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Abstract
In this paper, we study the creation of zeros in a certain type of families of functions. The
families studied are given by the difference of two basic functions with a translation made
in the argument of one of these functions. The problem is motivated by applications in the
16th Hilbert problem and its ramifications. Here, we apply the results obtained to the study
of bifurcations of critical periods in the Loud family of quadratic centers.
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1 Introduction andMain Results

This paper is motivated by the study of bifurcations of critical points of the period function
in a neighborhood of a polycycle. A key problem in these studies is the breaking of sepa-
ratrices of the polycycle. It appears also in the study of limit cycles corresponding to fixed
points of the Poincaré return map of a family of planar vector fields. Contrary to the situa-
tion in the study of limit cycles, here by breaking a polycycle it is replaced by a polycycle
with less vertices. The simplest situation is when a polycycle with two vertices is broken
and a saddle loop polycycle is created.

The cyclicity (i.e., number of limit cycles appearing by perturbation) of hyperbolic
polycycles has been extensively studied in [1, 4, 15–18, 20, 24] among others.
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mardesic@u-bourgogne.fr; pavao.mardesic@u-bourgogne.fr
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On the other hand, in our study of critical points of the period function of Loud systems
[6, 7, 9, 10, 13] we gave a conjectural bifurcation diagram. We could not prove it in full gen-
erality due in part to some phenomena of breaking of separatrices of the polycycle bounding
the period annulus. Here we deal with this problem. The simplest setting is the breaking of
one separatrix (or two separatrices in the presence of symmetry).

This problem leads to the following type of equation

�(s; ε, μ) := F1(s;μ) − F2(s + ε; μ) = 0, (1)

where s = 0 corresponds to the polycycle, s ≥ 0 parametrizes the monodromic region,
ε ≈ 0 is the parameter controlling the breaking of the separatrix and μ regroups all other
parameters of the family, which we study in a neighborhood of a parameter value μ0.

We study the family of functions �ν(s) = �(s, ε;μ), for the parameter ν = (ε, μ) in a
neighborhood of ν0 = (0, μ0) and s ≥ 0 close to 0.

1.1 General Results

Given a family of functions the notion of cyclicity has been defined by Roussarie [19]. It
counts the maximal number of zeros born in the family from the origin. Here, we count
them with multiplicity.

Definition 1.1 [19] Let {�ν}ν∈V be a continuous family of smooth functions on (0, s0) and
fix ν0 ∈ V ⊂ R

k , i.e., let (s, ν) �−→ �ν(s) be a continuous mapping on (0, s0) × V . For
each δ, ρ > 0 let

N(δ, ρ)= sup
ν∈Bρ(ν0)∩Int V

{number of isolated zeros of �ν in (0, δ), counted with multiplicity}.

We define the cyclicity Z(�ν, ν0) ∈ N ∪ {0,∞} by

Z(�ν, ν0) = inf
δ,ρ>0

N(δ, ρ)

We say that a ν0 ∈ V is a regular value of the parameter if Z(�ν, ν0) = 0 and that it is a
bifurcation value of the parameter otherwise.

The number N(δ, ρ) counts the maximal number of zeros born in the interval (0, δ) for
the parameter in a ρ-neighborhood of ν0. The cyclicity Z(�ν, ν0) counts the number of
only those which survive when the size of neighborhood in phase and parameter space tend
to zero. A value ν0 ∈ V is a bifurcation value if and only if there exists a sequence (νn, sn)

with sn > 0 and νn ∈ Int V converging to (ν0, 0) such that �νn(sn) = 0 for all n.
In Theorem A, we study the cyclicity of a family of functions of the form (1). The

Theorem has two parts. First part is more general and relatively simple. It gives cyclicity
Z = 0. We include it here for completenes and because we use it in applications. The second
part gives a stronger conclusion (Z = 1), but under more specific hypothesis. It presents the
main part of Theorem A.

We say that a family of functions F(s;μ) tends to L(μ) as s → 0+ with a uniformly
positive (resp. negative) sign at μ0 if for every ε > 0, there exists δ > 0 and a neighborhood
W of μ0 such that for all μ ∈ W and every 0 < s < δ, we have 0 < F(s;μ) − L(μ) < ε

(resp. −ε < F(s;μ) − L(μ) < 0). For example, the family F(s;μ) = s(s − μ) tends
uniformly to L(μ) ≡ 0 but not with uniform sign at μ0 = 0.
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In order to obtain our principal results on higher cyclicity (Z > 0), in the second part
of Theorem A we particularize the family of functions (1), by requiring that the functions
Fi(s, μ), i = 1, 2, are of the form

Fi(s, μ) = fi(s, μ)(ci(μ) + ψi(s, μ)), ci(μ0) �= 0. (2)

with

(a) ci(μ), fi(s;μ) and ψi(s;μ) continuous functions, with fi and ψi defined on (0, s0)×U ,
(b) for each μ ∈ U , ψi( · ; μ) and fi( · ;μ) smooth functions on (0, s0),
(c) fi(s;μ), ψi(s; μ) and Dψi(s;μ) tend to zero as s → 0+ uniformly on compact sets

in μ, where D = s∂s is the Euler differential operator.

Definition 1.2 We write f1 ≺μ0 f2 (i.e., f1 precedes f2 at μ0) if

f2(s; μ)

f1(s; μ)
−→ 0 as s → 0+ uniformly on a neighborhood of μ0.

We say that f1 and f2 are orderable at μ0 if f1 ≺μ0 f2 or f2 ≺μ0 f1. Finally, we write
f1 ∼μ0 f2 if

f2(s; μ)

f1(s; μ)
−→ 1 as s → 0+ uniformly on a neighborhood of μ0.

For a given μ0 ∈ U , we define the set of admissible functions at μ0 as

Aμ0 :=
{
sλ(μ) : λ ∈ C 0(U) with λ(μ0) > 0

}⋃{
sω(s; α(μ)) : α ∈ C 0(U) with α(μ0) = 0

}
,

(3)
where recall that

ω(s; α) :=
{

s−α−1
α

if α �= 0,

− log s if α = 0,
(4)

is the Ecalle-Roussarie compensator [20].
Notice also that the admissible functions fi(s; μ) tend to zero as s → 0+ with a

uniformly positive sign.

Theorem A Consider a family of functions �ε,μ(s) = �(s, ε, μ) given by (1), for ν =
(ε, μ) ∈ V , where V = [0, ε0)×U , for some ε0 > 0 and U is an open neighborhood of
μ0 ∈ R

k−1.

(i) We assume that the functions Fi(s;μ) tend uniformly on compact neighborhoods of
μ0 to continuous real valued functions Li(μ), i = 1, 2, s → 0+.

(a) If L1(μ0) �= L2(μ0) then ν0 = (0, μ0) is not a bifurcation value, i.e.,
Z(�ν, ν0) = 0.

(b) Assume that Fi(s, μ) tend uniformly to Li(μ) as s → 0+ on compact neighbor-
hoods of μ0 with uniform sign. If L1(μ0) = L2(μ0) but Fi − Li is uniformly of
the opposite sign, then nu0 = (0,mu0) is not a bifurcation value of �ν(s), i.e.,
Z(�ν, ν0) = 0.

(ii) Assume that Fi are given in (2) where fi ∈ Aμ0 (see (3)) and ψi , ci , i = 1, 2, are as
above. Suppose that f1 and f2 are orderable at μ0. Then, the following assertions are
equivalent:

(a) ν0 = (0, μ0) is a bifurcation value for the family {�ν}ν∈V ,
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(b) f1 ≺μ0 f2 and c1(μ0)c2(μ0) > 0,
(c) Z(�ν, ν0) = 1.

The proof of Theorem A shows the following:

Corollary 1.3 Under the assumptions of (ii) in Theorem A, if ν0 = (0, μ0) is a bifurcation
value for the family {�ν}ν∈V then there exist δ > 0, a neighborhood B of ν0 and a contin-
uous function v : B −→ R with v(0, μ0) = 0 such that �(s; ν) = 0 with s ∈ (0, δ) and
ν ∈ B ∩ IntV if and only if s = σ(ν), with

σ(ε, μ) = σ0(ε, μ)(1 + v(ε, μ)) and σ0(ε; μ) := f −1
1

(
c2(μ)

c1(μ)
f2(ε;μ); μ

)
.

The following example is twofold. It illustrates the appearance of the translated families
problem in the context of creation of limit cycles. It is the model example of the displace-
ment function (controling limit cycles) of a generic polycycle with two hyperbolic vertices
and two separatrices being broken [17]. It also gives an example where the uniform sign
condition is not fulfilled.

Example 1.4 Fix r2 > r1 > 0, μ0 = 0 and consider the equation (1) with F1(s;μ) = sr1+μ

and F2(s;μ) = sr2 which gives

�(s; ε, μ) := sr1 + μ − (s + ε)r2 = 0.

In that case we have L(μ) = μ which changes sign at μ = 0. Let us sketch the argument
showing that Z = 2.

Consider the equation given by the derivative �′(s; ε, μ) = r1s
r1−1 − r2(s +ε)r2−1 = 0.

We apply Theorem A (ii) to �′(s; ε, μ) = 0 and obtain that there exists a unique solution
s = σ(ε) > 0 tending to 0 as ε → 0+. By Rolle’s theorem, this shows that Z ≤ 2. On the
other hand choosing conveniently μ = μ(ε) we obtain a tangency point (σ (ε), σ (ε)r1 +
μ(ε)) between the graphs of the functions F1(s;μ) and F2(s + ε;μ), showing that Z = 2.

1.2 Critical Periods in Loud Systems

This work was initially motivated by the study of the bifurcation diagram of the period
function of the dehomogenized Loud family of quadratic centers

ẋ = −y + xy,

ẏ = x + Dx2 + Fy2.
(5)

This study was started by Chicone and Jacobs [2]. They focused on the bifurcations of
critical periods near the inner boundary (the center itself) of the period annulus by means of
the period constants obtained by the Taylor expansion at the origin. In [7], we developed a
technique to compute the first coefficient of a uniform asymptotic expansion of the period
function at the outer boundary (a polycycle) of the period annulus under the hypothesis
that the polycycle only contains linearizable saddles. In [9], we applied this technique to
the Loud system obtaining a Jordan curve on which there is bifurcation of critical periods
near the outer boundary and an open dense set of regular values. Unfortunately, a union �U

of straight segments on which the character (bifurcation or regular) remained unknown for
different reasons.



Bifurcations of Zeros in Translated Families of Functions and Applications

In particular, along the line {F + D = 0, F �∈ [0, 1]} a heteroclinic connection between
hyperbolic saddles bounding the period annulus occurs. The connection is broken when
leaving this line in the space of parameters. We denote by ε the breaking parameter, i.e., the
signed distance between the two separatrices measured on a transverse section. The study
of the bifurcation of critical periods in that case, leads to the type of bifurcations studied in
Theorem A. We prove:

Theorem B Consider the period function of the period annulus of the Loud family (5)
containing the origin. Take a parameter (D, F ), with F + D = 0 and F /∈ {0, 1, 1/2}.
(a) If F /∈ [3/2, 2], then Z = 0 critical periods bifurcate from (−F,F ).
(b) If F ∈ [3/2, 2), then Z = 1 critical periods bifurcate from (−F,F ).
(c) If F = 2, then Z = 2 critical periods bifurcate from (−F,F ).

The following theorem gives a more precise description of the bifurcations occurring at
(D, F ) = (−2, 2), for the critical period function T ′ in the Loud family.

Theorem C (a) There is a curve � of double critical periods bifurcating from the poly-
cycle which arrives to the point (D, F ) = (−2, 2). It is contained in the sector
{F ≥ 2, F + D ≥ 0} and � is given by the graph of a continuous positive function
ε = f (F ) with f (2) = 0, where ε = (D + F)U(D, F ) is the breaking parameter,
with U(−2, 2) > 0.

