Z .

Let ϕ be a bump function of a possibly smaller neighborhood of Z and consider ϕα a
global extension of α toM . Then the form γ = β−d(ϕα) satisfies γ|Z = 0 and Ω0−Ω1 = dγ.
This completes the proof of the lemma.

�

We can improve this statement by having a more explicit expression for β. This will give
some information about the isomorphism that we obtain via Moser’s trick.

Lemma 3.4. The form β can be written as β|U = t2α in a neighborhood of each connected compo-
nent of Z̄.

Proof. The fact the the relative cohomology of Ω0 − Ω1 is zero means that we can assume
that β vanishes at TM |z for every point z ∈ Z because of the previous lemma. In particular
in a possibly smaller neighborhood U it is of the form β = tα for an α ∈ Ωn−1(U). Observe
that dβ = dt∧α− tdα but also dβ = Ω0−Ω1 = tµ. Thus α needs to vanish at least linearly
at Z; in particular β vanishes at least at order 2 in t.

�

We can now state and prove a version of Moser’s theorem for transversally vanishing
volume forms.

Theorem 4. Let Ω0 and Ω1 be two folded volume forms with critical set Z̄ = Z1 ∪ ... ∪ Zn.
Assume that the cohomology classes of Ω0 and Ω1 coincide in both De Rham cohomology and
relative cohomology (i.e., [Ω0] = [Ω1] and [Ω0]r = [Ω1]r), then there exist a diffeomorphism ϕ such
that ϕ∗Ω1 = Ω0 that restricts to the identity along Z̄.

Proof. Since the De Rham cohomology class of Ω0 is the same as Ω1, the following equality
holds Ω0 − Ω1 = dβ.



6 ROBERT CARDONA AND EVA MIRANDA

Let Z be one of the connected components of Z̄ and let v be an oriented non-vanishing
section of TM . Denoting by U = U(Z), a neighborhood of Z, we may write Ωi|U = tµi
with µi is a non-vanishing form and t a defining function of Z, for i = 1, 2.

Consider now the path Ωs = (1−s)Ω0+sΩ1 for s ∈ [0, 1]. By Lemma 3.1, Ωs is vanishing
transversally at the same critical set thus Ωs|Z = 0. Because the relative cohomology class
at Z of the two forms is the same, in a possibly smaller neighborhood we may apply Lem-
mas 3.3 and 3.4 and around Z the form is written as β = t2α with t a defining function of
Z. The same applies for any of the connected components in Z̄. In order to apply Moser’s
trick we need to solve the equation

LvsΩs +
dΩs

ds
= 0,

which may be written as dιvsΩs = Ω0 − Ω1 = dβ. This is equivalent to finding a vector
field vs satisfying

ιvsΩs = β.

Because Lemma 3.2 applies for any curve in Z̄, there exist a unique solution to the equation.
Now since β vanishes to second order, vs vanishes to the first order in all the components
of the critical set. The flow ϕs of vs satisfies ϕ∗sΩs = Ω0, hence ϕ1 is the desired diffeomor-
phism. Observe that this diffeomorphism restricts to identity in the critical set. �

The theorem also applies if the critical sets of Ω0 and Ω1 are diffeomorphically equivalent
by an orientation-preserving diffeomorphism. The fact that the relative cohomology is
invariant for equivalent folded volume forms needs an extra assumption in the general
setting.

Theorem 5. Letϕ be a diffeomorphism in the arc-connected component of the identity in Diff(M,Z)
and Ω0 and Ω1 two folded volume forms such that ϕ∗Ω1 = Ω0 then the cohomology classes de-
termined by Ω0 and Ω1 are the same in De Rham cohomology and in relative cohomology (i.e.,
[Ω0] = [Ω1] and [Ω0]r = [Ω1]r).

Proof. Since ϕ belongs to the arc-connected component of the identity, we can indeed
construct an homotopy ϕt leaving Z invariant such that ϕ1 = ϕ and ϕ0 = id. Denote
Ω = Ω1 − Ω0.

