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a b s t r a c t 

Phase response curves (PRCs) have been extensively used to control the phase of oscilla- 

tors under perturbations. Their main advantage is the reduction of the whole model dy- 

namics to a single variable (phase) dynamics. However, in some adverse situations (strong 

inputs, high-frequency stimuli, weak convergence,...), the phase reduction does not provide 

enough information and, therefore, PRC lose predictive power. To overcome this shortcom- 

ing, in the last decade, new contributions have appeared that allow to reduce the system 

dynamics to the phase plus some transversal variable that controls the deviations from the 

asymptotic behaviour. We call this setting extended response functions . In particular, we sin- 

gle out the phase response function (PRF, a generalization of the PRC) and the amplitude 

response function (ARF) that account for the above-mentioned deviations from the oscillat- 

ing attractor. It has been shown that in adverse situations, the PRC misestimate the phase 

dynamics whereas the PRF-ARF system provides accurate enough predictions. In this paper, 

we address the problem of studying the dynamics of the PRF-ARF systems under periodic 

pulsatile stimuli. This paradigm leads to a two-dimensional discrete dynamical system that 

we call 2D entrainment map . By using advanced methods to study invariant manifolds and 

the dynamics inside them, we construct an analytico-numerical method to track the in- 

variant curves induced by the stimulus as two crucial parameters of the system increase 

(the strength of the input and its frequency). Our methodology also incorporates the com- 

putation of Arnold tongues associated to the 2D entrainment map. We apply the method 

developed to study inner dynamics of the invariant curves of a canonical type II oscilla- 

tor model. We further compare the Arnold tongues of the 2D map with those obtained 

with the map induced only by the PRC, which give already noticeable differences. We also 

observe (via simulations) how high-frequency or strong enough stimuli break up the oscil- 

latory dynamics and lead to phase-locking, which is well captured by the 2D entrainment 

map. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

Phase response curves (PRCs) constitute a systematic tool to understand synchronisation between oscillators or their en- 

trainment to external stimuli. The purpose of this theory is predicting the change of phase elicited by a given perturbation 
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Fig. 1. Schematic representation of the phase-amplitude map induced by a periodic pulse train. The neighbourhood of the limit cycle can be pa- 

rameterized by the phase ( θ ) and amplitude ( σ ) variables, the limit cycle corresponding to σ = 0 (solid line, in red). Several isochrons (dashed curves 

transversal to the limit cycle, in blue) are shown; we usually choose the isochron containing the intersection between the first nullcline and the limit cycle 

to be the 0-isochron ( θ = 0 ). The 2D map sends p 0 := ( θ0 , σ 0 ) to ( θ1 , σ 1 ) as follows: at p 0 the system receives a pulse input I stim which determines the kick 

to p ′ 0 := (θ ′ 
0 , σ

′ 
0 ) ; then, we integrate (dashed curve, in red) along the flow T s time units (stimulation period) landing on p 1 . The phase reduction approach 

assumes that σ is always zero. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

in terms of the phase of the unperturbed oscillatory system, which we assume to have an attracting limit cycle. In single 

neuron models, each complete oscillation typically corresponds to a complete action potential and the goal of phase re- 

sponse theory is giving a prediction of the delay or advancement of the first spike after the perturbation, which can come 

either from synaptic inputs or from direct stimulation. Most of the literature on phase response curves has been developed 

in relation to neuroscience (see [1–3] ), but the concept transcends to any other field in which oscillations are present. 

On the other hand, most theoretical contributions are devoted to the case in which the oscillator is assumed to remain 

on its asymptotic state, a constraint generally known as phase reduction , which will be referred also as asymptotic-state hy- 

pothesis in the context of this paper. The asymptotic-state hypothesis is widely valid but it fails in transient states, generally 

because of strong, highly repetitive or noisy stimuli, or due to the slow convergence to the asymptotic oscillatory state, that 

is, the attracting limit cycle. In order to go beyond the limits of the phase reduction, recent literature has focused on the 

control of the phase response out of the limit cycle (see [4–9] ), a problem that is intertwined with the progress about the 

computation of the so-called isochrons associated to the limit cycle (see [4,10–13] ). It is worth mentioning that under the 

asymptotic-state hypothesis, the PRC is a function that maps the phase θ of the oscillator onto the phase change elicited 

by a given stimulus I stim 

. However, when the PRC concept is extended to a neighbourhood of the limit cycle (see [4] ), one 

has to consider a (n − 1) -dimensional amplitude variable transversal to the limit cycle. Assuming that there is a privileged 

direction (corresponding to the eigenvalue of the Poincaré map closest to the unit circle, see [8,9,14] ), that will control at 

first order the proximity to the limit cycle (technical details explained below), then the PRC naturally extends to a system 

of two variables, namely the phase and this privileged amplitude variable (see Fig. 1 ), and two response functions, named 

phase and amplitude response functions (PRF and ARF, respectively), see [5] and Section 2 . 

Our goals are motivated by the open question of studying the influence of stimuli on the dynamics of oscillators, which 

in the context of PRCs has been addressed, for instance, in [15–17] . In order to quantify the validity of the asymptotic-state 

hypothesis, in [5] we studied the differences in predicting the entrainment to a periodic pulse stimulus, which induces 

an entrainment map ; more specifically, a 1D discrete dynamical system that maps the value of the state variables before a 

stimulus to the value before the next one, see Fig. 1 . Entrainment maps are a useful tool to make predictions about biological 

rhythms (see for instance [18,19] ). Note that, under the asymptotic-state hypothesis, this paradigm induces a 1D entrainment 

map in the phase space, whereas in the extended version, it induces a 2D entrainment map in the phase-amplitude space. 

In [5] , we compared the differences between the 1D and the 2D approaches in terms of the hyperbolicity of the limit 

cycle and the tilt of its isochrons, see also [6] . We focused our analysis on the behaviour of the rotation numbers associated 

to the phase variable of both entrainment maps and detected important differences for the two cases as we increased the 

input strength (|| I stim 

|| in Fig. 1 ) or the stimulation frequency (1/ T s in Fig. 1 ). In a minimal model allowing for an analytical 

computation of the isochrons and all class of response curves, we showed that the rotation number for the 1D entrainment 

map could have absolute errors (compared to the exact rotation number) two orders of magnitude higher than the 2D 

entrainment. In the cases we studied, the error for the 1D entrainment map could be of order 10 −2 , which implies dramatic 

misestimations of the perturbed phase under a high-frequency input (for instance, a bursting-like one or a synchronized 

bombardment from a pool of presynpatic neurons). 

The rotation numbers obtained in [5] were referred to the phase defined by the limit cycle, no matter the perturbation 

created a new periodic attractor with a new phase or even broke up the periodic dynamics, but the dynamics of discrete 

dynamical systems generated by these entrainment maps and their limitations in predicting the real behaviour of the phase 

and amplitude variables have not been analyzed in depth. In this paper, we perform this analysis with the aim of under- 

standing both the dynamics of phase-amplitude variables when the system is subjected to periodic pulsatile inputs and 

the undergoing bifurcations as we increase either the strength or the frequency of the perturbation. In particular, we are 
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interested in checking the existence of the invariant curves of the 2D map, understanding the dynamics inside these in- 

variant curves and explaining the bifurcations that lead to changes in this internal dynamics or to a transition from the 

invariant curve attractor regime to a fixed-point attractor regime. Moreover, we aim to describe how the periods of the 

dynamics inside the invariant curves of the 2D map are organized within the stimulus strength-frequency parameter space. 

As far as we know, this is the first time that the intrinsic dynamics of these 2D entrainment maps is studied. Therefore, 

we focus on a canonical form of type II oscillators that enables us to better dissect the basic involved mechanisms. The 

model and the two corresponding entrainment maps are presented in Section 2 , together with a brief update of the results 

from [5] , for the sake of self-containment. By studying this canonical example we aim at better distinguishing the main 

differences between the 1D and the 2D corresponding discrete dynamical systems, understanding more deeply the dynamics 

of the 2D map and obtaining good predictions of their long-term behaviour. Moreover, we aim at giving an insight of what 

can happen in more complex and realistic models in neuroscience, for which this analytico-numerical study that we carry 

on here would be more cumbersome and perhaps less illustrative. 