(b) The curve � has a flat tangency with the line F = 2, more precisely, there exist
k2 > k1 > 0 such that

e
− k2

f (F ) < F − 2 < e
− k1

f (F )

for F − 2 > 0 small enough.
(c) Moreover, crossing the curve � from above, two simple critical periods bifurcate from

the double critical period.

The exponentially flat behavior of the double bifurcation curve � explains why it is hard
to find numerically two critical periods near the point (D, F ) = (−2, 2) (see [9, Figure 1]).

2 Proof of Theorem A

The proof of (i) is easy. We include it here for completeness and as we use it in applications.
The claim (ii) of Theorem A is proved using the implicit function theorem after a convenient
blow-up. We use the classical version (Theorem A.1) of the implicit function theorem which
requires differentiability only with respect to the variable that we want to isolate.

Proposition 2.1 Fix μ0 ∈ U and consider the family {�ν} in (1) taking f1, f2 ∈ Aμ0 .
Assume that f1 and f2 are orderable at μ0. If there exists a sequence (νn, sn)n∈N =
(εn, μn, sn)n∈N, with εn, sn > 0 and μn ∈ U , converging to (0, μ0, 0) such that �νn(sn) =
0, for all n, then f1 ≺μ0 f2 and limn→∞ f1(sn;μn)

f2(εn;μn)
= c2(μ0)

c1(μ0)
.

The claim of the proposition is intuitively clear. In � we have a competition between two
functions essentially c1f1 and c2f2 both tending to zero. One operates a translation by ε in
f2. The only way that the two contributions can cancel is that f2 be smaller than f1 (i.e.,
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f1 ≺ f2) and that we take ε > 0 (i.e., s + ε is further away from the origin), so that we
increase the contribution of f2.

Proof By contradiction, suppose that f2 ≺μ0 f1. Then, since f2( · ; μ) is monotonous

increasing (see Lemma A.6), we have that 0 � f1(s;μ)
f2(s+ε;μ)

� f1(s;μ)
f2(s,μ)

, for any ε � 0, which,

on account of f2 ≺μ0 f1, implies that lims→0+ f1(s;μ)
f2(s+ε;μ)

= 0, uniformly on ν = (ε, μ) in a
neighborhood of ν0 = (0, μ0). On account of this, by applying Lemma A.2, we can assert
that

0 = �(sn; νn)

f2(sn + εn;μn)
=
(

f1(sn;μn)

f2(sn + εn; μn)
(c1(μn) + ψ1(sn;μn)) − (c2(μn) + ψ2(sn + εn;μn))

)

tends to −c2(μ0), as n −→ +∞. Thus c2(μ0) = 0, which contradicts the assumption
c1(μ0)c2(μ0) �= 0. Therefore, f1 ≺μ0 f2.

At this point we claim that if f1, f2 ∈ Aμ0 with f1 ≺μ0 f2, then f −1
2 ≺μ0 f −1

1 . There
are three different cases to consider, namely:

(1) f1(s;μ) = sλ1(μ) and f2(s;μ) = sλ2(μ),
(2) f1(s;μ) = sλ1(μ) and f2(s;μ) = sω(s; α(μ)),
(3) f1(s;μ) = sω(s; α(μ)) and f2(s; μ) = sλ2(μ).

The claim is obvious in the first case. In the second case, by (c) in Lemma A.4, the
assumption f1 ≺μ0 f2 implies λ1(μ0) < 1. On the other hand, by (c) in Lemma A.6,

f −1
2 (s) ∼μ0

sκ(α(μ))

ω(s; α′(μ))
, where α′(μ) := α(μ)

1 − α(μ)
.

On account of this, and by applying (c) in Lemma A.4 once again, f −1
2 ≺μ0 f −1

1 = s1/λ1(μ)

if and only if λ1(μ0) < 1. So the claim follows in the second case. The third case follows
exactly the same way.

Let us write f1(sn;μn) = rn sin θn and f2(εn; μn) = rn cos θn with rn > 0 and
θn ∈ [0, π/2]. Then, due to lims→0+ fi(s;μ) = 0 uniformly on μ ≈ μ0, by Lemma
A.2, we can assert that limn→∞ rn = 0. In addition, since f1 ≺μ0 f2, on account of
0 � f −1

1 (rn sin θn) � f −1
1 (rn) and the previous claim, we get

lim
n→∞

f −1
1 (rn sin θn)

f −1
2 (rn)

= 0. (6)

Here and in what follows we omit the dependence of μ when there is no risk of confusion.
We write

f2(sn + εn) = f2

(
f −1

2 (rn)An

)
with An := f −1

2 (rn cos θn)

f −1
2 (rn)

+ f −1
1 (rn sin θn)

f −1
2 (rn)

.

Suppose at this point that θ� is an accumulation point of the sequence (θn)n∈N. If f2(s;μ) =
sλ(μ) then, taking (6) into account,

1 = f2(sn + εn)(c2 + ψ2(sn + εn))

f1(sn)(c1 + ψ1(sn))

=

(
cos1/λ θn + f −1

1 (rn sin θn)

f −1
2 (rn)

)λ (
c2 + ψ2(f

−1
1 (rn sin θn) + f −1

2 (rn cos θn))
)

sin θn

(
c1 + ψ1(f

−1
1 (rn sin θn))

) −→ c2(μ0) cos θ�

c1(μ0) sin θ�
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as n tends to +∞. Therefore c2(μ0) cos θ�

c1(μ0) sin θ�
= 1. Consider now the case f2(s; μ) =

sω(s; α(μ)). Set αn = α(μn) and α′
n = α′(μn) for shortness. Note then the sequences (αn)

and (α′
n) tend to zero, as n → +∞. From (6) and applying Lemma A.6,

lim
n→∞ An = lim

n→∞

rn cos θn

ω(rn cos θn;α′
n)

rn
ω(rn;α′

n)

= lim
n→∞

ω(rn; α′
n) cos θn

(cos θn)
−α′

nω(rn;α′
n) + ω(cos θn; α′

n)

= lim
n→∞

(cos θn)
1+α′

n

1 + (cos θn)α
′
nω(cos θn;α′

n)

ω(rn;α′
n)

= lim
n→∞

(cos θn)
1+α′

n

1 + ω(cos θn;−α′
n)

ω(rn;α′
n)

= cos θ�.

If cos θ� �= 0 then the last equality follows by (b) in Lemma A.4, whereas for cos θ� = 0,
it follows easily due to ω(s; α) > 0, for α ≈ 0 and s > 0 small enough. Then, by using
Lemma A.6 and limn→+∞ An = cos θ�, we get that

1 = f2(sn + εn)(c2 + ψ2(sn + εn))

f1(εn)(c1 + ψ1(sn))

= 1

sin θn

(
A1−αn

n +f −1
2 (rn)

rn
f2(An)

)
c2 + ψ2(f

−1
1 (rn sin θn)+f −1

2 (rn cos θn))

c1 + ψ1(f
−1
1 (rn sin θn))

−→ c2(μ0) cos θ�

c1(μ0) sin θ�

,

as n tends to +∞. Consequently, also in this case, c2(μ0) cos θ�

c1(μ0) sin θ�
= 1. So far we have proved

that cos θ�

sin θ�
= c1(μ0)

c2(μ0)
, which in particular shows that the accumulation point θ� ∈ [0, π/2]

is unique. Furthermore, we can also assert that f1(sn;μn)
f2(εn;μn)

= sin θn

cos θn
−→ cos θ�

sin θ�
= c1(μ0)

c2(μ0)
, as

n → +∞. Hence, the result is proved.

Lemma 2.2 Fix μ0 ∈ U and consider f1, f2 ∈ Aμ0 and h ∈ C 0(U) verifying f1 ≺μ0 f2

and h(μ0) > 0. Then s ≺μ0 f −1
1

(
h(μ)f2(s; μ);μ

)
.

Proof There are three different cases to consider, namely:

(1) f1(s;μ) = sλ1(μ) and f2(s;μ) = sλ2(μ),
(2) f1(s;μ) = sλ1(μ) and f2(s;μ) = sω(s; α(μ)),
(3) f1(s;μ) = sω(s; α(μ)) and f2(s; μ) = sλ2(μ).

In the first case, due to f1 ≺μ0 f2, it is necessary that λ1(μ0) < λ2(μ0), and then

f −1
1 (h(μ)f2(s;μ); μ)

s
= h(μ)

1
λ1(μ) s

λ2(μ)

λ1(μ)
−1 −→ 0, as s → 0+, uniformly on μ ≈ μ0.

In the second case, by (c) in Lemma A.4, λ1(μ0) < 1, and then

f −1
1 (h(μ)f2(s; μ); μ)

s
=
(
h(μ)s1−λ1(μ)ω(s; α(μ))

) 1
λ1(μ) −→ 0, as s → 0+, uniformly on μ ≈ μ0,

thanks to (c) in Lemma A.1 again. Finally, in the third case, λ2(μ0) > 1 and

lim
s→0+

f −1
1 (h(μ)f2(s;μ); μ)

s
= lim

s→0+
κ(α(μ))h(μ)sλ2(μ)

sω(h(μ)sλ2(μ); α(μ)/(1 − α(μ)))

= lim
x→0+

κ(α(μ))h(μ)
1

λ2(μ) x
1− 1

λ2(μ)

ω(x;α(μ)/(1 − α(μ)))
= 0, uniformly on μ ≈ μ0.

In the first equality above we use (c) in Lemma A.6, in the second one, Remark A.5 and
in the third one, (b) in Lemma A.4. This proves the result.
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Proof of Theorem A (i) If L1(μ0) �= L2(μ0), since Fi(s;μ) tends to Li(μ) as s → 0
uniformly on compact neighborhoods of μ0 and Li(μ) is continuous at μ0 then we
get that for any compact neighborhood K of μ0, there exist E > 0 and δ > 0, such
that F1(s; μ) − F2(s + ε;μ) is of the sign of L1(μ0) − L2(μ0), for 0 < s < δ,
0 < ε < E, μ ∈ K . Hence �ν has no zeros for the above values of (s, ε, μ) and
Z(�ν, (0, μ0)) = 0.

If L1(μ0) = L2(μ0), but Fi−Li are uniformly of the opposite sign, then in a neigh-
borhood of the origin �ν corresponds to a sum of two terms of the same sign. Hence, in
that neighborhood �ν is of the (uniform) sign of F1(s, μ) and so Z(�ν, (0, μ0)) = 0.

(ii) Let us prove the equivalence of the statements (a), (b) and (c): That (a) implies (b)

follows by applying Proposition 2.1 and using that f1 and f2 are positive functions.
The principal step of the proof is to show that (b) implies the statement of Corollary 1.3.

To this end, as we explained in Remark A.7, we consider continuous extensions of the
families {f2( · ; μ)}μ≈μ0 and {f −1

1 ( · ; μ)}μ≈μ0 to (−s2, s2) and (−s1, s1), respectively, in
order to be able to apply the implicit function theorem. Taking this into account, note that if
μ varies in a compact neighborhood of μ0, then there exists ε0 > 0 such that

σ0(ε;μ) := f −1
1

(
c2(μ)

c1(μ)
f2(ε;μ);μ

)

defines a continuous family of functions on (−ε0, ε0) with σ0(0; μ) = 0. In order to study
the roots of �(s; ε, μ) = 0 (see (1)), we shall make the generalized blow-up

s = σ0(ε; μ)(1 + v).

