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ABSTRACT:	A regiodivergent Ni-catalyzed amidation of unactivated secondary alkyl bromides is described. The site-selectivity of 
the amidation event is dictated by subtle differences on the ligand backbone, allowing to introduce the amide function at either the 
original sp3 carbon–halide bond or at distal sp3 C–H sites within an alkyl side-chain via chain-walking scenarios.		

Although cross-coupling reactions of unactivated alkyl halides 
have evolved at a comparatively slower pace than their  aryl 
congeners, these techniques have offered a fertile ground for 
building up new sp3 architectures.1 The latter is particularly im-
portant, as an increase of sp3 character in drug candidates has 
recently been shown to contribute to clinical success.2 At pre-
sent, cross-coupling reactions of unactivated alkyl halides rely 
primarily on bond-formations at prefunctionalized sp3 sites via 
functional group interconversion (Scheme 1, path a).1 The re-
cent years have witnessed the design of chain-walking reactions 
as a new technology to enable functionalization at remote sp3 
C–H sites via formal metal translocation within the alkyl side 
chain (Scheme 1, path b).3 Despite the advances realized, the 
ability to rationally, predictably and reliably control the site-se-
lectivity of these reactions by fine tuning the nature of the cata-
lyst still remains an uncharted cartography.	

Scheme 1. Cross-Couplings Reactions of Alkyl Halides.	

	

Prompted	by	the	relevance of aliphatic amides in agrochemi-
cals, pharmaceuticals and polymeric materials,4 we questioned 
whether it would be possible to dictate the incorporation of an 
amide function at different sp3 sites via site-selective Ni-cata-
lyzed amidation of unactivated alkyl halides with isocyanate 
counterparts. If successful, such a strategy would provide a 
complementary technique to known catalytic amidations requir-
ing stoichiometric organometallic reagents5 or hazardous car-
bon monoxide,6 among others.7 At the outset of our investiga-
tions, it was unclear whether such strategy could be imple-
mented. Indeed, the high reactivity of isocyanates and their pro-
pensity to parasitic di(tri)merization pathways with low-valent 
metal complexes8 left a reasonable doubt whether it would be 
possible to trigger a dynamic translocation of the metal center 
throughout the alkyl chain. As part of our interest in the field,9 
we report herein the successful development of a catalytic 
method that provides access to aliphatic amides from unacti-
vated alkyl halides by a subtle modulation of the catalyst of 
choice (Scheme 1, bottom).	
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[a] Conditions: 1a (0.50 mmol), tBuNCO (0.75 mmol), NiI2 (2.5 
mol%), L4 (5.0 mol%), Mn (1.25 mmol), NMP (1.0 mL) at 10 °C 
under N2, 24h. [b] Conditions: 1a (0.50 mmol), tBuNCO (0.75 
mmol), NiBr2 (2.5 mol%), L8 (5.0 mol%), Mn (0.75 mmol), DMF 
(0.50 mL) at 3 °C under N2, 24h. Yields and selectivities were de-
termined by GC analysis using anisole as internal standard.	

We began our investigations by studying the reaction of 2-bro-
moheptane (1) with tBuNCO (Table 1). The choice of the latter 
was not arbitrary, as primary amides can be easily accessed  by 
simple deprotection of the tert-butyl group.10 After judicious 
evaluation of the reaction parameters,11 we found that a combi-
nation of NiI2 (2.5 mol%), L4 (5.0 mol %) and Mn as reductant 
in NMP at 10 °C resulted in amide bond-formation at the sp3 C–
H linkage, delivering 2b in good yield and excellent selectivity 
(entry 1). As for other catalytic reductive coupling reactions,12 
2,2’-bipyridines and 1,10-phenanthroline ligands possessing al-
kyl substituents adjacent to the nitrogen atom were critical for 
success (entries 2-4), with 2,2’-bipyridine ligands containing 
aromatic rings at 4,4’-position being particularly suited for our 
purposes. While solvents and reductants other than NMP and 
Mn resulted in lower yields of 2b (entries 5 and 6), the utiliza-
tion of Ni(COD)2 as catalyst had a deleterious effect in both re-
activity and site-selectivity (entry 7). Interestingly, site-selec-
tive amidation at the sp3 C–Br site was achieved using nitrogen-
containing ligands with a single alkyl substituent at C6 of the 
2,2’-bipyridine core (L5-L8). In particular, 2a could be ob-
tained in an exquisite 99:1 ratio (entries 8-11), and in an excel-
lent 93% yield by employing NiBr2 as precatalyst and L8 in 
DMF at 3 °C (entry 12).	9e	

	

	