In order to tackle the above-mentioned goals, we take advantage of well-known methods from the theory of discrete 

dynamical systems and we propose two different numerical schemes. Since our 2D entrainment map is similar in many 

aspects to the Arnold family of annulus diffeomorphisms studied in [20] , we adapt their techniques to compute the invariant 

curves and their internal dynamics, and to localise the parameter regions corresponding to specific periods of this internal 

dynamics via Arnold tongues. These techniques, see Section 3 , are based on Taylor expansions of the invariant curves and 

their internal dynamics. The results that we present are obtained using this methodology, but we also propose another 

approach to compute the invariant curves, namely a Newton-like method (see [21] ) consisting of solving the invariance 

equation derived from the parameterization method (see [22] ). For the sake of completeness, we keep the development of 

this method in Appendix A . The results obtained with these two methods are exposed in Section 4 and further discussed in 

Section 5 . 

2. Background and model 

In this section, we present the system that we will perturb with a periodic pulse stimulus. As mentioned in the Introduc- 

tion, we focus on a canonical form of type II oscillators, with two relevant parameters: the degree of hiperbolicity and the 

tilt of the isochrons. The model was chosen to be simple to allows more insight into the entrainment mechanisms that we 

want to study. In Section 2.1 , we review the definition of phase and amplitude response functions and apply it to obtain the 

corresponding exact expressions (PRF and ARF, respectively) for this simple model. These response functions constitute the 

main ingredients to build up the entrainment maps ( Section 2.2 ) induced by the perturbation which, of course, will involve 

the frequency and the strength of the periodic pulse stimulus. 

2.1. A simple canonical model 

We choose a simple canonical model having a limit cycle and endowed with two parameters, α and a , controlling, re- 

spectively, the hyperbolicity of the limit cycle (that is, its attractiveness) and the isochron-limit cycle relative position (also 

referred to as the tilt of the isochrons ). In polar coordinates, the vector field writes as 

X := 

{
˙ r = α r(1 − r 2 ) , 
˙ ϕ = 1 + α a r 2 , 

(1) 

with a ≥ 0 and α > 0. In Cartesian coordinates, system (1) writes as 

X := 

{
˙ x = α x 

(
1 −

(
x 2 + y 2 

))
− y 

(
1 + α a 

(
x 2 + y 2 

))
, 

˙ y = α y 
(
1 −

(
x 2 + y 2 

))
+ x 

(
1 + α a 

(
x 2 + y 2 

))
. 

(2) 

The circle r = 1 is a limit cycle of (1) , that will be called �. The dynamics on � is given by ˙ ϕ = 1 + αa . Therefore, 

ϕ(t) = ϕ 0 + (1 + αa ) t mod 2 π and the period of the limit cycle is T 0 = 2 π/ (1 + αa ) . A parameterisation of the limit cycle in 

terms of the phase θ = t/T 0 , for θ ∈ [0, 1) is γ (θ ) = ( cos (2 πθ ) , sin (2 πθ )) . The characteristic exponent of � is λ = −2 α T 0 = 

−4 α π/ (1 + αa ) . Hence, the larger is α, the stronger will be the attraction to the limit cycle. 

In [5] , we provided the explicit expression of both the isochrons associated to � and the expression of the phase- 

amplitude response curves. For the sake of completeness, we briefly explain how these results are obtained. First of all, 

note that the change of coordinates (x, y ) = K(θ, σ ) with 

K(θ, σ ) = 

( √ 

1 

1 − 2 ασ
cos 

(
2 πθ + 

1 

2 

a ln (1 − 2 ασ ) 
)
, 

√ 

1 

1 − 2 ασ
sin 

(
2 πθ + 

1 

2 

a ln (1 − 2 ασ ) 
)) 

, (3) 

where θ ∈ [0, 1) and σ < (2 α) −1 , brings the system (2) into 

˙ θ = 1 / T 0 , 

˙ σ = λσ/T 0 = − 2 α σ. (4) 
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Fig. 2. Influence of parameter a on the tilt of isochrons. The limit cycle (red) of system (1) and some isochrons (blue) for different values of the parameter 

a . In both cases, α = 10 . For small values of a (left panel), the isochrons are almost radial, whereas large values of a (right panel) produce a significative 

tilt of the isochrons which become almost tangent to the limit cycle, thus increasing the phase sensitivity under perturbations. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

This is the basic transformation within the parameterization method, see [4] , and gives valuable information about the 

phase-amplitude dynamics. 

Indeed, notice that the function K can be easily inverted using that r 2 = x 2 + y 2 = ( 1 − 2 ασ ) −1 and arctan 

(
y 
x 

)
= 2 πθ + 

1 
2 a ln (1 − 2 ασ ) , leading to K 

−1 (x, y ) =: (
(x, y ) , �(x, y )) , where 


(x, y ) = 

1 

2 π

(
arctan 

(
y 

x 

)
− 1 

2 

a ln 

(
1 

r 2 

))
, �(x, y ) = 

1 

2 α

(
1 − 1 

r 2 

)
. 

The functions K , 
 and � are very relevant to control the change in phase and amplitude, respectively, produced by a 

brief stimulus. On one side, for a fixed θ0 = ∈ [0 , 1) , the curve defined by K ( θ0 , σ ) (equivalently, 
 = θ0 ) corresponds to 

the θ0 -isochron; on the other side, the curve defined by K ( θ , σ 0 ) for a fixed σ0 = ∈ (−∞ , 1 / (2 α)) (equivalently, � = σ0 ) 

corresponds to the so-called σ 0 -isostable. Moreover, the phase and amplitude response functions can be defined directly 

from these functions as the corresponding dot product with the stimulus vector (see [5] ): 

P RF (x, y ; I stim 

) = ∇
(x, y ) · I stim 

, ARF (x, y ; I stim 

) = ∇�(x, y ) · I stim 

, 

where ∇ stands for the gradient. 

In our example, we have that ∇
( x, y ) = 

1 

2 π r 2 
( −y + ax, x + ay ) , and ∇�( x, y ) = 

(
x 

αr 4 
, 

y 

αr 4 

)
. 

Without loss of generality, due to the symmetry of the problem, we take I stim 

= (1 , 0) . Therefore, the phase and amplitude 

response functions can be written in the ( θ , σ ) variables as 

P RF (K(θ, σ )) = −
√ 

1 − 2 ασ

2 π

(
sin 

(
2 πθ + 

1 

2 

a ln (1 − 2 ασ ) 
)

− a cos 

(
2 πθ + 

1 

2 

a ln (1 − 2 ασ ) 
))

(5) 

and 

ARF (K(θ, σ )) = 

(1 − 2 ασ ) 3 / 2 

α
cos 

(
2 πθ + 

1 

2 

a ln ( 1 − 2 ασ ) 
)
. (6) 

We remark that, given a point γ ( θ0 ) ∈ �, the angle ( β) between the isochron 
 = θ0 and the limit cycle at this point is 

independent of θ0 (by symmetry) and 

cos β = 

γ ′ (θ0 ) · ∇
⊥ (γ (θ0 )) 

‖ γ ′ (θ0 ) ‖‖∇
⊥ (γ (θ0 )) ‖ 

= 

a √ 

1 + a 2 
. 

Observe that for a = 0 , the isochrons will be orthogonal to the limit cycle, and they will become tangent to it as a goes to 

infinity (see Fig. 2 ). 
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Fig. 3. Schematic representation of the elements involved in the map (8) . We apply a pulse stimulus I stim = (ε, 0) at the point ( θn , σn ). This perturbation 

alters the current state of the system from ( θn , σn ) to the point in black at the tip of the arrow of I stim . The PRF and ARF give an approximation of this 

point by means of the expression (θn + ε PRF (θn , σn ) , σn + ε ARF (θn , σn )) (grey point). To reach (θn +1 , σn +1 ) , we complete the action of map 8 by integrating 

(4) T s time units, which is equivalent to add T s / T 0 to the phase and multiply by exp ( λT s / T 0 ) the amplitude. 