Our goal is to obtain an equivalent equation, G(ε, v; μ) = 0, with the function G verifying
the hypothesis in Theorem A.1. With this end in view, some computations show that

f1(s; μ)|s=σ0(ε;μ)(1+v) = c2(μ)

c1(μ)
f2(ε;μ)g1(ε, v; μ) (7)

with

g1(ε, v; μ) :=
⎧⎨
⎩

(1 + v)λ1(μ), if f1(s; μ) = sλ1(μ),

(1 + v)1−α(μ) + σ0(ε;μ)
c2(μ)

c1(μ)
f2(ε;μ)

f1(1 + v; μ), if f1(s; μ) = sω(s; α(μ)),

where in the second case we use (a) in Lemma A.6. It is to be noted moreover that in
this second case the function g1(ε, v; μ) is a priori not defined at ε = 0. However, setting

κ1(α) := |α|−α
2 α

|α|+α
2(1−α) , notice that

lim
ε→0

σ0(ε; μ)

c2(μ)
c1(μ)

f2(ε; μ)
= lim

ε→0

f −1
1

(
c2(μ)
c1(μ)

f2(ε; μ);μ
)

c2(μ)
c1(μ)

f2(ε; μ)
= lim

x→0

f −1
1 (x; μ)

x
= lim

x→0

κ(α(μ))

ω(x;α′(μ))
=κ1(α(μ))

uniformly on μ ≈ μ0. In the first equality above we use the definition of σ0, in the second
one we take Remark A.5 into account, whereas in the third and fourth ones we use (c) in
Lemma A.6 and (b) in Lemma A.4. This provides a continuous extension of the function
g1(ε, v; μ) to ε = 0 that, on account of κ1(0) = 0, verifies g1(0, 0; μ0) = 1. In what
follows, by abuse of notation, we refer to this extension as g1.

On the other hand, by Lemma 2.2, σ0(ε;μ)
ε

extends to a continuous function σ1(ε;μ) on
ε = 0 such that σ1(0;μ) = 0. Then, some computations show that

f2(s + ε;μ)|s=σ0(ε;μ)(1+v) = f2(ε;μ)g2(ε, v; μ) (8)
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with

g2(ε, v;μ):=
{

(1 + σ1(ε;μ)(1+v))λ2(μ) , if f2(s;μ) = sλ2(μ),

(1 + σ1(ε;μ)(1+v))1−α(μ) + ε
f2(ε;μ)

f2 (1 + σ1(ε;μ)(1 + v)) , if f2(s) = sω(s; α(μ)),

where, again, in the second case we use (a) in Lemma A.6. Also in this case, thanks to (b)

in Lemma A.4,

lim
ε→0

ε

f2(ε;μ)
= lim

ε→0

1

ω(ε; α(μ))
= |α(μ)| − α(μ)

2
uniformly on μ ≈ μ0.

This provides a continuous extension of g2(ε, v; μ) to ε = 0, verifying g2(0, 0; μ0) = 1.
Now, taking (7) and (8) into account, from (1), it follows that

�(s; ε, μ)|s=σ0(ε;μ)(1+v) = c2(μ)f2(ε;μ)G(ε, v; μ),

where

G(ε, v;μ):=g1(ε, v;μ)

(
1+ψ1

(
σ0(ε;μ)(1 + v);μ

)

c1(μ)

)
− g2(ε, v;μ)

(
1+ψ2

(
ε(1+σ1(ε;μ)(1+v));μ

)

c2(μ)

)
.

We claim, cf. Definition 1.1, that �(ŝ; ε̂, μ̂) = 0 with ŝ ∈ (0, δ), ε̂ ∈ (0, ρ) and ‖μ̂ −
μ0‖ < ρ, if and only if G(ε̂, v̂; μ̂) = 0, with ŝ = σ0(ε̂; μ̂)(1 + v̂), for some v̂ ≈ 0. The
sufficiency is obvious due to σ0(0;μ) = 0. To show the necessity, note first that c2(μ0) �= 0,
by assumption, whereas f2(ε;μ) = 0, if and only if ε = 0. Accordingly, G(ε̂, v̂; μ̂) = 0,

and so it only remains to show that if we take an arbitrary sequence (sn, εn, μn)n∈N, with
�(sn; εn, μn) = 0, for all n, such that limn→+∞(sn, εn, μn) = (0, 0, μ0), then vn :=

sn
σ0(εn;μn)

− 1 tends to zero, as n → +∞. To this end, let us set an := f1(sn; μn) and

bn := c2(μn)
c1(μn)

f2(εn;μn), so that limn→∞ an

bn
= 1, by Proposition 2.1. Then it follows that

f −1
1 (an;μn)

f −1
1 (bn;μn)

= sn
σ0(εn;μn)

tends to 1, as n → +∞. This is clear in case that f1(s;μ) = sλ(μ),

whereas for f1(s; μ) = sω(s; α(μ)) we have that

lim
n→∞

f −1
1 (an;μn)

f −1
1 (bn;μn)

= lim
n→∞

an

bn

ω(bn; α′
n)

ω(an; α′
n)

= lim
n→∞

ω(an
bn

an
; α′

n)

ω(an;α′
n)

= lim
n→∞

((
bn

an

)−α′
n

+ω( bn

an
; α′

n)

ω(an;α′
n)

)
=1,

where α′
n := α(μn)

1−α(μn)
tends to 0, as n → +∞. (In the first and third equalities above we use

(c) and (a) in Lemma A.6, respectively, and in the last one (b) in Lemma A.4) This shows
that limn→+∞ vn = 0, as desired, and completes the proof of the claim.

Note at this point that (ε, v, μ) �−→ G(ε, v; μ) is a continuous function in a neighbor-
hood of (ε, v, μ) = (0, 0, μ0) with G(0, 0; μ0) = 0. Moreover, ∂vgi(ε, v; μ), i = 1, 2,
are continuous at ε = 0 as well. In addition, by Lemma A.3, ψi(s;μ) and φi(s; μ) :=
s∂sψi(s;μ) form both continuous families of functions on (−s0, s0), with ψi(0;μ) =
φi(0;μ) = 0 for i = 1, 2. Therefore, the functions

∂vψ1
(
σ0(ε; μ)(1 + v)

) = φ1(σ0(ε;μ)(1 + v))

1 + v

and

∂vψ2
(
ε(1 + σ1(ε; μ)(1 + v))

) = φ2
(
ε(1 + σ1(ε;μ)(1 + v))

) σ1(ε; μ)

1 + σ1(ε; μ)(1 + v)
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are continuous and vanish at ε = 0. Accordingly

∂vG(ε, v; μ = ∂vg1(ε, v; μ)

(
1 + ψ1(σ0(ε;μ)(1 + v); μ)

c1(μ)

)
+g1(ε, v)∂vψ1

(
σ0(ε;μ)(1 + v); μ

)

c1(μ)

−∂vg2(ε, v; μ)

(
1 + ψ2(ε(1 + σ1

(
ε;μ)(1 + v)); μ

)

c2(μ)

)
−g2(ε, v)∂vψ2(ε(1+σ1(ε; μ)(1 + v); μ)

c2(μ)

is a continuous function in a neighborhood of (ε, v, μ) = (0, 0, μ0) with

∂vG(0, 0; μ0) ∈ {λ1(μ0) − λ2(μ0), λ1(μ0) − 1, 1 − λ2(μ0)},

which is negative in the corresponding case. Here we use that, by assumption, f1 ≺μ0 f2,
with

f1(s;μ) =
{

sλ1(μ),

sω(s; α(μ)),
and f2(s;μ) =

{
sλ2(μ),

sω(s; α(μ)),

and we apply (c) in Lemma A.4. Therefore ∂vG(0, 0; μ0) < 0. We can now apply The-
orem A.1 to the function (ε, v, μ) �−→ G(ε, v; μ) at the point (0, 0, μ0) in order to
conclude that there exists a continuous function v(ε, μ), with v(0, μ0) = 0 and such that
G(ε1, v1; μ1) = 0, if and only if v1 = v(ε1, μ1), provided (ε1, v1, μ1) is close enough
to (0, 0, μ0). Taking σ(ε;μ) := σ0(ε;μ)

(
1 + v(ε;μ)

)
, the combination of this with the

previous claim proves the statement of Corollary 1.3.
In order to prove that (b) implies (c), we must check that the unique zero of �(s, ε; μ)

which has the form s = σ(ε;μ) obtained before is of multiplicity 1. We have that

∂s� = ∂sf1(s)(c1+ψ1(s))+f1(s)∂sψ1(s)−∂sf2(s+ε)(c2+ψ2(s+ε))−f2(s+ε)∂sψ2(s+ε).

We treat three cases:

1. fi(s) = sλi , i = 1, 2,
2. f1(s) = sλ1 , f2(s) = sωα(s), with λ1(μ0) < 1,
3. f1(s) = sωα(s) and f2(s) = sα

2 (μ0), with λ2(μ0) > 1.

In the first case, using (7) and (8), we get the evaluation of ∂s�

(λ1−1)sλ1−1 at s = σ(ε):

∂s�

(λ1 − 1)sλ1−1

∣∣∣∣
s=σ(ε)

= c1 + ψ1(σ (ε)) + σ(ε)

λ1
c2
c1

f2(ε)g1

[
c2

c1
f2(ε)g1∂sψ1(σ (ε))

−λ2
f2(ε)g2

σ(ε) + ε
(c2 + ψ2(σ (ε) + ε)) − f2(σ (ε) + ε)

σ (ε) + ε
Dψ2(σ (ε) + ε)

]
.

It tends to c1(μ) �= 0, as ε → 0+, uniformly on μ ≈ μ0, because

(i) gi are bounded,
(ii) ψi(s) and s∂sψi(s) tend to zero, as s → 0+, uniformly on compact sets of μ,

(iii) σ(ε)
σ (ε)+ε

= σ(ε)/ε
σ(ε)/ε+1 → 0, as ε → 0, thanks to the fact σ1(ε) = σ0(ε)/ε → 0, as

ε → 0,

(iv) f2(σ (ε)+ε)
f2(ε)

=
(

σ(ε)
ε

+ 1
)λ2 → 1, as ε → 0.
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Consider now the second case: f1(s) = sλ1 and f2(s) = sωα(s) (with λ1(μ0) < 1).
Then,

∂s�

(λ1 − 1)sλ1−1

∣∣∣∣
s=σ(ε)

= c1 + ψ1(σ (ε)) + σ(ε)

λ1
c2
c1

f2(ε)g1

[
c2

c1
f2(ε)g1∂sψ1(σ (ε))

−
(

(1 − α)
f2(ε)g2

σ(ε) + ε
− 1

)
(c2 + ψ2(σ (ε) + ε))

−f2(σ (ε) + ε)

σ (ε) + ε
Dψ2(σ (ε) + ε)

]
.

It tends to c1(μ), as ε → 0+, uniformly on μ ≈ μ0, because

(i)

σ(ε)

f2(ε)

(
(1 − α)

f2(ε)g2

σ(ε) + ε
− 1

)
= σ(ε)

σ (ε) + ε

(
(1 − α)f2(ε)g2

f2(ε)
− (σ (ε) + ε)

f2(ε)

)
→ 0,

as ε → 0+, thanks to the fact that σ(ε)+ε
f2(ε)

= ε
(

1+ σ(ε)
ε

)

εωα(ε)
= 1+ σ(ε)

ε

ωα(ε)
→ |α|−α

2 ≈ 0, as

ε → 0+, uniformly on μ ≈ μ0.

(ii) f2(σ (ε)+ε)
f2(ε)

= σ(ε)+ε
ε

ωα(ε(1+(1+v(ε))σ1(ε)))
ωα(ε)

= σ(ε)+ε
ε

u−αωα(ε)+ωα(u)
ωα(ε)

→ 0, as ε → 0,
where u = 1 + (1 + v(ε))σ1(ε) → 1, as ε → 0.

In the third case f1(s) = sωα(s) and f2(s) = sλ2 (with λ2(μ0) > 1), we consider
∂s�

(1−α)ω−1

∣∣∣
s=σ(ε)

. We get

∂s�

(1 − α)ω − 1

∣∣∣∣
s=σ(ε)

= c1+ψ1(σ (ε))+ σ(ε)

(1 − α) c2
c1

f2(ε)g1 − σ(ε)

[
c2

c1
f2(ε)g1∂sψ1(σ (ε))

−λ2
f2(ε)g2

σ(ε) + ε
(c2+ψ2(σ (ε)+ε))−f2(σ (ε) + ε)

σ (ε) + ε
Dψ2(σ (ε)+ε)

]
.