Figure 1. Regiodivergent Amidation of Unactivated Secondary Alkyl Bromides.  Isolated yields, average of at least two inde-
pendent runs. Conditions Ni/L4: As for Table 1, entry 1; Conditions Ni/L8: As for Table 1, entry 12. [a] 1 mmol scale. [b] Obtained 
as 92:8 ratio of 8b and the corresponding amidation event adjacent to the ester motif. [c] NiI2 (5.0 mol%), L4 (10 mol%). 
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With a reliable access to both 2a and 2b in hand, we turned our 
attention to evaluating the generality of our regiodivergent Ni-
catalyzed amidation based on a Ni/L4 or Ni/L8 regime (Figure 
1). As shown, a series of unactivated secondary alkyl bromides 
could be utilized with similar ease, resulting in the correspond-
ing linear or a-branched amides in good yields and excellent 
site-selectivities. In contrast with traditional catalytic amidation 
techniques,5-7 we found that our protocol was particularly suited 
for accessing bulky amides by employing a range of differently 
substituted isocyanates (2-6). Notably, remote amidation could 
be extended beyond a-methyl substituted alkyl halides, as 2b 
could be within reach from 3-bromo or 4-bromoheptane in 57% 
and 66% yield, respectively. Similarly, 15b and 16b could also 
be obtained by incorporating the amide function at distal sp3 C–
H bonds with substrates containing aromatic or boron fragments 
within the alkyl side chain. The latter is particularly interesting, 
thus leaving ample room for further derivatization via conven-
tional cross-coupling reactions.13 As evident illustrated in Fig-
ure 1, amines (9), nitriles (11), esters (6, 8) or nitrogen-contain-
ing heterocycles (13, 14) did not interfere with productive C–C 
bond-forming reaction. Interestingly, a competitive chain-walk-
ing amidation at weak benzylic sp3 C–H bonds was not found 
en route to 7b and 15b.14 Notably, amide bond-formation adja-
cent to an ester motif was observed as a minor byproduct (8b), 
thus complementing related C–C bond-forming reactions via 
Ni-catalyzed chain-walking scenarios.15 Notably, branched sub-
stituents do not compete with the efficacy of C–C bond-for-
mation, with the targeted amidation occurring exclusively at the 
less-sterically hindered primary sp3 C–H site (12b). In line with 
the results of entry 12 (Table 1), the utilization of L8 suppressed 
b-hydride elimination and chain-walking, forging the targeted 
amide bond at the initial C–Br site in excellent yields for all 
substrates employed (2a-16a). The synthetic applicability of 
our method is further illustrated in Scheme 2. As shown, 17 was 
exclusively obtained from n-hexanes via a sequence consisting 
of an unselective sp3 bromination followed by an amidation at 
the primary sp3 C–H bond based on the Ni/L4 couple. Aiming 
at extending the generality of our reaction, we anticipated that 
tertiary aliphatic amides might be within reach by intercepting 
I with an appropriate electrophile. Indeed, this turned out to be 
the case and 20 could be obtained in good overall yield from 19 
by exposure with MeI. Furthermore, primary aliphatic amides 
such as 21 could easily be prepared by simple deprotection of 
the tert-butyl group with Sc(OTf)3.16 More importantly, 22 
could easily be prepared from 19 by tandem methylation/depro-
tection, thus showcasing the opportunity of accessing secondary 
aliphatic amides that would otherwise be derived from flamma-
ble and toxic MeNCO.17 

Scheme 2. Synthetic Applicability.	

	

To gain further information about the mechanism of the reac-
tion, we turned our attention to study the reactivity of the puta-
tive, low-valent Ni(0)L2 species within the catalytic cycle. Ini-
tial attempts to synthesize (L4)2Ni and (L8)2Ni from Ni(COD)2 
were met with failure, probably due to the difficulty of displac-
ing COD with both L4 and L8. However, these complexes 
could be prepared in analytically pure form by an alternative 
route consisting of reduction of LNiX2 with either TMSMgBr 
or EtMgBr.11 The structure of these complexes in the solid state 
is depicted in Scheme 3. A closer inspection into the crystal 
structures reveals a significant difference in the coordination 
geometry. While (L4)2Ni shows a traditional tetrahedral back-
bone, a significant deviation from tetrahedral and square planar 
geometry (81° vs 65°) was found for (L8)2Ni, thus showing the 
intriguing impact that subtle modifications on the 2,2’-bipyri-
dine backbone might have on the putative Ni intermediates 
within the catalytic cycle. As expected, (L8)2Ni and (L4)2Ni 
were found to be catalytically competent, delivering 2a and 2b 
in 74% and 56% yield, respectively. Interestingly, a competitive 
experiment with both L4 and L8 showed that 2a was exclu-
sively formed (99:1 ratio) in 72% yield, tacitly suggesting a 
stronger binding of L8 to the nickel center and the ability of the 
in situ generated alkyl-Ni(L8) to prevent b-hydride elimina-
tion.18 Note, however, that stoichiometric experiments with 
Ni/L8 or Ni/L4 in the absence of Mn revealed traces of 2a or 
2b, with alkenes arising from b-hydride elimination being 
formed predominantly in the crude mixtures.19 Taken together, 
these results strongly suggests a mechanistic pathway consist-
ing of the intermediacy of alkyl-Ni(I) species generated via sin-
gle electron transfer of Mn to the putative alkyl-Ni(II) interme-
diates prior to RNCO insertion. At present, we hypothesize that 
the striking differences of L8 and L4 are tentatively attributed 
to a more congested environment in alkyl-Ni(II)(L4)Br, thus fa-
cilitating halide dissociation en route to cationic intermediates 
that might favor a chain-walking scenario via iterative se-
quences of b-hydride elimination/migratory insertion events.	
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	Scheme 3. Mechanistic Experiments.	

	

In conclusion, a nickel-catalyzed regiodivergent amidation of 
secondary alkyl bromides has been described. This protocol tac-
itly shows the subtle differences that the ligand backbone might 
have on the site-selectivity pattern, favoring amide bond-for-
mation at either the initial C–halide bond or at remote sp3 C–H 
sites within the alkyl side chain. The reaction is distinguished 
by its mild conditions, wide substrate scope and exquisite site-
selectivity profile while minimizing unproductive isocyanate 
dimerization or trimerization events. Further extensions to re-
lated regiodivergent events are currently underway.	
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