2.2. Entrainment maps 

We will force our system with pulse-trains of period T s � T 0 , nearby a limit cycle � of period T 0 and characteristic expo- 

nent λ. More specifically, we consider a generic oscillator, and assume that it is perturbed with an external instantaneous 

stimulus of amplitude ε in the voltage direction every T s time units, that is: 

˙ x = X (x ) + ε v 
N ∑ 

j=0 

δ(t − jT s ) , (7) 

where v = (1 , 0) and δ is the Dirac delta function. This system can represent, for example, a neuron receiving an idealized 

synaptic input from other neurons. 

Remark 2.1. In the sequel, we will also use ω s = 1 /T s , the frequency of the stimulus, and ω 0 = 1 /T 0 , the frequency of the 

limit cycle �. Then, the quotient ω s / ω 0 indicates how many inputs receives the oscillator in one period. In the context of 

neuroscience, the paradigm that we analyze in this paper may correspond to different situations. For instance, the quotient 

ω s / ω 0 could represent the number of presynaptic neurons to the target neuron, assuming that all presynaptic neurons fire 

asynchronously at the same firing rate, close to ω 0 , and ε is the height of a postsynaptic potential. Still assuming the same 

firing rate for all the neurons in the population, increasing synchrony would imply a decrease of the quotient ω s / ω 0 together 

with an increase in ε; it could still fall into our idealised framework although any source heterogeneity may break it. We 

will return to this question in the discussion, Section 5 . 

We shall just focus on the maps given in (5) and (6) obtained from the canonical model (1) under the pulse-periodic 

stimuli of frequency ω s . Our purpose in studying this particular example is to understand more deeply the 2D map, to 

establish more precisely the main differences between the 1D and the 2D approaches, and to make better predictions of 

their long-term behaviour. This is a minimal model, so that we expect that this study gives insight of what can happen in 

more complex and realistic models in neuroscience, for which this numerical study that we shall carry on would be more 

cumbersome and perhaps less illustrative. 

In order to know the evolution of this perturbed oscillator after each time period T s , it is enough to know how the 

variables θ and σ change. We recall that the variation of the variable θ produced by an external stimulus I stim 

:= ( ε, 0) is 

given, in first order of the stimulus strength ε, by the PRF obtained in (5) . Similarly, the variation of the variable σ is given 

in first order by the ARF obtained in (6) . Hence, we can consider the following map, which approximates the position of the 

oscillator at the moment preceding next kick: 

θn +1 = θn + ε P RF (θn , σn ) + 

T s 

T 0 
( mod 1 ) , 

σn +1 = ( σn + ε ARF (θn , σn ) ) e 
λT s /T 0 . (8) 

Notice that, on one hand, the three terms of the right-hand side of the first equation account for, respectively, (1) the phase 

at step n , (2) the change in phase produced by the kick at step n (governed by the PRF) and (3) the phase elapsed between 

the n -th and the (n + 1) th kicks. On the other hand, the right-hand side of the second equation account for the amplitude 

at step n plus the change in amplitude produced by the kick at step n (governed by the ARF), altogether multiplied by 

e λT s /T 0 , which reflects the variation of amplitude due to the flow of X , see (4) . See Fig. 1 for a schematic representation of 

the elements involved in the map (8) . 
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We will compare the map (8) with the map obtained by considering the classical PRC (see, for instance, [ 1 , Ch. 10]), 

which is: 

θn +1 = θn + ε P RC(θn ) + 

T s 

T 0 
( mod 1 ) . (9) 

Maps (9) and (8) are, respectively, the 1D and 2D entrainment maps that we mention in the Introduction. In the 1D 

case we are assuming that the perturbation happens always on the limit cycle, and therefore σn = 0 for all n . In [5] , we 

explored the limits of validity of the latter hypothesis in terms of ω s and ε. Here, we want to study the dynamics of these 

two entrainment maps. Since the 1D entrainment map is a particular case, we will develop the methodology for the 2D 

entrainment and then use it in both cases for the sake of comparison. We shall denote by F ε,ω : T × R → T × R the 2D map 

associated to the discrete dynamical system (8) : 

F ε,ω : T × R −→ T × R (
θ
σ

)
 −→ 

(
θ + ω + ε P RF (θ, σ ) ( mod 1 ) 

( σ + ε ARF (θ, σ ) ) e λω 

)
, (10) 

where λ< 0 and ω := ω s = T s /T 0 is the ratio between the stimulation period and the period of the underlying limit cycle of 

the unperturbed system. 

3. Computation of invariant curves and Arnold tongues using Taylor expansions 

In this section we implement a method to compute the invariant curves and the dynamics inside them. For the theoret- 

ical background of this section we follow the ideas found in [20] . The implementation of the numerical methods is based 

on [23,24] (see also [25] ). For the whole procedure, we use automatic differentiation tools which, in particular, facilitate the 

computation of the so-called Arnold tongues. 

3.1. The invariance equations 

Let us fix ω = p/q ∈ Q . To find the invariant curve of the map F ε, ω defined in (10) and the dynamics inside it, we look 

for invariant curves of the form σ = g(θ, ε) and denote the dynamics inside these invariant curves by h ( θ , ε). Both g and h 

are defined implicitly from (10) and they must satisfy the following invariance equations: 

h (θ, ε) = θ + ω + ε P RF (θ, g(θ, ε)) , (11) 

and 

g(h (θ, ε)) = ( g(θ, ε) + ε ARF (θ, g(θ, ε)) ) e λω . (12) 

Expanding h and g in orders of ε, that is, 

h (θ, ε) = 

∑ 

n ≥0 

h n (θ ) ε n , g(θ, ε) = 

∑ 

n ≥0 

g n (θ ) ε n , 

we can use Eqs. (11) and (12) to compute the n -th order functions h n ( θ ) and g n ( θ ), for n = 0 , . . . , N. 

For ε = 0 , there is no perturbation and so the limit cycle of system (1) is indeed the invariant curve of F 0, ω . Moreover, 

since the phase is normalized, we can interpret the dynamics on this invariant curve as being a pure rotation with rotation 

number p / q . For a fixed ε > 0 small enough, this p / q -rotation generically persists for an ω-interval whose width depends on 

ε. We say that ( ω, ε) ∈ T p,q if and only if there exist (θ ∗, σ ∗) ∈ T × R such that F 
q 
ε,ω (θ

∗, σ ∗) = (θ ∗ + 2 π p, σ ∗) . We call T p,q the 

Arnold tongue of rotation number p / q . The boundaries of the Arnold tongues correspond to saddle-node bifurcation points of 

the function F 
q 
ε,ω (θ, σ ) , and they can be parameterized in the plane ( ω, ε) by two curves ω ± ( ε) such that ω(0) = p/q . We 

will use the notation ω ±(ε) = p/q + δ±(ε) , where δ(0) = 0 to denote the two boundaries of the p / q -Arnold tongue. With 

this notation, the invariance Eqs. (11) and (12) write as 

h (θ, ε, δ) = θ + ω + δ + ε P RF (θ, g(θ, ε, δ)) , (13) 

and 

g ( h (θ, ε, δ) , ε, δ) = ( g(θ, ε, δ) + ε ARF ( θ, g(θ, ε, δ) ) ) e λ(ω+ δ) , (14) 

where ω = p/q is fixed, and h and g expand in orders of ε and δ as 

h (θ, ε, δ) = 

∑ 

j,k ≥0 

h jk (θ ) ε j δk , g(θ, ε, δ) = 

∑ 

j,k ≥0 

g jk (θ ) ε j δk . 

Substituting them in (13) and (14) , we obtain the following computational scheme: 

∑ 

j,k ≥0 

h jk (θ ) ε j δk = θ + ω + δ + ε P RF 

( 

θ, 
∑ 

j,k ≥0 

g jk (θ ) ε j δk 

) 

, (15) 
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and 

∑ 

j,k ≥0 

g jk 

( ∑ 

m,n ≥0 

h mn (θ ) ε m δn 

) 

ε j δk 

= 

( ∑ 

j,k ≥0 

g jk (θ ) ε j δk + ε ARF 

( 

θ, 
∑ 

j,k ≥0 

g jk (θ ) ε j δk 

) ) 

e λ(ω+ δ) . (16) 

Eqs. (15) and (16) are solved numerically order by order using automatic differentiation tools, specially for the PRF and 

ARF functions which are combinations of trigonometric and logarithmic functions, see Eqs. (5) and (6) . In particular, we first 

solve the term of order zero of both equations analytically, which can be done easily. After that, we also solve analytically 

the terms independent of ε. Finally, the higher-order terms can be solved numerically once the previous ones are known, 

so that one just needs to proceed inductively to obtain the subsequent orders. We shall now explain this procedure in more 

detail. 