It tends to c1(μ), as ε → 0+, uniformly on μ ≈ μ0, because

(i) σ(ε)
f2(ε)

∼ f −1
1 (x)

x

∣∣∣
x= c2

c1
f2(ε)

∼ 1
ωα(x)

∣∣∣
x= c2

c1
f2(ε)

tends to |α|−α
2 ≈ 0, as ε → 0+, uniformly

on μ ≈ μ0.

(ii) f2(σ (ε)+ε)
(1−α)f2(ε)−σ(ε)

= (σ (ε)+ε))λ2

(1−α)ελ2 −σ(ε)
=

(
1+ σ(ε)

ε

)λ2

1−α− σ(ε)
f2(ε)

is bounded, as ε → 0+, uniformly on

μ ≈ μ0.

By definition (c) implies (a). This completes the proof of the result.

3 Proof of Theorem B

Taking into account the symmetry (x, y) → (x,−y) of the Loud system, it suffices to
consider half of the period, i.e., the time between local transverse sections �± at the outer
boundary placed on y = 0 with ±x > 0. The singular point SD = (−1/D, 0) will be
allowed to belong to one of the sections �±. For convenience we introduce an auxiliary
transverse section �0 on x = 0 and y > 0. The outer boundary of the period annulus
intersects the three transverse sections. We study the time function T and its derivative of
orbits from �+ to �− parametrized by points on �0.
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Let us explain it in more detail using some facts proved in [9]. The invariant algebraic
curves of the Loud system are the line at infinity L∞, the line L1 = {x = 1} and the conic
C = {y2/2 = a(D, F )x2 + b(D, F )x + c(D, F )}, where

a(D, F ) = D

2(1 − F)
, b(D, F ) = (D − F + 1)

(1 − F)(1 − 2F)
, c(D, F ) = (F − D − 1)

2F(1 − F)(1 − 2F)
.

When D + F = 0 the conic C becomes degenerated. More precisely, it is the union of
the two straight lines y = Fx−1

±√
F(F−1)

passing through the point SD , which is a hyperbolic

saddle, for D /∈ [−1, 0]. In that case the outer boundary of the period annulus is contained
in the triangle C ∪ L1 and C ∪ L∞, for F < 0 and F > 1 respectively. The other two
symmetric vertices Q± are also hyperbolic saddles at finite distance, for F < 0, or at
infinity, for F > 1. For D +F �= 0, the local separatrices of the saddle point SD disconnect
from those of Q±, i.e., breaking of the saddle connections occurs, for D + F = 0.

If F + D is small and F > 1 (resp. F < 0), then the period annulus is bounded by

1. a homoclinic loop through SD (resp. C ∪ L1), if F + D < 0,
2. a triangle C0 ∪ L1 � SD if F + D = 0,
3. C ∪ L∞ (resp. a homoclinic loop through SD), if F + D > 0.

Blowing up the point SD in the Loud family we obtain an exceptional divisor E with two
saddles points with hyperbolicity ratios 1/2. In this situation the bifurcation along F +D =
0 becomes the breaking of the heteroclinic connections between the saddle points on E and
C ∩ L1 (see Fig. 1).

We introduce two classes of functions suitable for dealing with the remainder terms in
our study. In order to formalize both notions we consider families of smooth functions on
s > 0. More concretely, consider K ∈ Z≥0 ∪ {+∞} and an open subset U of RN . We say

Fig. 1 In the first row, phase portrait of (5), with D < −1 and F > 1 in the Poincaré disc, where we use
thick lines to draw the conic. In the second row, the phase portrait near the period annulus after blowing-up
the saddle point SD = (−1/D, 0)
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that a function ψ(s; μ) belongs to the class C K
s>0(U) if there exist an open neighborhood �

of {s = 0} × U in R
N+1 such that (s, μ) �→ ψ(s; μ) is C K on � ∩ ((0,+∞) × U

)
.

Definition 3.1 Let D := s∂s be the Euler operator and consider some μ̂ ∈ U . We say that
ψ(s; μ) ∈ C K

s>0(U) belongs to the class IK(μ̂) if for each k = 0, 1, . . . , K there exists a
neighborhood V of μ̂ such that

lim
s→0+ Dkψ(s; μ) = 0 uniformly on μ ∈ V .

If W is a (not necessarily open) subset of U then we define IK(W) =⋂μ̂∈W IK(μ̂).

Definition 3.2 Given some L ∈ R and μ̂ ∈ U , we say that ψ(s; μ) ∈ C K
s>0(U) is (L,K)-

flat with respect to s at μ̂, and we write ψ ∈ FK
L (μ̂), if for each ν = (ν0, . . . , νN ) ∈ Z

N+1
≥0

with |ν| = ν0 + · · · + νN � K there exist a neighborhood V of μ̂ and C, s0 > 0 such that
∣∣∣∣

∂ |ν|ψ(s; μ)

∂sν0∂μ
ν1
1 · · · ∂μ

νN

N

∣∣∣∣ � CsL−ν0 for all s ∈ (0, s0) and μ ∈ V .

If W is a (not necessarily open) subset of U , then define FK
L (W) :=⋂μ̂∈W FK

L (μ̂).

The first definition is suitable for performing the derivation-division algorithm and the
second is well-adapted when derivation with respect to the parameters is needed. The second
notion is more general and the precise relationship is given by the following result (see
[12, Lemma A.6]):

Lemma 3.3 The inclusion FK
L+ε(W) ⊂ sLIK(W) holds for any ε > 0.

Proof of Theorem B Let us prove (a). By [9, Theorem A], the segment F + D = 0, F ∈
[ 3

2 , 2] is entirely composed of local bifurcation values at the outer boundary and the segment
F + D = 0, F ∈ (0, 1) \ {1/2} is entirely composed of local regular values at the outer
boundary. It only remains to show that the points of F + D = 0, with F ∈ (−∞, 0) ∪
(1, 3

2 ) ∪ (2,+∞) are local regular values at the outer boundary.
Taking into account the symmetry (x, y) → (x,−y) of the Loud system, it suffices to

consider half of the period, i.e., the time between local transverse sections �± at the outer
boundary placed on y = 0. At the level D +F = 0 upper half of the boundary of the period
annulus is then given by a saddle connection of two saddles P± and the other separatrix of
one of them. By convention, we denote the saddle more to the left by P− (see Fig. 1 for the
case F > 1 and [9, Figure 4] for the case F < 0). Note that one of these saddle points P±
is on one of the transverse sections �±. For D + F �= 0, the saddle connection breaks. We
denote by S− the local separatrix of P− and S+ the local separatrix of P+. We also introduce
an auxiliary transverse section �0 on x = 0 and y > 0.

Let us denote by S± ∩ �0 = {(0, ζ±)}, σ±(s) = (0, ζ±(1 − s)), σ(s) = (0, ζ(1 − s)),
ζ = min(ζ+, ζ−),

ε := ζ+ − ζ− = (D + F)U(D, F ), with U(D, F) > 0 for F > 1.

Indeed, the Loud system (5) possesses the Darboux first integral

H(x, y) = (1 − x)−2F

(
y2

2
− (a(D, F )x2 + b(D, F )x + c(D, F ))

)
.
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If F > 1 then {(0,±ζ+)} = {H(x, y) = H(−1/D, 0)} ∩ {x = 0} and {(0,±ζ−)} =
{H(x, y) = 0} ∩ {x = 0}. A straightforward computation shows that

ε = (D + F)
(F − 1)

2 F(2F − 1)

1√
(F − 1) F

(
F − 1

F

)−2 F

+ o(D + F) (9)

is analytic in a neighborhood of any point (D, F ) with D+F = 0. Let T±(s) be the (signed)
Dulac time of the trajectory starting at the point σ±(s) ∈ �0 ending in �± and let T (s) be
the period of the orbit passing through σ(s). By definition T+ is negative because we follow
the trajectory in opposite sense. Then

1

2
T (s) =

{
T−(s) − T+(s + ε), if ε ≥ 0
T−(s − ε) − T+(s), if ε ≤ 0

1

2
T ′(s) =

{
T ′−(s) − T ′+(s + ε), if ε ≥ 0
T ′−(s − ε) − T ′+(s), if ε ≤ 0.

(10)

We will apply (i) of Theorem A to the equation T ′(s) = 0. We must study the behavior
of the derivative of the Dulac time of a hyperbolic saddle at finite distance or at infinity. By
[13, Theorem A] and Lemma 3.3, it follows that the derivative of the Dulac time of a finite
saddle of the family has the form

τ ′(s;μ) = 1

s
[−c0(μ) + ψ(s;μ)] , with c0(μ) > 0 (11)

and ψ ∈ I1, i.e., ψ → 0, sψ ′ → 0 as s → 0+ uniformly on μ. Moreover, the derivative of
the Dulac time of the saddle point at infinity of hyperbolicity ratio r(μ) > 0, r(μ) �= 1, of
the Loud family is given by

τ ′(s; μ) = sλ−1(λc1(μ) + ψ(s;μ)), (12)

with λ = min(1, r(μ)) and ψ ∈ I1.
In the case F < 0, we have P− = (−1/D, 0) ∈ �− is a finite saddle point invariant by

the symmetry ρ(x, y) = (x,−y) so that T− is half of the Dulac time of P− between the
transverse sections �0 and ρ(�0). P+ = (1,

√−(D + 1)/F ) is finite saddle point. By (11),
T ′±(s) = ±s−1(c± + ψ±(s)), with c± > 0 and ψ± ∈ I1. We cannot apply directly (i) of
Theorem A. Instead of considering the equation 1

2T ′(s) = 0, we replace it by the equivalent
equation 1/T ′−(s) − 1/T ′+(s + ε) = 0, if ε = ζ+ − ζ− ≥ 0 and similarly if ε ≤ 0. Now we
can apply assertion (b) in case (i) of Theorem A and conclude that there is no bifurcation.

If F > 1, then P− is a saddle at infinity with hyperbolicity ratio r(μ) = 1
2(F−1)

, whereas
P+ = (−1/D, 0) ∈ �+ is a finite saddle. By analogous arguments as in the study of T−
for F < 0, we have T ′+(s) = s−1(c+ + ψ(s)), with c+ > 0. The asymptotic expansion for
T− depends on r(μ) > 1, or r(μ) < 1, which corresponds to F ∈ (1, 3/2) or F > 3/2
respectively. In the first case, thanks to (12), we have T ′−(s) = c1(μ) + ψ(s;μ). Hence,
lim

s→0+ T ′+(s) = ∞ �= c1 = lim
s→0+ T ′−(s). Using the same trick as in the F < 0 case, we

conclude by assertion (a) in case (i) of Theorem A that there is no bifurcation.
It only remains to study the case F > 3/2 in which 0 < r(μ) < 1. In that

case [13, Theorem A] implies that T ′+(s) = 1
s
[c0(μ) + ψ+(s; μ)] and T ′−(s) =

sr(μ)−1(r(μ)c1(μ) + ψ−(s;μ)), with ci(μ) continuous functions, c0(μ) > 0 and ψ± ∈ I1.
Thus, lim

s→0+ T ′±(s;μ) = ∞. We obtain a new translation family constructed from

1

T ′+(s;μ)
= s(c0(μ) + ψ+(s; μ))−1 = s(c−1

0 (μ) + ψ̂+(s; μ))
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and
1

T ′−(s;μ)
= s1−r(μ)(r(μ)c1(μ) + ψ−(s; μ))−1 = s1−r(μ)(r(μ)−1c−1

1 (μ) + ψ̂−(s;μ))

with ψ̂± ∈ I1. By Lemma A.8, the coefficient c1(μ) is positive for F ∈ (3/2, 2) and
negative for F > 2. Applying Theorem A, we obtain that Z = 1, for F ∈ (3/2, 2) and
Z = 0, for F > 2.

