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Wave-Pinning by Global Feedback
in the Bistable Schlögl Model

F. Font, E. Moreno and S. Alonso

Abstract In this work, we introduce a wave-pinning mechanism in the bistable
Schlögl model. Wave-pinning is induced by dynamically varying the unstable fixed
pointwith a spatial global feedback.Wepresent numerical simulations of themodel in
one and two dimensions for typical parameter values. The wave-pinning mechanism
presented here can be used to reproduce the limited presence of phosphatidylinositol
(3,4,5)-trisphosphate (PIP3) in the membrane of Dictyostelium discoideum cells,
which plays a crucial role in the polarization and motility of the cell.

1 Introduction

Pattern formation is an ubiquitous phenomena in nature. Examples range from stripe
pattern on a zebra’s coat [3], to dissolution or growth of crystals in solutions [4].
Typically, these systems are modeled by means of nonlinear reaction–diffusion
equations. A minimal model for pattern formation was formulated by Friedrich
Schlögl to describe nonequilibrium phase transitions [5]. Although the model is
commonly known as the Schlögl model, the same model was previously formulated
by Zel’dovich and Frank–Kamenetskii to describe flame propagation [6]. In the past
50 years, the Schlögl model has been adapted to describe many other systems in
physics and biology, including gas discharge between two glass plates or cardiac
dynamics.

The bistable Schlögl model describing the evolution of a concentration field
u(x, t) is given by the reaction–diffusion equation
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Fig. 1 a Reaction term for the Schlögl model as a function of u. The fixed points are indicated
with arrows (in this case a = 0.4). b Concentration profiles for different times

∂u

∂t
= Du∇2u − k u(u − 1)(u − a), (1)

where D and k are the diffusion and reaction coefficients, respectively. In our case,
u(x, t) stands for the concentration of PIP3 in the cell membrane. The reaction term
R(u) = −k u(u − 1)(u − a) can be interpreted as the derivative of a potential field,
i.e., R(u) = −∂uV (u). In the one-dimensional case, the model has the analytical
(traveling wave) solution

u(x, t) = 1

2

[
1 − tanh

(1
2

√
k

2Du
(x − ct)

)]
, c =

√
2Du

k
(1 − 2a). (2)

From (2), one can see that the wave velocity c is positive, zero, or negative depending
on the value of the unstable fixed point a. In Fig. 1, we show the reaction term of the
Schlögl model and indicate the fixed points (panel (a)), and plot the traveling wave
solution at different times for typical parameter values (panel (b)).

In the next section, we introduce a global feedback relation in model (1) to control
the size of the wavefronts, in Sect. 3 we present and discuss numerical simulations of
the model with global feedback (in 1D and 2D) and, finally, we draw our conclusions
in Sect. 4.

2 Wave-Pinning by Global Feedback

A control of the size of the wave is important to model pattern formation in Dic-
tyostelium discoideum cells, where the area covered by the pattern is limited and
it never covers the entire cell membrane [1]. Thus, we introduce a global feedback
control mechanism in the Schlögl model that stops the wavefront when a critical size
is reached. The governing equation will now read



Wave-Pinning by Global Feedback in the Bistable Schlögl Model 147

∂u

∂t
= Du∇2u − ku(u − 1)(u − a(u)), (3)

with the feedback-control mechanism given by

a = a0 + �a
( ∫

A
u d A − p A

)
, (4)

where A is the area of the domain, �a the strength of the global feedback input,
and p the critical fraction of area covered by the wavefront. Note the way in which
the global feedback is introduced in the model differs from that used in previous
studies [2, 4], where the global feedback induces a vertical shift in the reaction term
R and, therefore, the value of the stable fixed points (in our case u = 0, u = 1) also
change.

3 Results and Discussion

In this section, we present numerical simulations of the model (3)–(4) in one and
two dimensions with no flux boundary conditions using an explicit finite differ-
ence scheme. The parameter values used are Du = 0.1, k = 1, a0 = 0.5, L = 45.
Although these values have physical meaning and corresponding units we omit their
description for brevity.

3.1 Simulations in 1D

In Fig. 2, we present the results of the simulations in 1D (setting ∇ = ∂x , A = L
and d A = dx in (3)–(4)), using the initial condition: u(x, 0) = 1 for x ∈ [0, L/2]
and u(x, 0) = 0 for x ∈ (L/2, L]. In panel (a), we show the evolution of the PIP3
concentration wave for the case p = 0.65 and�a = 0.02. We observe how the wave
travels forward until

∫
u dx = 0.65 L and then stops. The global feedback is pushing

the fixed point toward a = 0.5, which is precisely the value of the unstable fixed point
in the Schlögl model leading to a velocity of the traveling wave equal to 0 (see Eq.
(2)). To better visualize this phenomena, known as wave-pinning, we show in panel
(b) the position and velocity of the point in the domain where u = 0.5 that we define
as x = s(t), i.e., u(s(t), t) = 0.5.We observe that the speed of the wave, represented
by ṡ(t), increases during a short transient period and then decreases toward zero.

In panels (c) and (d), we show the reaction term and the potential, respectively,
at three different times during wave propagation. Initially, the fixed point u = 1 is
more stable thanu = 0.As time increases, (

∫
u dx − p L) → 0 anda → 0.5making

the potential symmetric with respect u = 0.5 and the fixed points u = 0 and u = 1
become equally stable.
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Fig. 2 a Space and time evolution of the concentration of PIP3 predicted by the model with global
feedback. b Speed (left y-axes) and position (right y-axes) of the wavefront as a function of time.
c Reaction term and d Potential at different times

3.2 Simulations in 2D

In Fig. 3, we compare 2D numerical simulations of the Schlögl model with and
without global feedback at several times. In this case, the imposed initial condition is
u(x, y, 0) = 1 for r ≤ L/2 and u(x, y, 0) = 0 for r > L/2, where r = √

x2 + y2.
The simulations for the Schlögl model without global feedback (panels (a)–(d))
show how a PIP3 concentration wave travels unperturbed through the medium and at
t = 720 has already coveredmost of the domain (the entirety of the domain is covered
around t ≈ 1000). In the case of the model with global feedback (panels (e)–(h)),
the wave evolves initially fast (in agreement with the observations for the 1D case),
then slows down, and eventually stops when the area covered equals the critical area
0.5 L2 (note for these simulations we have used p = 0.5 and and �a = 5 · 10−4).
We propose this mechanism as a mass conservation constraint to model the limited
availability of PIP3 on the cell membrane.
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Fig. 3 Propagation of a wave in the Schlögl model (a–d) and in the Schlögl model with global
feedback with p = 0.5 (e–h)

4 Conclusions

In this work, we have introduced a wave-pinning mechanism in the bistable Schlögl
model. The mechanism consists of the control of the total size of the wavefront
by means of a global feedback that varies dynamically the value of the unstable
fixed point of the model. The wave-pinning mechanism presented provides a route to
model the limited availability of PIP3 to form patterns that result in the polarization
and motility of Dictyostelium discoideum cells.
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