Concerning the independent terms of both invariance equations, equating the terms that are independent of ε and δ in 

both sides of Eq. (15) we readily obtain 

h 00 (θ ) = θ + ω. 

Proceeding in a similar way for Eq. (16) and taking into account that h 00 (θ ) = θ + ω, we obtain 

g 00 (θ + ω) = g 00 (θ ) e λω . (17) 

Eq. (17) can be solved expanding both sides in Fourier series and equating the Fourier coefficients. More precisely, if we 

write 

g 00 (θ ) = 

∑ 

l∈ Z 
g l 00 e 

2 π ilθ , 

then Eq. (17) yields the following equation for each l ∈ Z : 

g l 00 

(
e 2 π ilω − e λω 

)
= 0 . 

Since λ ∈ R \ { 0 } , clearly e 2 π ilω − e λω � = 0 for all l ∈ Z , so that one obtains straightforwardly: 

g l 00 = 0 for all l ∈ Z , g 00 (θ ) = 0 . 

We now focus on the terms h 0 k and g 0 k with k ≥ 1. From Eq. (15) it is straightforward to see that 

h 01 (θ ) ≡ 1 , and h 0 k (θ ) ≡ 0 , for k ≥ 2 . 

In order to compute g 0 k ( θ ), we proceed in a different way. We first observe that from the previous computations we 

know that h (θ, 0 , δ) = θ + ω + δ. Hence, setting ε = 0 in Eq. (14) , we obtain 

g(θ + ω + δ, 0 , δ) = g(θ, 0 , δ) e λ(ω+ δ) . (18) 

Writing g ( θ , ε, δ) in Fourier series, 

g(θ, ε, δ) = 

∑ 

l∈ Z 
g l (ε, δ) e 2 π ilθ , 

Eq. (18) yields, for each l ∈ Z , 

g l (0 , δ) 
(
e 2 π il(ω+ δ) − e λ(ω+ δ) 

)
= 0 . 

Again, since λ � = 0, we have e 2 π il(ω+ δ) − e λ(ω+ δ) � = 0 , so that g l (0 , δ) = 0 for all l ∈ Z . Consequently, one has that 

g(θ, 0 , δ) = 0 for all δ, which implies that for all k ≥ 1, g 0 k (θ ) = 0 . 

Finally, we consider the higher-order terms of Eqs. (15) and (16) . In the following, for a series f (ε, δ) = 

∑ 

m,n ≥0 f mn ε m δn 

we shall denote [ f ( ε, δ)] j,k := f jk . As we mentioned above, for j, k such that j + k ≥ 1 and j ≥ 1, one can proceed inductively 

as follows. Assume that we have already computed h jk , g jk with j + k ≤ N for some N ≥ 0, and we need to compute h jk and 

g jk with j + k = N + 1 . We note that h jk is simply given by: 

h jk (θ ) = 

[ 

θ + ω + δ + ε P RF 

( 

θ, 
∑ 

m,n ≥0 

g mn (θ ) ε m δn 

) ] 

j,k 

. 

For j ≥ 1, k ≥ 0 we have 

h jk (θ ) = 

[ 

P RF 

( 

θ, 
∑ 

m,n ≥0 

g mn (θ ) ε m δn 

) ] 

j−1 ,k 

. (19) 
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Fig. 4. Invariant curves of the map F ε, ω and the unperturbed limit cycle. We consider system (1) with α = 5 , a = 1 and perturb it with a periodic pulse 

stimulus with frequency ω = 1 / 50 and amplitude ε. The results are shown on the plane ( θ , σ ). 



O. Castejón and A. Guillamon / Commun Nonlinear Sci Numer Simulat 81 (2020) 105008 9 

Fig. 5. Invariant curves of the map F ε, ω and the unperturbed limit cycle. We consider system (1) with α = 5 , a = 1 and perturb it with a periodic pulse 

stimulus with frequency ω = 1 / 50 and amplitude ε. The results are shown on the plane (x, y ) = K(θ, σ ) . 
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Fig. 6. The 1/3-Arnold tongue for the map F ε, ω . We consider system (1) with α = 5 , a = 1 . The map F ε, ω has period-3 orbits inside the tongue, which is 

delimited by the curves ω ±(ε) = 1 / 3 + δ±(ε) . Each cross on the line ε = 0 . 2 corresponds to a panel in Fig. 7 . 

We note that the right-hand side of (19) depends only on g mn with 0 ≤ m ≤ j − 1 and 0 ≤ n ≤ k , so that m + n ≤ j + k − 1 = N, 

and thus they are already known. 

Now, assume that we have already computed g jk with j + k ≤ N and h jk with j + k ≤ N + 1 and we want to compute g jk 
with j + k = N + 1 . From (16) one can easily see that g jk must satisfy 

g jk (θ + ω) − g jk (θ ) e λω = R jk (θ ) , (20) 

where R jk is defined as 

R jk (θ ) = −
[ ∑ 

m,n ≥0 

g mn 

( ∑ 

r,s ≥0 

h rs (θ ) ε r δs 

) 

ε m δn − g jk (θ + ω) ε j δk 

] 

j,k 

+ 

[ ( ∑ 

m,n ≥0 

g mn (θ ) ε m δn 

) 

e λ(ω+ δ) − g jk (θ ) ε j δk e λω 

] 

j,k 

+ 

[ 

εARF 

( 

θ, 
∑ 

m,n ≥0 

g mn (θ ) ε m δn 

) 

e λ(ω+ δ) 

] 

j,k 

. 

It is easy to see that, in fact, 

R jk (θ ) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

−
∑ 

0 ≤m ≤ j 
0 ≤n ≤k 

m + n ≤ j+ k −1 

g mn 

⎛ 

⎜ ⎜ ⎜ ⎝ 

∑ 

0 ≤r≤ j 
0 ≤s ≤k 

r+ s ≤ j+ k 

h rs (θ ) ε r δs 

⎞ 

⎟ ⎟ ⎟ ⎠ 

ε m δn 

⎤ 

⎥ ⎥ ⎥ ⎦ 

j,k 

+ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∑ 

0 ≤m ≤ j 
0 ≤n ≤k 

m + n ≤ j+ k −1 

g mn (θ ) ε m δn e λ(ω+ δ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

j,k 

+ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

ARF 

⎛ 

⎜ ⎜ ⎜ ⎝ 

θ, 
∑ 

0 ≤m ≤ j−1 
0 ≤n ≤k 

m + n ≤ j+ k −1 

g mn (θ ) ε m δn 

⎞ 

⎟ ⎟ ⎟ ⎠ 

e λ(ω+ δ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

j−1 ,k 
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Fig. 7. Dynamics of F ε, ω across the 1/3 -Arnold Tongue. Invariant curves of the map F ε, ω with α = 5 , a = 1 and ε = 0 . 2 in the plane ( x, y ). We consider four 

different values of ω, corresponding to the four situations marked on Fig. 6 . The values of ω for panels (a) and (b) belong to the interior of the 1/3-Arnold 

tongue and show two periodic orbits of period 3. Panel (c) corresponds to the boundary of the Arnold tongue where a saddle-node bifurcation occurs. 

Panel (d) corresponds to a value of ω out of the Arnold tongue; we have lost the 3-periodic orbit and observe apparent irrational dynamics. 

Note that R jk depends on g mn with 0 ≤ m + n ≤ j + k − 1 = N and h mn with 0 ≤ m + n ≤ j + k = N + 1 and, therefore, it is 

known. We point out that, in fact, in our setting, R jk does not depend on h mn with m + n = N + 1 since g 00 (θ ) = 0 . In order 

to solve Eq. (20) one can use Fourier series again. Indeed, if we write 

g jk (θ ) = 

∑ 

l∈ Z 
g l jk e 

2 π ilθ , R jk (θ ) = 

∑ 

l∈ Z 
R 

l 
jk e 

2 π ilθ , 

we can easily see that 

g l jk = 

R 

l 
jk 

e 2 π ilω − e λω 
. 
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Fig. 8. Arnold tongues for the map F ε, ω with α = 5 , a = 1 . Green crosses indicate the value of ε max of each tongue (see Section 3.3 ). 