We can use this homotopy to define a de Rham homotopy operator:

QΩ =

∫ 1

0
ϕ∗t (ιvtΩ)dt

where vt is the t-dependent vector field defined by the isotopy ϕt.
Using this formula, we can prove (see for instance pages 110 and 111 in [GS]) that [Ω1] =

[Ω0] as we can write Ω1 = Ω0 + dα for the 1-form α = QΩ. From the formula above we
can check that the relative cohomology class is also the same. Since Ω vanishes at Z, we
deduce that QΩ also vanishes at Z and in particular its pullback to Z is zero.

�

4. COMPATIBIITY OF THE CLASSIFICATION OF bm-STRUCTURES AND THE
DESINGULARIZATION TRANSFORMATION

4.1. Desingularizing bm-forms. In [GMW1] the desingularization of bm-forms was intro-
duced, leading to a radical new approach to the study of obstruction theory for the exis-
tence of bm-symplectic structure on a prescribed manifold.

We will now detail how this desingularization can be applied to any bm-form of any de-
gree. This idea was already applied to 1-forms for the study of singular contact structures
in [MiO].
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Let (M,Z) be a bm-manifold and ω a bm-form of degree p. Denote by t a defining function
for Z. Following section 3.2 in [S], ω can be written in a neighborhood U of Z as,

ω =
dt

tm
∧ α+ β,

for α ∈ Ωp−1(U) and β ∈ Ωp(U) where U is an ε-neighborhood of Z. This decomposition
is not unique as observed already in [GMP2] and [S].

In what follows , we consider as fixed the decomposition. As in [GMW1] two different
cases have to be considered depending on the parity of m.

Case I: even m .

Assume m = 2k and let f ∈ C∞(R) be an odd smooth function satisfying f ′(x) > 0 for
all x ∈ [−1, 1] as shown below,

and satisfying

f(x) =

{ −1
(2k−1)x2k−1 − 2 for x < −1

−1
(2k−1)x2k−1 + 2 for x > 1

outside the interval [−1, 1].
Scaling the function consider the function

fε(x) :=
1

ε2k−1
f
(x
ε

)
.

And outside the interval,

fε(x) =

{ −1
(2k−1)x2k−1 − 2

ε2k−1 for x < −ε
−1

(2k−1)x2k−1 + 2
ε2k−1 for x > ε

Replacing dx
x2k

by dfε in the semi-local expression on U and obtain

ωε = dfε ∧ α+ β.

We call it a fε-desingularization of ω.

Case II: odd m.

Consider m = 2k + 1, and consider a function f ∈ C∞(R) satisfying
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• f(x) = f(−x)
• f ′(x) > 0 if x > 0
• f(x) = x2 − 2 if x ∈ [−1, 1]
• f(x) = log(|x|) if k = 0, x ∈ R \ [−2, 2]
• f(x) = − 1

(2k+2)x2k+2 if k > 0, x ∈ R \ [−2, 2].

Taking ε the width of a tubular neighborhood of Z define

fε(x) :=
1

ε2k
f
(x
ε

)
and consider the form

ωε = dfε ∧ α+ β.

Observe that the fε-desingularization is again smooth and dfε vanishes transversally at Z.

Remark 4.1. When ω is closed, its Laurent decomposition can be used as in [GMW1] to
prove that ωε is also closed.

4.2. Compatibility of the different classification schemes. The aim of this section is to
relate the classification of b2k+1-symplectic surfaces and the theorem proved in section 3,
using the desingularization formulas described above. Recall that b-symplectic structures
were classified by O.Radko in [R]. In [R] Radko uses the notion of diffeomorphism class of
curves and uses cohomology and together with the modular period to classify stable Poisson
structures on surfaces. Later on Scott classifies bm-structures in surfaces (see theorem 6.7 in
[S]).