Let us prove now (b), with F = 3/2. Since the set of bifurcation values is closed, we have
Z ≥ 1, for F = 3/2. It remains to show that Z ≤ 1. To prove (b) we take α = 1−r(μ) ≈ 0.
By [13, Theorem A] and Lemma 3.3,

T−(s) = c̄0+c̄1sω+c̄2s+s1+δ Ī (s) ⇒ T ′−(s)=c1ω+c2+sδI (s), where Ī ∈ I2, I ∈ I1,

T+(s) = c0 log s+d+sδĪ+(s) ⇒ T ′+(s) = s−1(c0+sδI+(s)), where Ī+ ∈ I2, I+ ∈ I1

and c0 > 0. Since f1(s)=ωα(s) ≺ s−1 = f2(s) it follows as in the beginning of the proof
of Proposition 2.1, that a necessary condition for Z ≥ 1 is that ε ≥ 0 in (10). Then,

T ′(s) = T ′−(s) − T ′+(s + ε) = c1ωα(s) + c2 + sδI (s) − (s + ε)−1(c0 + (s + ε)δI+(s + ε))

and it suffices to control the zeros of

�(s; ε, α) = (s + ε)

ωα(s)
T ′(s) = (s + ε)

(
c1 + c2

ω
+ sδI (s)

ω

)
− c0

ω
− (s + ε)δ

ω
I+(s + ε)

= εc1 + (εc2 − c0)
1

ω
+ R, (13)

where

R = c1s + c2
s

ω
+ (s + ε)

sδI (s)

ω
− (s + ε)δ

ω
I+(s + ε).

Since

D� = (εc2 − c0)D

(
1

ω

)
+ DR,

to prove that Z ≤ 1 it suffices to see that

DR

D
(

1
ω

)−→0 as (s, ε, α) → (0+, 0+, 0).

We have

DR = c1s + c2

(
s

ω
+ sD

(
1

ω

))
+
(

(δ + 1)sδ+1 + δεsδ

ω
+ (s + ε)sδD

(
1

ω

))
I (s) +

+ (s + ε)sδ

ω
DI (s) −

(
δ(s + ε)δ−1s

ω
+ (s + ε)δD

(
1

ω

))
I+(s + ε) − (s + ε)δ

ω
sI ′+(s + ε).

Using that D
(

1
ω

)
= s−αω−2 we obtain that

DR

D
(

1
ω

) =c1s
1+αω2 + c2(s

1+αω + s) + (sδ+α((δ + 1)s + δε)ω + (s + ε)sδ
)
I (s) +

+ sδ+α(s + ε)ωDI (s) −
(
δ(s + ε)δ−1s1+αω + (s + ε)δ

)
I+(s + ε)

−(s + ε)δ−1s1+αω[(DI+)(s + ε)].
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All the summands, except perhaps the last two, tend to zero, as s → 0+. The last two
summands tend to zero, as (s, ε) → (0+, 0+) and α is small enough. Indeed, I+(s + ε) and
(DI+)(s + ε) tends to 0 as (s, ε) → (0+, 0+) due to I+ ∈ I1 and on the other hand

(s + ε)δ−1s1+αωα(s) = s
δ
2 ωα(s)

[
(s + ε)δ−1s1+α− δ

2

]
.

The first factor tends to zero, as s → 0+, and making the substitution s = r cos θ , ε =
r sin θ in the second factor, we deduce that

[
(s + ε)δ−1s1+α− δ

2

]
= r

δ
2 +α(cos θ + sin θ)δ−1(cos θ)1+α− δ

2

tends to zero, as r → 0+, uniformly in θ ∈ [0, π
2

]
, if α is small enough. Here, we have

taken δ ∈ (0, 1).
Assertion (c) will be proved in the next section together with the proof of Theorem C.

Remark 3.4 From (13), we deduce that, as s → 0+, the curve

Cs = {(ε, α) : �(s; ε, α) = 0} = {(ε, α) : εc1 + cα(εc2 − c0)

+(εc2 − c0)

(
1

ωα(s)
− cα

)
+ R(s; ε, α) = 0}

tends to the bifurcation curve at the outer boundary of the period annulus

�B = lim
s→0+ Cs = {(ε, α) : εc1(ε, α) + cα(εc2(ε, α) − c0(ε, α)) = 0}.

Since cα = |α|−α
2 and c0(ε, α), c1(ε, α), c2(ε, α) are C ∞ we obtain a corner in �B at the

point (−3/2, 3/2). If α > 0, the linear part of the equation defining �B is εc1(0, 0) = 0
and if α < 0 the linear part is εc1(0, 0) + αc0(0, 0) = 0.

4 Study of the Point (D, F) = (−2, 2)

In this section we will prove assertion (c) in Theorem B and Theorem C. We will use the
notations introduced in the proof of Theorem B in the previous section.

Proof of assertion (c) in Theorem B and Theorem C If F ≈ 2 then the hyperbolicity ratio
of P− is r = r(F ) = 1

2(F−1)
≈ 1

2 . Defining ᾱ := 1 − 2r(F ) = F−2
F−1 and applying Theorem

A of [13] we obtain

T−(s) = T00 + T01s
r + T101sωᾱ(s) + T100s + F∞

3/2−δ(s)

for every δ > 0. On the other hand, half of the Dulac time of the finite singular point at
(−1/D, 0) has the form

T+(s) = c0 log s + T +
00 − T +

101s log s + T +
100s + F∞

2−δ(s)

with c0 > 0. Let ε = (D + F)U(D, F ) be the breaking parameter of the connexion,
where U(D, F) > 0 by (9). Since f1(s) = sr−1 ≺ s−1 = f2(s) it follows again as in the
beginning of the proof of Proposition 2.1, that no bifurcation occurs for ε ≤ 0 (see (10)).
Therefore, we must study the zeros of the function

T ′(s) = T ′−(s) − T ′+(s + ε), with ε ≥ 0.
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To this end we define

�̄(s, D, F ) := s1−r (s + ε)T ′(s)=(s+ε)
[
rT01 + T101(1 − ᾱ)s1−rωᾱ(s) + (T100 − T101)s

1−r + F∞
1−δ(s)

]

+ s1−r
[−c0 + T +

101(s + ε) log(s + ε) − (T +
100 − T +

101)(s + ε) + F∞
2−δ(s + ε)

]

= εrT01 + εT101(1 − ᾱ)s1−rωᾱ(s) + [−c0 + ε(T100 − T101 − T +
100 + T +

101)
]
s1−r

+ T +
101s

1−r (s + ε) log(s + ε) + F∞
1−δ(s) + s1−rF∞

2−δ(s + ε).

Let us work from now on with the variables z = s1−r , α = ᾱ
1−r

= F−2
F− 3

2
and ε =

(D + F)U(D,F ). Note that the map (D, F ) �→ (ε, α) is a local diffeomorphism at the
point (D, F ) = (−2, 2). By Lemma A.8, we have that T01(D, F ) = −αU01(ε, α) with
U01(0, 0) > 0 and T101(−2, 2) > 0. Dividing �̄ by minus the coefficient in s1−r and taking

into account that ωᾱ(s) = ωᾱ(z
1

1−r ) = 1
1−r

ωα(z) we obtain the function

�(z, ε, α):= −εαc1(ε, α)+εc2(ε, α)zωα(z)−z+ c3(ε, α)zh(z, ε, α) + g(z, ε, α)+zf (z2−α+ε, ε, α)︸ ︷︷ ︸
R(z,ε,α)

(14)

which controls the positive zeros of T ′(s), where c1(ε, α) = rU01(ε, α) and c2(ε, α) =
(1−ᾱ)T101

1−r
are C ∞, with c̄1 = c1(0, 0) and c̄2 = c2(0, 0) positive, h(z, ε, α) = (z2−α +

ε) log(z2−α + ε) and f, g ∈ F∞
2−δ . In fact, c3(ε, α)h(z, ε, α) + f (z2−α + ε) = h0(z

2−α +
ε, ε, α) where

h0(z, ε, α) := c3(ε, α)z log z + f (z, ε, α) ∈ F∞
1−δ . (15)

Let us prove (c) in Theorem B. We claim that the functions 1, zωα(z) and

R(z; ε, α) = −z + R(z; ε, α)

form an extended complete Chebyshev system, for z ∈ (0, ε), see [8]. Since the Wron-
skian W (1, zωα(z)) > 0 for z > 0 small, it suffices to see that W(R(z; ε, α)) does
not vanish on (0, ε), where W(ρ) is defined as the Wronskian W (1, zωα(z), ρ) =
∂z(zωα(z))∂2

z ρ−∂2
z (zωα(z))∂zρ. Since the Wronskian is linear we compute the contribution

of each summand of R separately.

(a) Since ∂z(zωα(z)) = (1 − α)ωα(z) − 1 and ∂2
z (zωα(z)) = (1 − α)z−1−α we have that

W(−z) = (1 − α)z−1−α .
(b) Since g ∈ F∞

2−δ and ωα(z) ∈ F∞−δ , we have that ∂r
z g ∈ F∞

2−r−δ ,

W(g) ∈ ((1 − α)ωα(z) − 1)F∞−δ − (1 − α)z−1−αF∞
1−δ ⊂ F∞−2δ

and W(g)
W(−z)

∈ F∞
1−3δ tends to zero, as z → 0, uniformly on (ε, α) ≈ (0, 0).

(c) Since ∂z(zh0(z
2−α + ε)) = h0(z

2−α + ε) + (2 − α)z2−α(∂zh0)(z
2−α + ε) and

∂2
z (zh0(z

2−α+ε))=(2−α)(3−α)z1−α(∂zh0)(z
2−α+ε)+(2−α)2z3−2α(∂2

z h0)(z
2−α+ε),

with h0 ∈ F∞
1−δ , one can check that

W(zh0(z
2−α + ε))

W(−z)
= −h0(z

2−α+ε)+P1(ωα(z))z2(∂zh0)(z
2−α+ε)+P2(ωα(z))z4−α(∂2

z h0)(z
2−α+ε),

Pi(ω) being degree 1 polynomials, and consequently
∣∣∣∣
W(zh0(z

2−α + ε))

W(−z)
+ h0(z

2−α + ε)

∣∣∣∣ ≤ C1
|z|2−δ

|z2−α + ε|δ + C2
|z|4−2δ

|z2−α + ε|1+δ
.
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The limit as (z, ε, α) → (0, ε0, α0) of this upper bound is equal to zero. This is clear
for ε0 > 0 and the the case ε0 = 0 follows by using the quasihomogeneous blow-
up z = r sin θ , ε = r2−α cos θ , with θ ∈ [0, π/2] and the fact that the functions

sina θ

(sinb θ+cos θ)c
are bounded in θ ∈ [0, π/2], for a, b, c > 0. On account of this and

Lemma A.2 we get that W(zh0(z
2−α+ε))

W(−z)
+ h0(z

2−α + ε) tends to 0 as z → 0 uni-
formly on (ε, α) ≈ (0, 0). Consequently, as moreover h0 ∈ F∞

1−δ we deduce that

lim
z→0

W(zh0(z
2−α+ε))

W(−z)
= −h0(ε) uniformly on (ε, α) ≈ (0, 0).

Hence

W(R)

W(z)
→ −1 + h0(ε) < 0, as z → 0, uniformly on (ε, α) ≈ (0, 0), with h0(0) = 0.

(16)
Consequently, 1, zωα(z) and R(z; ε, α) form a Chebyshev system in a suitable interval
(0, ε). Hence, F(z; ε, α) has at most 2 zeros in (0, ε) and ZT ′ ≤ 2.

On the other hand ZT ′ ≥ 2 will follow once we prove assertion (a) in Theorem C, i.e., the
existence of the double bifurcation curve � arriving to the point (−2, 2). This will complete
the proof of assertion (c) in Theorem B.

In order to prove assertion (a) in Theorem C we consider the system
{

�(z, ε, α) = 0
∂z�(z, ε, α) = 0

(17)

where �(z, ε, α) is given in (14) and for convenience we define

G(z, ε, α) = ∂z�(z, ε, α) = ε(1 − α)c2(ε, α)ωα(z) − (1 + εc2(ε, α)) + S(z, ε, α),

where

S(z, ε, α) = c3(ε, α)(h(z, ε, α) + z∂zh(z, ε, α)) + zf1(z
2−α + ε, ε, α) + g1(z, ε, α).