We remark that the denominator is always nonzero since λ � = 0. 

3.2. Implementation of the method 

In this section we give some details of how we implemented the method described in Section 3.1 . The main tool is 

computing series obtained by operating with two other series (adding, multiplying, etc.) and composing a given series with 

elementary functions (such as the exponential, sine, cosine,...). However, as one can see in Eq. (16) , in our case one must 

also compute the series of the composition g ( h ( θ , ε, δ), ε, δ). We stress that g ( θ , ε, δ) is not known explicitly. In order to 

find the series of g ( h ( θ , ε, δ), ε, δ), we proceed as follows. Assume we have computed g jk ( θ ), 0 ≤ j + k ≤ N for some N . Let 

us define 

g N (θ, ε, δ) = 

∑ 

0 ≤ j+ k ≤N 

g jk (θ ) ε j δk . 

Since g N is periodic with respect to θ , we can also write it in Fourier series: 

g N (θ, ε, δ) = 

∑ 

l≥0 

ˆ g l N (ε, δ) cos (2 π lθ ) + ḡ l N (ε, δ) sin (2 π lθ ) (21) 

= 

∑ 

l≥0 

∑ 

0 ≤ j+ k ≤N 

(
ˆ g l j,k cos (2 π lθ ) + ḡ l j,k sin (2 π lθ ) 

)
ε j δk . 

The Fourier coefficients ˆ g l 
j,k 

and ḡ l 
j,k 

are found numerically by computing the values of the function g j,k ( θ ) for a dis- 

cretisation θ0 , . . . , θn and using the Fast Fourier Transform (FFT). In the examples below, we take n = 1024 for the Fourier 

transform. In the numerical implementation, expansions (21) are truncated at a maximum Fourier index l . We choose this 

maximum Fourier index such that the tails of the Fourier expansion are small relatively to the order. More precisely, we fix 

two constants E L and χ and then for each j, k ≥ 0 we choose l max = l max ( j, k ) such that 

g j,k (θ ) = 

l max ∑ 

l= � 0 . 9 l max � 

(∣∣ ˆ g l j,k 

∣∣ + 

∣∣ḡ l j,k ∣∣) < 

E L 

χ j+ k . (22) 

We take χ < 1 so that as the order j + k increases a larger error is tolerated, since for small values of ε the contributions 

due to the terms g j,k ( θ ) will be less significant. In the computations shown here we take E L = 10 −10 and χ = 0 . 9 . In the 

following we denote 

L = max 
0 ≤ j+ k ≤N 

l max ( j, k ) . 
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Fig. 9. Comparison between different p / q -Arnold tongues of the 2D (red) and the 1D (blue) maps, with α = 5 , a = 1 . Observe how the tangency between 

the two boundary gets more pronounced when increasing the denominator q . It can be prove that the tangency is of order q . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Following the convention that ḡ l 
j,k 

= ˆ g l 
j,k 

= 0 if l > l max ( j, k ), Eq. (21) writes out as 

g N (θ, ε, δ) = 

L ∑ 

l=0 

ˆ g l N (ε, δ) cos (2 π lθ ) + ḡ l N (ε, δ) sin (2 π lθ ) 

= 

L ∑ 

l=0 

∑ 

0 ≤ j+ k ≤N 

(
ˆ g l j,k cos (2 π lθ ) + ḡ l j,k sin (2 π lθ ) 

)
ε j δk . 

Now, after computing the (truncated) Fourier series of g N , we can write 

g N (h (θ, ε, δ) , ε, δ) = 

L ∑ 

l=0 

ˆ g l N (ε, δ) cos (2 π lh (θ, ε, δ)) + ḡ l N (ε, δ) sin (2 π lh (θ, ε, δ)) , 

and compute the cosine and sine series with methods of automatic differentiation: 

cos ( 2 π lh (θ, ε, δ) ) =: c l (θ, ε, δ) = 

∑ 

j,k ≥0 

c l j,k (θ ) ε j δk , 

sin ( 2 π lh (θ, ε, δ) ) =: s l (θ, ε, δ) = 

∑ 

j,k ≥0 

s l j,k (θ ) ε j δk . (23) 
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Fig. 10. Comparison between one of the boundaries of the 1/50-Arnold tongue of the 2D and the 1D maps, with α = 5 , a = 1 . 

Finally, we just need to compute the series of the following products for each l , which can be done again using methods of 

automatic differentiation: 

ˆ g l N (ε, δ) c l (θ, ε, δ) = a l (θ, ε, δ) =: 
∑ 

j,k ≥0 

a l j,k (θ ) ε j δk , 

ḡ l N (ε, δ) s l (θ, ε, δ) = b l (θ, ε, δ) =: 
∑ 

j,k ≥0 

b l j,k (θ ) ε j δk . 

The series of g N ( h ( θ , ε, δ), ε, δ) is then given by 

g N (h (θ, ε, δ) , ε, δ) = 

L ∑ 

l=0 

a l (θ, ε, δ) + b l (θ, ε, δ) = 

∑ 

j,k ≥0 

( 

L ∑ 

l=0 

a l j,k (θ ) + b l j,k (θ ) 

) 

ε j δk ;

we neglect the terms with j + k > N since they will be modified when computing the series of g N+1 (h (θ, ε, δ) , ε, δ) , and so 

on. 

Remark 3.1. In the practical implementation, we choose L to be at most 25. The reason is that the error in the c l and 

s l series (23) increases with l . To decrease this error, one needs to compute more orders of these expansions, that is, to 

increase N . This, in its turn, increases the maximum L needed to control the error of the Fourier expansions (21) , ending in 

vicious circle. 

Finally, we point out that we need to compute as well the series of PRF( θ , g ( θ , ε, δ)) and ARF( θ , g ( θ , ε, δ)), see the 

invariance Eqs. (15) and (16) . In the example below, we will know these functions explicitly, so that they can be computed 

using automatic differentiation tools again. However, in realistic models, the PRF and ARF are computed numerically as seen 

in [5] . In this case, one has these functions expressed as Fourier-Taylor series: 

P RF (θ, σ ) = 

n max ∑ 

n =0 

P RF n (θ ) σ n , ARF (θ, σ ) = 

n max ∑ 

n =0 

ARF n (θ ) σ n . 

One just needs to compute the series of ( g ( θ , ε, δ)) n for n = 0 , . . . , n max , which can be done with standard methods, and 

then one can find the series of PRF ( θ , g ( θ , ε, δ)) and ARF ( θ , g ( θ , ε, δ)). 

3.3. Computation of Arnold tongues 

Once we have computed the series g ( θ , ε, δ) (the parameterization of the invariant curve) and h ( θ , ε, δ) (the dynamics 

inside it), we can proceed to look for the Arnold tongue of rotation number p / q . To that aim, we consider the function: 

F p/q ( θ, ε, δ) = ( h 

q (θ, ε, δ) − θ − p, ∂ θ ( h 

q (θ, ε, δ) ) − 1 ) . 
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Fig. 11. Evolution of the asymptotic states of the exact (red), 2D (8) (green) and 1D maps (9) (blue) . Simulations for α = 5 , a = 1 , ω = 1 / 50 and 

different values of ε. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Given a fixed ε, we look for (θ, δ) = (θ (ε ) , δ(ε )) such that F p/q (θ (ε ) , ε , δ(ε )) = 0 , which ensures that ( θ ( ε), g ( θ ( ε)) is a 

saddle-node bifurcation point of the function F ε , p q + δ(ε ) defined in (10) . This equation can be solved using Newton’s method. 

We point out that, having computed the coefficients of the series h ( θ , ε, δ), the computation of the derivative of h with 

respect to δ is trivial. The derivative of h with respect to θ is computed by means of the FFT algorithm, using again a 

discretisation of the function at n = 1024 points. 