Theorem 6 (Scott, Classification of bm-surfaces). Let ω0, ω1 be two symplectic bm-forms on a
compact connected bm-surface (M,Z, jZ). The following are equivalent

(1) The forms ω0, ω1 are bm-symplectomorphic.
(2) Their bm-cohomology class is equal [ω0] = [ω1].
(3) The Liouville volumes of ω0 and ω1 agree, as do the numbers∫

γr

α−i,

for all connected components γr ⊂ Z and all 1 ≤ i ≤ k, where α−i are the terms appearing
in the Laurent decomposition of the two forms.

We can also consider top degree volume forms in bm-manifolds as studied in [MP1],
[MP2] and introduced in [N]. These forms, called bm-Nambu forms, satisfy also that if two
of them have the same bm-cohomology then they are isomorphic.
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Theorem 7. Let Θ0 and Θ1 be two bm-Nambu structures of degree n on a compact orientable
manifold Mn. If [Θ0] = [Θ1] in bm-cohomology then there exists a diffeomorphism ϕ such that
ϕ∗Θ1 = Θ0.

Remark 4.2. In fact two of these bm-Nambu structures are equivalent if and only if their
bm-cohomology classes coincide. This can be proved as it is done for surfaces in [S] and the
theorem can be stated as Theorem 6 replacing bm-symplectic forms by bm-Nambu struc-
tures. Since the bm-Nambu structures of top degree are closed bm-forms they admit a Lau-
rent decomposition. It is detailed in section 5 of [S] where the class in bm-cohomology [Θ]
is identified with its Liouville-Laurent decomposition ([Θsm], [α1], ..., [αm]). This is in fact
the bm-Mazzeo-Melrose isomorphism for the top degree

bmHn(M) ∼= Hn(M)⊕ (Hn−1(Z))m.

Using α1, ..., αm the modular periods of [Θ] associated to each modular (n−1)-form can be
determined and it can be proved that they are invariant as it is done in [DM] for b-Nambu
structures.

We can now state a compatibility theorem between this classification and its desingular-
ized form.

Theorem 8. Let Θ0 and Θ1 be two b2k+1-Nambu structures in a b2k+1-manifold that are equiva-
lent then for all ε the fε-desingularized forms are also equivalent as folded volume forms (i.e., there
exists a diffeomorphism conjugating them).

Proof. Since the forms are equivalent the classes satisfy [Θ0] = [Θ1] in b2k+1-cohomology.
Denote t a defining function of Z. The forms Θ0 and Θ1 can be written close to any

connected component of Z̄ as:

Θj = α′j + βj ∧
dt

t2k+1
,

where t is a defining function of the component of Z̄. Since α′j is a n form in M it can be
written as α′j = γj∧dt = γjt

2k+1∧ dt
t2k+1 . Hence denoting as αj := γjt

2k+1+βj , as in section
6.4 of [GMP2], the forms can be decomposed as

Θj = αj ∧
dt

t2k+1
.

Then Θ1 − Θ0 = (α0 − α1) ∧ dt
t2k+1 = dµ ∧ dt

t2k+1 because they have the same b2k+1-
cohomology class. Once applying the desingularizing procedure, we obtain,

Θ1,ε −Θ0,ε = dµ ∧ dfε,

and the right hand side looks locally as 2
ε2k+2 tdµ ∧ dt = d( 2

ε2k+2 tµ ∧ dt).

We deduce that for any ε the forms Θ1,ε and Θ0,ε have the same cohomology class inHn(M)
and same relative cohomology class in Hn(M,Z), because they are exact with respect to a
form β = 2

ε2k+2 tµ ∧ dt that vanishes at Z. Applying Theorem 4 we deduce that these two
forms are isomorphic as folded volume forms. �

As a remark, observe that the desingularized forms we consider depend on the decom-
position in use. We obtain a compatibility theorem for the classification of b2k+1-Nambu
structures. Thus equivalent b2k+1-Nambu structures are sent to equivalent folded volume
forms. When the dimension of the manifold is 2, the compatibility is hence between b2k+1-
symplectic forms and folded symplectic forms.
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POLITÈCNICA DE CATALUNYA/BARCELONA GRADUATE SCHOOL OF MATHEMATICS BGSMATH, EPSEB,
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