The system (17) will implicitly define a curve in the (ε, α)-plane, which gives the curve �,
coming back to the (D, F )-plane by the local diffeomorphism (D, F ) �→ (ε, α).

Let us define

H(z, ε, α) = (α −1)�(z, ε, α)+zG(z, ε, α) = αε(1−α)c1(ε, α)− (α +εc2(ε, α))z+zV0(z, ε, α),

where V0 = (α − 1)R0 + S,

R0(z, ε, α) = c3(ε, α)h(z, ε, α) + f (z2−α + ε, ε, α) + g0(z, ε, α),

f ∈ F∞
2−δ , g0 = g/z ∈ F∞

1−δ , f1 = (2 − α)∂zf ∈ F∞
1−δ and g1 = ∂zg ∈ F∞

1−δ . Hence,

V0(z, ε, α)=c3(ε, α)(αh(z, ε, α)+z∂zh(z, ε, α))+f0(z
2−α+ε, ε, α)+zf1(z

2−α+ε, ε, α)+f2(z, ε, α),

(18)
with f0 = (α − 1)f ∈ F∞

2−δ and f1, f2 = (α − 1)g0 + g1 ∈ F∞
1−δ . We are interested in

the solutions of the system �(z, ε, α) = G(z, ε, α) = 0, for z > 0. For technical reasons
we will rather study the system G(z, ε, |α|) = H(z, ε, |α|) = 0 which is equivalent to the
preceding one on α ≥ 0. In order to avoid writing the absolute value of α we will make all
the manipulations on α ≥ 0 and they must be extended by parity to α < 0. Note that the
functions R0, S, V0 extend continuously in a neighborhood of (z, ε, α) = (0, 0, 0) thanks to
[12, Lemma A.1].

We would like to solve the system G(z, ε, α) = H(z, ε, α) = 0 by applying the implicit
function theorem. Unfortunately, the hypothesis are not fulfilled. Therefore, we replace
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ci(ε, α) by c̄i and S, V by zero and we are able to find explicitly all the solutions of the
system G = H = 0 thus obtained. There is a unique solution, which is given by

z = z0(α) := (kα)
1

1−α ∼ kα,

ε = ε0(α) := 1/c̄2

(1 − α)ωα(z0(α)) − 1
= k

α
1−α

c̄2

α
1

1−α

1 − α − (kα)
α

1−α

∼ −1/c̄2

1 + log(kα)
, (19)

where k = c̄1
c̄2

. Here ∼ means that the quotient of the two functions tends to 1 as α → 0.
Now, the idea is to find the solutions of the original system G = H = 0 as small

perturbations of the above particular solution, i.e., in the following form

z = z1(α, u) := z0(α)(1 + u), ε = ε1(α, u, v) := (1 + v)/c̄2

(1 − α)ωα(z1(α, u)) − 1
, (20)

with (u, v) near (0, 0). Notice that z1(α, u) and ε1(α, u, v) tend to zero, as α → 0+,
uniformly on u, v ≈ 0, so that they define continuous functions in a neighborhood of
(α, u, v) = (0, 0, 0) and z1(α0, u) and ε1(α0, u, v) are C 1 in u, v for every α0 ≥ 0 small
enough. Indeed, z1(0, u) = 0 and ωα(z1(α, u)) = ωα(z0(α)) + z0(α)−αωα(1 + u) so that
ε1(0, u, v) = 0. Moreover, z1(α, u) > 0 and ε1(α, u, v) > 0, for all u, v ≈ 0 and α > 0
small enough. Setting

ci(ε, α) = c̄i (1 + Ci(ε, α)), Ci(0, 0) = 0, (21)

we define the functions

G1(α, u, v):=G(z1(α, u), ε1(α, u, v), α) = v+(1+v)C2(ε1(α, u, v), α)+S(z1(α, u), ε1(α, u, v), α)

and

H1(α, u, v) := 1

αε1(α, u, v)
H(z1(α, u), ε1(α, u, v), α)

= c̄1(1 + C1)(1 − α) − c̄2(1 + C2)(1 + u)k
1

1−α α
α

1−α

− z1(α, u)

ε1(α, u, v)
+ z1(α, u)V0(z1(α, u), ε1(α, u, v), α)

αε1(α, u, v)

(22)

Putting
�(α, u, v) = (G1(α, u, v),H1(α, u, v)), (23)

we will show that the implicit function problem �(α, u(α), v(α)) = (0, 0), with
(u(0), v(0)) = (0, 0) has a unique solution (u, v) = (u(α), v(α)). By (20), this will define
the curve ε(α) = ε1(α, u(α), v(α)), and ultimately the curve � in the (D, F ) parameter
space, along which z = z0(α)(1 + u(α)) is a double critical period of the corresponding
Loud system.

It remains to verify the hypothesis of the implicit function Theorem A.1, for (23). By
(21), it follows that G1 is continuous in a neighborhood of (α, u, v) = (0, 0, 0). In order
to prove the continuity at (0, 0, 0) of the second component of �, given by H1, it suffices
to show that H1(α, u, v) tends to 0, for α → 0+, uniformly on u, v ≈ 0. This has to
be verified only for the last two terms in (22). For the before last term, it follows from

Lemma 4.1.a. Indeed, we have in particular, (z1(α,u))1−δ

ε1(α,u,v)
= (kα)

1−δ
1−α (1+u)1−δ

ε1(α,u,v)
also tends to

zero, as α → 0+, uniformly on u, v ≈ 0, if δ is small enough. For the last term, since
z1(α,u)

α
= k

1
1−α α

α
1−α (1 + u) is bounded for α ≥ 0, the function z1(α,u)

α
V0(z1(α,u),ε1(α,u,v))

ε1(α,u,v)

also tends to zero, as α → 0+, uniformly on u, v ≈ 0, thanks to Lemma 4.1.b. This shows
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that by putting �(0, 0, 0) = 0, and extending by parity in α, the function � extends to a
continuous function in a neighborhood of (0, 0, 0).

It follows by composition of differentiable functions and the fact that and z1(α0, u)

ε1(α0, u, v) are C 1 in u, v, for every α0 ≥ 0 small enough.
Finally, we have that G1(0, u, v) = v, and H1(0, u, v) = −c̄1u, with c̄1 �= 0. Hence,

∂�
∂(u,v)

(0, 0, 0) is surjective. Applying Goursat’s implicit function Theorem A.1, we obtain
continuous functions u = u(α) and v = v(α), with u(0) = v(0) = 0, defining thus the
curve �.

Let us prove assertion (b). It can be checked, using (19) and assertion (a) in Lemma A.4,
that

lim
α→0+(− log α)ε1(α, u, v) = 1 + v

c̄2
uniformly on (u, v) in a neighborhood of (0, 0). Consequently,

lim
α→0+

ε1(α, u(α), v(α))

−1/c̄2
log α

= 1, (24)

which gives us the asymptotic behavior of � at the point (−2, 2) with respect to the axis
{α = 0} = {F = 2}. Indeed, it follows from (24) that, for any δ > 0, for α > 0 sufficiently
close to 0, we have

1 − δ < −c̄2ε1 log α < 1 + δ.
Hence,

e
−1−δ
c̄2ε1 < α < e

−1+δ
c̄2ε1 .

In order to prove (c) of Theorem C, we consider the family of functions �ε,α(z) given
by (14). For parameters (ε, α) on the curve � given as a graph of ε = ε(α) let z = z(α) be
the corresponding double zero, i.e., �(z(α), ε(α), α) = 0 and

∂

∂z
�|(z(α),ε(α),α) = 0. (25)

The idea is simple. First we give the proof modulo two technical claims, whose proof
will be given at the end. We consider the function �ε(α1),α1 , for α1 > 0 small enough in
order to satisfy (26) and (28). We know that �ε(α1),α1 has a double zero at z(α1).

Claim 1:
∂2�ε(α1),α1

∂z2
(z(α1)) < 0. (26)

Hence, the function �ε(α1),α1 is strictly concave in a neighborhood of z(α1). It follows that it
has the value 0 as a strict local maximum at z(α1). Moreover, by (26), applying the implicit
function theorem to equation

∂

∂z
�(z, ε, α) = 0 (27)

it follows that (27) has a unique solution z = z(ε, α) in a neighborhood of z(α1), for (ε, α)

in a neighborhood of (ε(α1), α1). Moreover, by continuity of ∂2�

∂z2 , it follows from (26)
that for parameters in a small neighborhood of (ε(α1), α1), the solution z = z(ε, α) of the
implicit function problem (27) is a local maximum of �ε,α .

We consider the function �ε(α1),α , for α in an neighborhood of α1. Note that here ε =
ε(α1) is fixed and the point (ε(α1), α) leaves the curve �.

Claim 2:
∂�ε(α1),α(z(ε(α1), α))

∂α
|α=α1 < 0. (28)

From Claim 2 it will follow that decreasing the value of α from α = α1 close to α1,
the maximal value of �ε(α1),α will increase and will hence become positive (it is zero for
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α = α1). From local concavity of �ε(α1),α1 , for δ > 0 arbitrarily small, we have that
�ε(α1),α1(z(α1) ± δ) < 0. The condition �ε(α1),α(z(α1) ± δ) < 0 will be preserved for
α < α1 sufficiently close. By continuity of �ε(α1),α and sign change it follows that there
exist two zeros z±

α of �ε(α1),α verifying

z(α1) − δ < z−
α < z(ε(α1), α) < z+

α < z(α1) + δ.

The proof of assertion (c) of Theorem C will be completed, once we prove the two
claims (26) and (28). We first prove claim (26). We perform the standard division-derivation
procedure. Due to (16) we know that

∂
(

∂�/∂z
∂(zωα)/∂z

)

∂z
< 0,

for z, ε, α sufficiently small strictly positive. Using now the formula for the derivative of a
quotient, (25) and the fact that ∂(zωα)

∂z
> 0, then Claim 1 (26) follows.

Let us now prove Claim 2. We consider the function η(α) = �(z(ε(α1), α), ε(α1), α),
for fixed α1 (and hence fixed ε(α1). We have to prove that dη

dα
(α1) < 0. Recall that

∂
∂z

�(z(ε(α1), α1), ε(α1), α1) = 0. Hence, by the chain rule it follows that dη
dα

(α1) =
∂
∂α

�(z(ε(α1), α1), ε(α1), α)|α=α1 .
Now, using (14) and putting ε1 = ε(α1) and z1 = z(α1), we have

1

ε1

∂

∂α
�(z(ε1, α1), ε1, α)|α=α1 = −c1(ε1, α1) + c2(ε1, α1)z1ωα1(z1)

+ c2(ε1, α1)z1
∂ωα(z1)

∂α

∣∣∣
α=α1

+ 1

ε1

∂R(z1, ε1, α)

∂α
|α=α1 .(29)

Knowing that ε1 > 0, it will be enough to prove that the expression (29) is negative,
for α1 sufficiently small. Recall that the first term in the right hand side of (29) tends to
−c̄1 < 0. We show that all other terms will tend to zero, for α1 → 0. Recall that zδω → 0,
for δ > 0 (see assertion (c) of Lemma A.4). This solves the second term.