After computing ( θ ( ε ), δ( ε )), we change ε by some small amount �ε and follow a continuation method to obtain a good 

initial approximation of (θ (ε + �ε) , δ(ε + �ε)) . This is done using one step of Newton’s method. Then, we start again the 

procedure described above to find the solution with the desired accuracy. 

We increase ε up to some maximum value ε max so that the invariance Eqs. (13) and (14) are satisfied up to some error 

E inv . That is, we choose ε max to be the maximum value of ε such that for all ε ≤ ε max : 

sup 

θ∈ [0 , 1) 

| h ( θ, ε, δ(ε) ) − θ + ω + δ(ε) + ε P RF ( θ, g ( θ, ε , δ(ε ) ) ) | < E inv . 

and: 

sup 

θ∈ [0 , 1) 

∣∣g ( h ( θ, ε, δ(ε) ) , ε, δ(ε) ) − [ g ( θ, ε, δ(ε) ) + ε ARF ( θ, g(θ, ε , δ(ε )) ) ] e λ(ω+ δ(ε)) 
∣∣ < E inv . 

In the computations presented here we take E inv = 10 −10 . 

For ε > ε max we can continue the Arnold tongues just by looking for a saddle-node bifurcation point of the 2D-map 

F 
q 

ε,p/q + δ(θ , σ ) defined in (10) . That is, given a certain ε > ε max , we look for a point ( θ ( ε ), σ ( ε ), δ( ε )) such that: 

F q 
ε ,p/q + δ(ε ) ( θ (ε) , σ (ε) ) = 0 , 

det 
(
DF q 

ε ,p/q + δ(ε ) ( θ (ε) , σ (ε) ) − Id 

)
= 0 . 
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Fig. 12. Evolution of the asymptotic states of the exact (red), 2D (8) (green) and 1D maps (9) (blue) . Simulations for α = 5 , a = 1 , ε = 0 . 01 and different 

values of ω. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

We perform a Newton method to obtain such a point ( θ ( ε ), σ ( ε ), δ( ε )), taking the seed (θ (ε max ) , σ (ε max ) , δ(ε max )) . We 

point out that for ε > ε max we cannot ensure that the points ( θ ( ε), σ ( ε)) lie on an invariant curve anymore. 

Remark 3.2. This method has a particular drawback for our interests. If one wants to deal with realistic synaptic inputs, one 

should consider p / q < 1/20. To find the series of h q ( θ , ε, δ) with q large, the computation time can be too long, and even 

the accuracy of the series too bad (that is, ε max too small). One possible solution is computing a normal form of h ( θ , ε, δ) 

in terms of δ, as is done in [20] . 

3.4. Numerical aspects 

For the numerical integration we have used a Runge–Kutta method of order 7/8 with a fixed tolerance of 10 −12 . To track 

the invariant curves for different parameter values we have used continuation methods as explained in [24] . In the practical 

implementation of the procedure explained in Section 3 , we have used automatic differentiation tools, see for instance 

[23,25] . To compute the FFT we have used the fftw3 library (see http://www.fftw.org/) . 

4. Application to the canonical type II oscillator 

In this section we show the results obtained with the implementation of the methods presented in Section 3 . We apply 

them to the canonical example (1) studied in Section 2 . As a showcase, we take α = 5 and a = 1 , so that the underlying 

limit cycle of the continuous system is strongly hyperbolic and the isochrons are slightly tilted. Despite being a conservative 

parameter choice, we already detect differences between the 1D and the 2D entrainment maps. Unfortunately, for α << 1 

(the more realistic situation, explored in [5] ), in which we expect more dramatic differences between the two entrainment 

maps, the convergence of the methods worsens. 

http://www.fftw.org/)
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Fig. 13. Evolution of the phase variable for the exact (red), 2D maps (8) (green) and 1D (9) (blue). Simulations for α = 5 , a = 1 , ω = 1 / 50 and different 

values of ε. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

We first show some invariant curves of the 2D map (10) with ω = 1 / 50 for different values of ε obtained with the 

Newton-like method (see Appendix A ) and the Taylor expansion method. On the one hand, we plot the invariant curves 

in variables ( θ , σ ) (see Fig. 4 ). On the other hand, we plot the same curves in variables (x, y ) = K(θ, σ ) , where K is the 

function defined in (3) (see Fig. 5 ). As we mentioned above, in both methods the maximal value of ε that we can reach 

keeping a low error in the invariance equations is not completely satisfactory, since we are not able to see invariant curves 

close to the breakdown. However, one can see the evolution of these invariant curves as ε increases. This evolution is much 

more visible in ( θ , σ ) variables, see Fig. 4 . 

Next, we fix p/q = 1 / 3 , and we plot the corresponding Arnold tongue (see Fig. 6 ) for ε < ε max . We also take some 

points on the parameter line ε = 0 . 2 and plot the corresponding invariant curves in Fig. 7 . We can observe a saddle-node 

bifurcation of periodic orbits: we start having two 1/3-periodic orbits (one attracting and the other repelling) that approach 

each other until they collide, giving rise to a single 1/3-periodic orbit of saddle-node type. Beyond this parameter value, 

rational dynamics is no longer observed (see Fig. 7 (d)). 

Finally, we show some Arnold tongues of map F ε, ω . We first plot some tongues for low values of p / q (see Fig. 8 ). We also 

indicate the value of ε max , that is the value of ε such that E inv < 10 −10 . In Fig. 9 we compare some Arnold tongues (for 

low values of p / q ) corresponding to the 2D entrainment map F ε, ω (in red) and the 1-dimensional map (9) (in blue). One 

can see that, the higher q is, the more the tongues of the 1D and 2D maps differ. We expect that for realistic values of p / q 

(for instance, p/q = 1 / 50 ) these differences will be significant. However, working with double precision does not allow us to 

distinguish between the two boundaries of the Arnold tongues for high values of q (see Fig. 10 ). This is due to the fact that 

the order of contact of the tongues is of εq , see [20] . In order to be able to compute the corresponding tongues in these 

cases, one should work with higher-precision arithmetics or with normal forms, as is done in [20] . 

4.1. Simulation results 

Up to now, we have shown results coming from rigorous computations that rely on the analytico-numerical method 

developed in Section 3 . Unfortunately, the methods and the required tolerance ar very demanding and we cannot visualize 

all the dynamics as the parameters ε or ω change up to the invariant curve breaks up. In this section, we present simulations 

that show how the invariant dynamic varies up to higher values of the parameters. In Figs. 11 and 12 we present simulations 

in which we can see the evolution of the asymptotic attractors when one changes the stimulus amplitude ε or the relative 

period of the stimulus T s / T 0 , respectively. Another way to visualize the predictive power of both entrainment maps is to 

compare the phase dynamics ({ θn } n ) of the exact map with those of the 1D and the 2D maps. In Fig. 13 , we present the 

iterates of the phase for the same values than in Fig. 11 . Altogether, we can draw the following observations: 
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• The three maps seem to have an invariant curve under weak perturbations (small amplitude or large stimulus period) 

that breaks down to give rise to a fixed-point attractor when either ε or ω are big enough. Under weak perturbations 

(for instance, ε = 0 . 001 in Figs. 11 and 13 ), both the 1D and the 2D map give a good prediction. 
• Further increasing ε or ω, we find a range (for instance, ε = 0 . 017 , 0 . 033 in Figs. 11 and 13 ) where the exact invariant 

curve persists and displaces from the original position of the limit cycle; here, the 2D map is able to track this 

displacement whereas the 1D map not. However, both maps give good approximations of the phase. We conclude 

that, in this range, the 1D map looses predictive power about the amplitude but not about the phase. 
• This breakdown takes place at different perturbation levels according to the map considered: first, the exact map and 

later on, the 2D and the 1D maps. In this case, both the 2D map and the 1D map fail to capture the phase, but the 

2D map, at first iterates, keeps better track of the bumpy behaviour of the exact phase. 
• Finally, for even stronger perturbations (for instance, ε = 0 . 079 , 0 . 089 in Figs. 11 and 13 ), the invariant curve of the 2D 

map also breaks down. Both the exact map and the 2D map spiral around a focus beyond this break-down bifurcation 

value and the 2D map is able to predict oscillations of the phase. In this regime, the 1D map (which can never break 

down) is not predicting anymore the exact phase. 
• The fixed point of the 2D map gives a better approximation of the fixed point of the exact map. Thus, for big enough 

perturbations, both the 1D map and the 2D map predict a phase-locking, but the predicted phase of the 1D map is 

less accurate. 