For the third term, recalling that | ∂ωα

∂α
/ω2| is bounded (see assertion (d) of Lemma A.4),

or that |∂αω(z; α)| ≤ Cz−δ using [12, Lemma A.4(b)], it follows equally that the third term
tends to zero. Finally, in order to prove that 1

ε1

∂R(z1,ε1,α)
∂α

|α=α1 tends to zero as α1 → 0, we
use (20) for (u, v) = (0, 0), i.e., (19). By continuity, this will be enough in order to show
that (29) is negative for α1 > 0 small enough. We have that the growth of 1/ε1 is bounded
by C log α1 (see (19) and (20). On the other hand, all the terms of ∂R(z1,ε1,α)

∂α
|α=α1 are

bounded by C1z1, for some C1 > 0. Indeed, R(z, ε, α) = zh0(z
2−α + ε, ε, α) + g(z, ε, α)

with h0 ∈ F1−δ defined in (15) and g ∈ F2−δ . Then |∂αg| ≤ Cz2−δ and

∂α(h0(z
2−α + ε, ε, α)) = z2−α(− log z)∂zh0(z

2−α + ε, ε, α) + ∂αh0(z
2−α + ε, ε, α)

is bounded in absolute value by

C|z2−α+ε|−δz2−α(− log z)+C′|z2−α+ε|1−δ≤C′′z1−α|z2−α+ε|−δ+C′|z2−α+ε|1−δ≤C′′′.
In order to verify the last inequality it suffices to check that the first summand in the second
term tends to 0 as (z, ε) → (0+, 0+) uniformly on α ≈ 0 making the weighted blow-up z =
r sin θ , ε = r2−α cos θ , θ ∈ [0, π/2]. Now from z1 ∼ α1, it follows that 1

ε1

∂R(z1,ε1,α)
∂α

|α=α1

is bounded by Cα1 log α1 which tends to zero as α1 → 0.

Lemma 4.1 (a) If δ > 0 is small enough, then α1−δ

ε1(α,u,v)
tends to zero, as α → 0+

uniformly on u, v ≈ 0.
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(b) 1
ε1(α,u,v)

V0(z1(α, u), ε1(α, u, v), α) tends to zero, as α → 0+ uniformly on u, v ≈ 0.

Proof In order to see assertion (a) we write

α1−δ

ε1(α, u, v)
= c̄2α

1−δ

1 + v
((1 − α)ωα(z0(α)(1 + u)) − 1)

= c̄2

1 + v
α1−δ

[
(1 − α)ωα(z0(α)) + (1 − α)z0(α)−αωα(1 + u) − 1

]

= c̄2(1 − α)

1 + v

[
(kα)

−α
1−α − 1

αδ
+ α1−δ− α

1−α k
−α

1−α ωα(1 + u) − α1−δ

1 − α

]
.

The terms c̄2(1−α)
1+v

and k
−α

1−α ωα(1 + u) are uniformly bounded in α, u, v ≈ 0. The terms

α1−δ− α
1−α and α1−δ

1−α
tend to zero as α → 0. To deal with the remaining term we apply

L’Hôpital’s rule obtaining that

lim
α→0+

(kα)
−α
1−α − 1

αδ
= lim

α→0+
e− α

1−α
log(kα) − 1

αδ
= − lim

α→0+

(kα)
−α
1−α

(
1+2α

(1−α)2 log(kα) + 1
1−α

)

δαδ−1

= −1

δ
lim

α→0+ α1−δ− α
1−α

(
1 + 2α

(1 − α)2
log(kα) + 1

1 − α

)
= 0

provided δ < 1.
Proof of claim (b): According to (18), it suffices to see that

(i) α
ε1

h(z1, ε1, α),

(ii) (z∂zh)(z1,ε1,α)
ε1

= (2 − α)
z2−α

1
ε1

(
log(z2−α

1 + ε1) + 1
)

= (2 − α)
(

z1
ε1

)2−α

ε2−α
1(

log

(
ε1

(
1 + z2−α

1
ε1

))
+ 1

)
,

(iii)

∣∣∣∣
f0(z

2−α
1 +ε1,ε1,α)

ε1

∣∣∣∣ ≤ C
(z2−α

1 +ε1)
2−δ

ε1
= Cε1−δ

1

(
1 + z2−α

1
ε1

)2−δ

,

(iv)

∣∣∣∣
z1f1(z

2−α
1 +ε1,ε1,α)

ε1

∣∣∣∣ ≤ C z1
ε1

(z2−α
1 + ε1)

1−δ = C z1
εδ

1

(
1 + z2−α

1
ε1

)1−δ

=

Cz1−δ
1

(
z1
ε1

)δ
(

1 + z2−α
1
ε1

)1−δ

,

(v)
∣∣∣ f2(z1,ε1,α)

ε1

∣∣∣ ≤ C
z1−δ

1
ε1

tend to zero, as α → 0+, uniformly on u, v ≈ 0, using the previous assertion (a) and the
fact that f0 ∈ F∞

2−δ and f1, f2 ∈ F∞
1−δ .

5 The State of Art of the Conjectural Bifurcation Diagram of the Critical
Periods in Loud System

We resume our study of the bifurcation diagram of the period function of the quadratic
centers that we initiate in [7]. Let us explain succinctly the results we have obtained so
far on this issue. The dehomogeneized Loud’s family (5) of quadratic reversible centers is
{Xμ}μ∈R2 , where

Xμ := −y(1 − x)∂x + (x + Dx2 + Fy2)∂y with μ := (D, F ),
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Following this notation, let �U be the union of dotted straight lines in Fig. 2, whatever its
color is. Consider also the bold curve �B . (Here the subscripts B and U stand for bifurcation
and unspecified respectively.)

Then, [9, Theorem A] shows that the open set R2 \ (�B ∪ �U) corresponds to regular
values and that the ones in �B are bifurcation values (cf. Definition A.1). We also conjec-

tured that any parameter in �U is regular, except for the segment {0}×
[
0, 1

2

]
in the vertical

axis, that should consist of bifurcation parameters. Since the formulation of this conjecture
there has been some progress in the study of the parameters in �U :

• From the results in [5, 26] it follows that the parameters in blue are indeed regular. In
these papers the authors determine a region M in the parameter plane for which the
corresponding center has a globally monotonic period function. The parameters that
we draw in blue are inside the interior of M , which prevents the bifurcation of critical
periodic orbits.

• By [10, Theorem C] it follows that the parameters in dark green are regular as well. In
that paper the authors give an asymptotic expansion of the Dulac time of an unfolding
of a saddle-node. The techniques used in [9] enable only to study an unfolding of a
hyperbolic saddle.

• Theorem B in [11] shows that the parameters in red, more precisely the segment {0}×[
1
4 , 1

2

]
, are bifurcation values of the period function at the polycycle. To this end, after

blowing up the polycycle, the authors show that any neighborhood of a parameter μ̂ ∈
{0}×

[
1
4 , 1

2

]
contains two parameters, say μ+ and μ−, such that the derivative of the

period function near the polycycle is positive for Xμ+ and negative for Xμ− .
• More recently, by [25, Corollary B] it follows that the parameters in light green are

regular as well.

Beyond the dichotomy regular vs bifurcation, a challenging problem is the study of the
cyclicity of critical periods Z of the bifurcation parameters, i.e., to compute the exact num-
ber of critical periodic orbits that bifurcate from the polycycle. With respect to this problem
see the results for the Loud family in [21–23].

Fig. 2 Bifurcation diagram of the
period function at the polycycle
according to [9] and, in color, the
subsequent improvements due to
[5, 10, 11, 25, 26], where
μ� = (−F�, F�) with F� ≈ 2.34.

The curve that joins
(
− 3

2 , 3
2

)

and
(
− 1

2 , 1
)

is the graphic of an

analytic function D = G(F ). The
double bifurcation curve � of
Theorem C appears starting from
the point (−2, 2)
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What remains to study in the bifurcation diagram of the period function at the outer
boundary is the following:

• Along the segment {F = 0,D ∈ [−1, 0]}, which is conjectured to be regular (Z = 0),
a saddle-node bifurcation occurs. Unfortunately, we can not apply directly the results in
[10] because in the bifurcations studied there the outer boundary of the period annulus
had a part of the line at infinity for all values of the parameters. This is not the case for
F = 0 as a separatrix bounding the period annulus bifurcates from the line at infinity.

• Along the segments {D = 0, F ∈ [0, 1
4 ]} and {D = −1, F ∈ [0, 1]} bifurcations of

degenerate (nilpotent) singularities at the outer boundary of the period annulus occur.
Along the first one we conjecture that Z = 2 and that a curve of double critical periods
arrives to the point (0, 0). On the other hand, we also conjecture that the second one
is regular (Z = 0). We think that, in order to show the regularity in this situation, it is
necessary to make higher dimensional blow-ups.
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A Appendix

We put in the Appendix some classical results that we need, as well as some specific
technicalities

A.1 Classical Results

We start with Goursat’s version of the implicit function theorem which requires continuous
differentiability only with respect to the variable that we isolate.

Theorem A.1 [3] Let X be an open subset of Rn and let W be an open subset of Rk .
Consider (x0, w0) ∈ X × W and � : X × W → R

k be such that

(a) �(x0, w0) = 0;
(b) �(x,w) is continuous on X × W ;
(c) ∂w�(x, ·) is continuous on W , for all x ∈ X;
(d) ∂w�(x0, w0) is surjective.

Then there exist a neighborhood X1 × W1 of (x0, w0) and a function φ : X1 → W1 such
that φ(x0) = w0 and for every (x1, w1) ∈ X1 × W1 we have �(x1, w1) = 0 if and only if
w1 = φ(x1). Moreover, φ is continuous.

Lemma A.2 Let {fμ}μ∈U be a continuous family of functions on (0, s0) and let K ⊂ U

be a compact set. Then lims→0+ fμ(s) = �(μ), uniformly on μ ∈ K , if and only if
lim(μ,s)→(μ̂,0+) fμ(s) = �(μ̂), for every μ̂ ∈ K .
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Proof Assume that lims→0+ fμ(s) = �(μ), uniformly on μ ∈ K . Then μ �−→ �(μ) is
continuous on K . Let us show now that, under the uniformity assumption, fμ(s) tends to
�(μ̂), as (s, μ) −→ (0+, μ̂). Consider a given ε > 0. Then, thanks to the claim, there
exists a neighborhood U of μ̂ such that

∣∣�(μ) − �(μ̂)
∣∣ < ε/2 for all μ ∈ U . Furthermore,

on account of the uniformity, there exists δ > 0 such that
∣∣fμ(s) − �(μ)

∣∣ < ε/2 for all
s ∈ (0, δ) and μ ∈ U . Consequently,∣∣fμ(s) − �(μ̂)

∣∣ � ∣∣fμ(s) − �(μ)
∣∣+ ∣∣�(μ) − �(μ̂)

∣∣ < ε, for all s ∈ (0, δ) and μ ∈ U ,

and so lim(μ,s)→(μ̂,0+) fμ(s) = �(μ̂), as desired. Suppose now that lim(μ,s)→(μ̂,0+) fμ(s) =
�(μ̂), for every μ̂ ∈ K . Then the map (s, μ) �−→ fμ(s) extends continuously to [0, s0/2]
×K, which is compact. So the map is uniformly continuous, which clearly implies that
lims→0+ fμ(s) = �(μ) is uniform on K . This proves the result.

It will be convenient in order to apply the implicit function theorem, to work with func-
tions defined in an open neighborhood of the origin. For that reason, we extend monotone
function f̂μ defined on a one-sided neighborhood of the origin to an odd function f̂μ defined
in a full neighborhood of the origin.

Lemma A.3 Let {fμ}μ∈U be a continuous family of functions on (0, s0) with
lims→0+ fμ(s) = 0 uniformly on U . For each μ ∈ U , we define

f̂μ(s) =

⎧⎪⎨
⎪⎩

fμ(s), if s ∈ (0, s0),

0, if s = 0,

−fμ(−s), if s ∈ (−s0, 0).

Then {f̂μ}μ∈U is a continuous family of functions on (−s0, s0). If in addition s �−→ fμ(s)

is monotonous on (0, s0), for all μ ∈ U , then {f̂ −1
μ }μ∈U is a continuous family of functions

on (−s1, s1), for some s1 > 0.

Proof The continuity of (s, μ) �−→ f̂μ(s) at some (ŝ, μ̂) ∈ (0, s0)× U is obvious, for
ŝ �= 0, whereas, for ŝ = 0, it follows by applying Lemma A.2. Suppose additionally that
fμ is monotonous on (0, s0) for all μ ∈ U . Then f̂μ is monotonous on (−s0, s0) for all
μ ∈ U . Accordingly (s, μ) �−→ (f̂μ(s), μ) is an injective continuous map from the open
set (−s0, s0)× U ⊂ R

k to R
k . Then, by the Domain Invariance Theorem, it follows that

there exists s1 > 0 such that {f̂ −1
μ }μ∈U is a continuous family of functions on (−s1, s1).

Hence, the result is proved.

A.2 Technicalities

Recall (4) that ω is a deformation of the logarithmic function. The first claim of the follow-
ing lemma is the deformation of the fomula for the logarithm of a product for the function
ω.

Lemma A.4 The following hold:

(a) ω(ab; α) = a−αω(b; α) + ω(a; α),
(b) 1

ω(s;α)
→ |α|−α

2 , as s → 0+ uniformly on α ≈ 0,

(c) Let α �−→ λ(α) be a continuous map at α = 0. Then 1 ≺0 sλ(α)ω(s; α), if and only if
λ(0) > 0.
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(d) | ∂ω
∂α

/ω2| is bounded.
Proof The equality in (a) is straightforward taking the definition of ω(s; α) into account.
The assertion in (b) follows easily from the inequality ω(s; α) � inf(− log s, 1/|α|), cf.
[18, S3]. Concerning (c), the sufficiency follows writing the compensator as ω(s; α) =
F(α log s) log s, where F(x) := e−x−1

x
, and using that |F(x)| � e|x| for all x ∈ R. To show

the necessity we use Lemma A.2, which implies that lim(α,s)→(α̂,0+) sλ(α)ω(s; α) = 0 for
any α̂ ∈ [−δ, δ] with δ > 0 sufficiently small. Clearly this is not possible if λ(0) � 0
because then sλ(0)ω(s; 0) = sλ(0) log s tends to −∞ as s −→ 0+. Thus λ(0) > 0, and so
(c) follows. Claim (d) follows from Lemma 4.1.1 in [8].

Remark A.5 If lims→0+ �1(s;μ) = L(μ) and lims→0+ �2(s;μ) = 0, with both limits
being uniform on μ, then lims→0+ �1

(
�2(s;μ); μ

) = L(μ), uniformly on μ.

We shall deal with two types of families of admissible functions, {sλ}λ>0 and
{sω(s; α)}α≈0, both defined in principle, for s > 0. It is clear that each function fλ(s) = sλ

in the first family is monotonously increasing and that, by applying Lemma A.3, {fλ}λ>0
and {f −1

λ }λ>0 can be continuously extended to (−s0, s0) for some s0 > 0. It is obvious in
addition that f −1

λ (s) = s1/λ. In the following result we show analogous properties for the
second family.

Lemma A.6 Set fα(s) = sω(s; α). Then the following hold:

(a) fα(ab) = a1−αfα(b) + bfα(a),
(b) There exists s0 > 0 and ε > 0 such that {fα}α∈(−ε,ε) is a continuous family

of monotonous increasing functions on (0, s0) with lims→0+ fα(s) = 0, uniformly
on α ∈ (−ε, ε). In addition {f −1

α }α∈(−ε,ε) is a continuous family of functions on
(0, s0), with lims→0+ f −1

α (s) = 0, uniformly on α ∈ (−ε, ε).

(c) f −1
α (s) ∼0

sκ(α)
ω(s;α/(1−α))

, where κ(α) := (1 − α) α
α+|α|

2(1−α) .

Proof The equality in (a) is straightforward taking the definition of ω(s; α) into account.
The monotonicity in (b) follows using that, by (b) in Lemma A.4, f ′

α(s) = −1 + (1 −
α)ω(s; α) tends to +∞ as (α, s) → (0, 0+). The fact that fα(s) tends to zero as s → 0+
uniformly on α is a consequence of (c) in Lemma A.4. Taking this into account, the assertion
concerning f −1

α follows by applying Lemma A.3. In order to show (c), setting α′ := α
1−α

,
we first claim that

�1(s;α) := f −1
α (u)

u
ω(u;α′)

∣∣∣∣∣
u=fα(s)

= ω
(
sω(s; α); α′)

ω(s; α)

tends to κ(α) as s −→ 0+ uniformly on α ≈ 0. Note that (c) will follow once we prove this
claim. Indeed, since lims→0+ f −1

α (s) = 0 uniformly on α ≈ 0 by (b), we get the desired
conclusion, by applying Remark A.5, with �2(s;α) = f −1

α (s).
In order to prove the claim, we apply Lemma A.2. To this end note that κ(α0) = (1 −

α0)α

α0
1−α0
0 , if α0 > 0, κ(0) = 1 and κ(α0) = 1−α0, if α0 < 0. If α0 �= 0, then, by definition,

ω
(
sω(s; α);α′)

ω(s; α)
=

s−α′ ( s−α−1
α

)−α′
− 1

s−α − 1

α

α′ ,
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which clearly tends to 1 − α0, as (α, s) −→ (α0, 0+), in case that α0 < 0. If α0 > 0, then
for convenience we write the above equality as

ω
(
sω(s; α);α′)

ω(s; α)
= s−α′+αα′

(1 − sα)−α′−α−α′

s−α(1 − sα)

α1+α′

α′ = s−α(1−sα)−α′ − α−α′

s−α(1 − sα)
(1 − α)αα′

= (1 − sα)−α′ − α−α′
sα

1 − sα
(1 − α)αα′

,

which tends to (1 − α0)α

α0
1−α0
0 , as (α, s) −→ (α0, 0+). It only remains to see that

ω(sω(s;α);α′)
ω(s;α)

−→ 1 as (α, s) −→ (0, 0+). With this aim in view, some manipulations show
that

ω
(
sω(s;α);α′)

ω(s;α)
− 1 + α=

(
sω(s;α)

)−α′ − 1

α′
α

s−α − 1
− 1 + α = (1 − α)

⎛
⎜⎝

s−α′ ( s−α−1
α

)−α′
− 1

s−α − 1
− 1

⎞
⎟⎠

= (1−α)

⎛
⎜⎝

(
1−sα

α

)−α′
− sα

1 − sα
− 1

⎞
⎟⎠=(1−α)

(
1−sα

α

)−α′
− 1

1 − sα
=ω

(
ω(s;−α);α′)

ω(s;−α)
, (30)

where we take α′ = α
1−α

into account several times. Note that

ω
(
ω(s; −α);α′)

ω(s; −α)
= ω

(
x; α′)

x
, with x = ω(s; −α) −→ +∞, as (α, s) −→ (0, 0+),

(31)
due to ω(s; α) � inf(− log s, 1/|α|). Moreover, ω(s; α) = F(α log s) log s, where recall
that F(x) = e−x−1

x
verifies that |F(x)| � e|x|, for all x ∈ R. Accordingly, for x > 1 and

α′ ∈ [− 1
2 , 1

2 ], we can assert that
∣∣∣∣
ω(x; α′)

x

∣∣∣∣ �
log x

x1−|α′| �
log x

x1/2
.

Hence, ω(x;α′)
x

−→ 0, as x −→ +∞, uniformly on α′ ∈ [− 1
2 , 1

2 ]. This, together with (31),
implies that

ω
(
ω(s; −α);α′)

ω(s; −α)
−→ 0 as (α, s) −→ (0, 0+)

because α′ = α
1−α

−→ 0 as α −→ 0. Therefore, on account of (30), we finally obtain

ω
(
sω(s; α);α′)

ω(s; α)
− 1 = ω

(
ω(s; −α); α′)

ω(s; −α)
− α −→ 0 as (α, s) −→ (0, 0+),

as desired. This proves the claim and so the result follows.

Remark A.7 By Lemma A.3, each family {sα}α>0 and {sω(s;α)}α≈0 extends to a continu-
ous family of homeomorphisms {f̂α} on (−s0, s0) with f̂α(0) = 0. Their respective inverses
form also a continuous family of functions {f̂ −1

α }α on (−s1, s1) for some s1 > 0. In the
sequel, by an abuse of notation and when there is no risk of ambiguity, we will denote f̂

and f̂ −1 by f and f −1, respectively.

Lemma A.8 The Dulac time T−(s;F) of the Loud family (5) restricted to the line D+F =
0 between the transverse sections {x = 0} parametrized by σ(s) =

(
0, 1−s√

F(F−1)

)
and

{y = 0, x < 0} satisfies the following:
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(a) For every F0 > 3/2, there is δ > 0, such that T−(s;F) = T00(F ) + T01(F )sr(F ) +
F∞

r(F0)+δ(F = F0) with r(F ) = 1
2(F−1)

and

T01(F ) = −F− F
F−1 2

1
2(F−1)

√
F(F − 1)

√
π

�(1 − r(F ))

�( 1
2 − r(F ))

.

In particular, T01(F ) = −(F − 2)U01(F ) with U01(2) > 0.

(b) T−(s;F) = T00(F ) + T01(F )sr(F ) + T101sω
(
s; F−2

F−1

)
+ T100(F )s +F∞

3/2−δ(F = 2)

with T101(2) > 0.

Proof We perform the projective change of coordinates (u, v) = φ(x, y) = (1 −√
F(F − 1)

y
1−Fx

, 1
1−Fx

) which brings the Loud vector field (x−1)y∂x+(x+F(y2−x2))∂y

into XF = 1
v
[PF (u, v)u∂u + QF (u, v)v∂v] where PF (u, v) =

√
F−1
F

(u − 2)(v − 1)

and QF (u, v) = 1√
F(F−1)

(u − 1)((F − 1)v + 1) and the transverse sections x = 0 and

y = 0 into v = 1 and u = 1 respectively. The hyperbolicity ratio of the saddle of XF

at (u, v) = (0, 0) is r(F ) = 1
2(F−1)

< 1 for F > 3/2. This gives us the announced
expansion in (a). Let us now compute the coefficient T01(F ). In the coordinate chart (u, v)

the parametrization σ(s) translates into σ(s) = (s, 1) and we can take the parametrization
τ(s) = (1, s) in the target transverse section. By applying [7, Theorem A], after some
tedious but straightforward computations, we obtain that

T01(F ) = F− F
F−1

(
−√F(F − 1) + 1

2

√
F

F − 1

∫ 1

0

(
(1 − u

2
)−1−r(F ) − 1

) du

u1+r(μ)

)

= −F− F
F−1 2

1
2(F−1)

√
F(F − 1)

√
π

�(1 − r(F ))

�( 1
2 − r(F ))

thanks to the formula
∫ 1

0

(
(1 − u

2 )−a − 1
)

du
ua = 2a−1√π�(2−a)

(1−a)�( 3
2 −a)

− 1
1−a

in which appears the

Gamma function �. In particular, �(1−r(F ))

�( 1
2 −r(F ))

=
√

π

2 (F − 2) + O((F − 2)2).

To prove (b), it suffices to take F ≈ 2 where the announced asymptotic expansion holds
by [13, Theorem A]. In fact, we have T−(s) = T00 +T01s

r +T10s+T02s
2r +F2r0+δ(r = r0)

if r0 > 1
2 and T101 = (1 − 2r)T02, T100 = T10 + T02 so that

T101|F=2 = lim
r→ 1

2

(1 − 2r)T02 = − lim
r→ 1

2

(1 − 2r)T10.

By [14, Theorem A]

T10 = −σ120

(
σ121

σ120Q(0, σ120)
+ σ111

L1(σ120)
B̂1(1/r − 1, σ120)

)
,

with

L1(u) = exp
∫ u

0

(
P(0, z)

Q(0, z)
+ 1

r

)
dz

z
= (1 + (F − 1)u)2F

and

B1(u) = L1(u)∂1Q
−1(0, u) = −√F(F − 1)(1 + (F − 1)u)2F−1.
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Since 1 − (1/r − 1) = 1−2r
−r

we have that

− lim
r→ 1

2

(1−2r)T10=− σ 2
120σ111

2L1(σ120)
B ′

1(0)|F=2= σ 2
120σ111

L1(σ120)

√
F(F − 1)(2F−1)(F−1)|F=2 > 0

using [14, Theorem B.1] in the first equality.
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8. Mardešić P, Vol. 57. Chebyshev systems and the versal unfolding of the cusps of order n. Travaux en
Cours [Works in Progress]. Paris: Hermann; 1998, p. xiv+153.
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