5. Discussion 

We have developed an analytico-numerical scheme to gain more insight into the dynamics of the phase-amplitude en- 

trainment map defined in (8) . Adapting methods from the literature on 2D maps, we provide two alternatives to compute 

invariant curves of the entrainment map as well as their intrinsic dynamics. We then apply them to a specific minimal 

model. 

We have validated numerically the existence of invariant curves up to some perturbation level ε max for different stim- 

ulation frequencies. Since we have used a tolerance 10 −10 to compute the boundaries of the Arnold tongues, this ε max is a 

rigorous lower bound for the existence of the invariant curve. 

The methodology introduced provides a better understanding of the dynamics on the invariant curves, while distinguish- 

ing parameter regions with rational dynamics from those with irrational by means of the Arnold tongues. In particular, 

we have described the saddle-node bifurcation of periodic orbits that the system undergoes when crossing the boundaries 

of these Arnold tongues. Compared to parallel results obtained with the 1D entrainment map (9) , we see that the Arnold 

tongues are slightly different. However, for numerical reasons, we have kept at parameter values that were not favorable 

to show a clear distinction. From the results in [5] , we know that the conditions favorable to the loss of validity of the 

asymptotic-phase hypothesis are weak hyperbolicity and high periodic stimulation. The results shown here are obtained for 

strong hyperbolic limit cycles ( a = 5 ) and slow frequency pulsatile stimuli, which can be seen by observing the ω values of 

the computed Arnold tongues (see Figs. 8 and 6 ). 

By comparing the entrainment maps (9) and (8) with the exact entrainment map, we have validated our hypothesis 

that the 2D map would provide better predictions for strong or high-frequency stimuli. In particular, we have found ranges 

where the 2D map is able to track the displacement of the invariant whereas the 1D map not, an intermediate range where 

the invariant curve of the exact map breaks down and both the 2D map and the 1D map fail to capture the phase, and 

another range, beyond the breakdown of the invariant curves, for stronger perturbations, were the invariant curve of the 2D 

map provides again a good prediction of the exact phase whereas the 1D map fails to predict the exact phase. 

This paper being a proof-of-concept of the methodology to study entrainment maps for phase-amplitude equations, it 

opens a wide range a future directions. A first challenge would be to improve the implementation of these methods in 

order to be able to achieve more realistic values of p / q . As we pointed out above, this should be attainable by performing 

a normal form procedure so that the map F ε,ω+ δ is in the simplest form, namely, to be able to write F ε,ω+ δ in powers of 

ε with all coefficients of order n , 0 < n < q , depending only on δ. Then, the equations to find the boundaries of the Arnold 

tongues would be also simplified (see [20, Prop. 2.9] ), being able to easily distinguish between the two boundaries even 

for higher values of q , which are more realistic in the neuroscience paradigm. In addition, one could use higher-precision 

arithmetics. 

Another goal would consist of computing the invariant curves for values of ε that are close to the breakdown. In this 

direction, similarly as in [20] , it would be interesting to compute the curves in the ( ω, ε) space until which an invariant 

curve exists, and thus confirm the breakdown phenomenon observed in the simulations of Figs. 11 and 12 . 

Focusing on the interpretation of these results in the context of neuroscience (see also [ 1 , Section 10.1.9], for a similar 

discussion with the 1D PRC map), the Arnold tongues inform about the strength and periodicity of periodic pulse stimuli in 

order to achieve or not an entrainment of the cell to the stimulus. The differences between the 1D map and the 2D map 

predictions shown in Fig. 10 are not striking for small ε and “large” ω, but they show the trend of an increasing dissimilarity 

as ε increases and ω = T s /T 0 decreases (that is, when the stimulation period T s decreases). In particular, for realistic ε and 

T s , one expects stronger differences between the two predictions, meaning that an external control exerted on a neuron 

model might not have the synchronisation properties forecasted by the 1D map. Our results show differences between the 
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intervals predicted by the 1D map and the 2D map (supposedly closer to the actual one), corresponding to the interior of 

the respective ω Arnold tongues, and reinforce the warnings about the validity of this control using only 1D maps. 

Natural continuations of our exploration will be the implementation of these methods to type I oscillators or to more 

realistic models. One could also try to study other type of pulsatile stimuli (for instance non-periodic or noisy), other pro- 

tocols of stimulation (two different periods of stimulation, pulse train, etc.) or heterogeneous input strengths. Doing so, one 

would obtain another map different from (8) , but the same questions could be posed. Compared to the system studied in 

this paper, we would have to rely on numerical simulations since we would not have available the analytical expression of 

PRF and ARF. Although the paradigm that we analyze in this paper is apparently restrictive, see Remark 2.1 , we think that 

the conclusions obtained are robust for less restrictive inputs; for instance, a stochastic input with a stationary mean firing 

rate and strength distribution would be a candidate to numerically replicate similar results. 

It is worth to note that this discussion is not only valid in the context of neuroscience. In fact, this was only our leitmotiv 

and we have brought the problem to a more mathematical (and so, generic) framework. Not surprisingly, this methodology 

can be applied to any model in which we have an oscillator, namely a limit cycle. As far as we know, only PRCs have been 

systematically used in other fields like electrical circuits, see [26] , or cellular oscillators, see [27,28] , which gives promising 

avenues for future work. 
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Appendix A. Computation of invariant curves using a Newton-like method 

In this section we develop the numerical scheme to compute the invariant curves of the dynamics of F . We will adapt the 

Newton-like method proposed in [21] . For the sake of self-containedness, we review the main steps of this method adapted 

to our problem. Since our problem is two-dimensional, there are significant simplifications compared to [21] , where the 

method is presented in a setting of arbitrary dimension. However, if this method were to be applied to models of higher 

dimension, the structure would be basically the same. 

Let ε and ω be fixed. For the sake of simplicity, in this section we shall denote simply by F the map F ε,ω : T × R → T × R 

defined in (10) . Our main goal is to find a parameterization of an invariant curve, � : T → T × R , of the map F . We note that 

in the special case ε = 0 , the limit cycle of the continuous system (1) in ( θ , σ ) coordinates is an invariant curve of the map 

(10) . In this case, one has �(θ ) = (θ, 0) . For ε � = 0, an invariant curve can be done by solving an invariance equation of the 

following form: 

F (�(θ )) = �( f (θ )) , (24) 

where �( θ ) (the parameterization of the curve) and f ( θ ) (the dynamics inside the curve) are unknowns. To perform the 

Newton-like method, we also consider the invariant normal (stable) bundle of �( θ ), denoted by N ( θ ), and its linearized 

dynamics �s ( θ ). The corresponding invariance equation to N ( θ ) and �s ( θ ) is: 

DF (�(θ )) N(θ ) = N( f (θ ))�s (θ ) . (25) 

In the following we shall also denote �(θ ) = diag (�t (θ ) , �s (θ )) the linearized dynamics in both the tangent and normal 

bundle. Clearly, �t (θ ) = f ′ (θ ) . 

At the i th step of the method, we compute successive approximations �i ( θ ), f i ( θ ), N i ( θ ) and �i ( θ ) of �( θ ), f ( θ ), N ( θ ) and 

�( θ ), respectively, in two substeps. In the first substep we compute �i ( θ ) and f i ( θ ) and in the second substep we compute 

N i ( θ ) and �i ( θ ). Let us define R i ( θ ) as the error in the invariance equation of the torus (24) at the step i : 

R i (θ ) := F (�i (θ )) − �i ( f i (θ )) . 

Let S s 
i 
(θ ) be the error in the invariance equation of the normal (stable) bundle (25) at the step i , that is: 

S s i (θ ) := DF (�i (θ )) N i (θ ) − N i ( f i (θ ))�s 
i (θ ) . 

We also define the adapted frame P i (θ ) = (D �i (θ ) , N i (θ )) . Let S i ( θ ) be the error of this adapted frame at the step i : 

S i (θ ) := DF (�i (θ )) P i (θ ) − P i (θ )�i (θ ) . 

One has that S i (θ ) = (DR i (θ ) , S s 
i 
(θ )) . In the following we denote L i ( θ ) := D �i ( θ ). 

In the first substep, we look for �i +1 (θ ) and f i +1 (θ ) of the following form: 

�i +1 (θ ) = �i (θ ) + P i (θ ) ξi (θ ) , (26) 

f i +1 (θ ) = f i (θ ) + ϕ i (θ ) , (27) 

https://doi.org/10.13039/501100003329
https://dynamicalsystems.upc.edu/en/computing/)
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where ξ i ( θ ) and ϕi ( θ ) are the correction terms. To determine these correction terms, one proceeds as usual in Newton-like 

methods: first one substitutes expressions (26) and (27) in the invariance Eq. (24) . Then one expands in Taylor series around 

�i ( θ ) and f i ( θ ) respectively, up to order two. Finally one imposes that all the terms up to order one in ξ i and ϕi vanish, 

obtaining two equations for the unknowns ξ i and ϕi . Moreover, one can see that in this case we can take ξ i ( θ ) of the 

form: 

ξi (θ ) = 

(
0 

ξ s 
i 
(θ ) 

)
, 

so that we modify the invariant curve only in the normal (stable) direction. Following this procedure, one finds that ξ s 
i 
(θ ) 

is the (unique) solution of 

ξ s 
i (θ ) = �s 

i 

(
f −
i 
(θ ) 

)
ξ s 

i 

(
f −
i 
(θ ) 

)
+ 

˜ R 

s 
i 

(
f −
i 
(θ ) 

)
, (28) 

and ϕi ( θ ) as 

ϕ i (θ ) = 

˜ R 

t 
i (θ ) , 

where f −
i 

(θ ) denotes an approximation of f −1 
i 

(θ ) , and 

˜ R i (θ ) = 

(
˜ R 

t 
i 
(θ ) 

˜ R 

s 
i 
(θ ) 

)
:= P −

i ( f i (θ ) ) R i (θ ) , 

being P −
i 

(θ ) an approximation of P −1 
i 

(θ ) . Elementary linear algebra shows that ˜ R i (θ ) is simply the error R i ( θ ) in the basis 

L i ( f i ( θ )), N i ( f i ( θ )). 

Remark A.1. We point out that Eq. (28) is a fixed point equation of the form ξ s 
i 

= F(ξ s 
i 
, θ ) . Moreover, F(·, θ ) has Lipschitz 

constant �s 
i 
( f −

i 
(θ )) < 1 , so that Eq. (28) has a unique fixed point indeed. Moreover, one can solve this equation by itera- 

tion: first, one takes ξ s 
i, 0 

(θ ) = F(0 , θ ) . Then, for j ≥ 1 one defines ξ s 
i, j 

(θ ) = F(ξ s 
i, j−1 

(θ ) , θ ) and keeps iterating until the error 

| ξ s 
i, j 

(θ ) − F(ξ s 
i, j 

(θ ) , θ ) | is sufficiently small. 

In conclusion, after all these computations, �i +1 (θ ) and f i +1 (θ ) are defined as 

�i +1 (θ ) = �i (θ ) + N i (θ ) ξ s 
i (θ ) , 

f i +1 (θ ) = f i (θ ) + 

˜ R 

t 
i (θ ) . 

We finish this substep by computing an approximation f −
i +1 

(θ ) of f −1 
i +1 

(θ ) , that will be used in the next step of the method. 

Let 

e i (θ ) = f −
i 
( f i +1 (θ )) − θ . 

Then we define f −
i +1 

(θ ) as 

f −
i +1 

(θ ) = f −
i 
(θ ) − e i ( f −

i 
(θ )) . 

This corresponds to one step of Newton’s method for the equation 

f −
i +1 

◦ f i +1 (θ ) − θ = 0 . 

In the second substep, we shall use K i +1 (θ ) , f i +1 (θ ) and f −
i +1 

(θ ) for the computation of N i +1 (θ ) and �s 
i +1 

(θ ) . Again, we 

look for N i +1 (θ ) and �s 
i +1 

(θ ) of the following form: 

N i +1 (θ ) = N i (θ ) + P i (θ ) Q 

s 
i (θ ) , (29) 

�s 
i +1 (θ ) = �s 

i (θ ) + �s 
i (θ ) , (30) 

where Q 

s 
i 
(θ ) and �i ( θ ) are the correction terms still to be determined. Analogously as in the previous substep, we substitute 

expressions (29) and (30) in the invariance Eq. (25) , now taking of course K i +1 (θ ) and f i +1 (θ ) . We note that Eq. (25) is 

linear with respect to N ( θ ) and �s ( θ ), so that we can easily find equations for Q 

s 
i 
(θ ) and �s 

i 
(θ ) in order that (25) vanishes. 

Similarly as in the previous substep, one can choose Q 

s 
i 
(θ ) of the form: 

Q 

s 
i (θ ) = 

(
Q 

ts 
i 
(θ ) 
0 

)
, 

that is, we correct the normal bundle in its complementary direction L i ( θ ). Then one obtains that: 

Q 

ts 
i (θ ) = 

(
Q 

ts 
i 

(
f −
i +1 

(θ ) 
)
�s 

i (θ ) − ˜ S ts 
i (θ ) 

)(
�t 

i (θ ) 
)−1 

, (31) 

and: 

�s 
i (θ ) = 

˜ S ss 
i (θ ) , 
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where: 

˜ S s i (θ ) = 

(
˜ S ts 
i 
(θ ) 

˜ S ss 
i 
(θ ) 

)
:= P −

i 
( f i +1 (θ )) S s i (θ ) . 

We point out that, analogously as ˜ P i (θ ) , ˜ S s 
i 
(θ ) is the error of the normal bundle S s 

i 
(θ ) in the basis L i ( f i ( θ )), N i ( f i ( θ )). Again, 

Eq. (31) can be solved with the procedure described in Remark Appendix A.1 . After that, we define N i +1 (θ ) and �i +1 (θ ) 

as: 

N i +1 (θ ) = N i (θ ) + L i (θ ) Q 

ts 
i (θ ) , 

�s 
i +1 (θ ) = �s 

i (θ ) + 

˜ S ss 
i +1 (θ ) , 

�t 
i +1 (θ ) = f ′ i +1 (θ ) . 

To finish, we compute the approximation P −
i +1 

(θ ) of P −1 
i +1 

(θ ) which shall be used in the next iteration of the method. Let: 

E i (θ ) = P −
i 
(θ ) P i +1 (θ ) − Id . 

Then we define P −
i +1 

(θ ) as: 

P −
i +1 

(θ ) = P −
i 
(θ ) − E i (θ ) P i (θ ) . 

Again, this corresponds to one step of Newton’s method for the equation: 

P −
i +1 

(θ ) P i +1 (θ ) − Id = 0 . 

A1. Choosing the initial seeds 

In this subsection we indicate how to choose initial seeds for the Newton method, as proposed in [21] . We point out 

that we are in a perturbative setting, that is the map F depends on a parameter ε, so that one can take advantage of it. 

Indeed, for an initial value ε = ε 0 , that we assume to be sufficiently small, we can take the initial seeds �0 ( θ ), f 0 ( θ ), 

N 0 ( θ ) and �0 ( θ ) (and also P 0 ( θ ), P −
0 

(θ ) and f −
0 

(θ ) ) simply as the corresponding objects for ε = 0 . In our setting, one has: 

�0 (θ ) = 

(
θ
0 

)
, 

f 0 (θ ) = θ + ω, f −0 (θ ) = θ − ω, 

L 0 (θ ) = 

(
1 

0 

)
, N 0 (θ ) = 

(
0 

1 

)
, 

P 0 (θ ) = P −0 (θ ) = 

(
1 0 

0 1 

)
, 

�0 (θ ) = 

(
�t 

0 (θ ) 0 

0 �s 
0 (θ ) 

)
= 

(
1 0 

0 e λω 

)
. 

For ε > ε0 , one can perform a continuation method to find good initial seeds for successive values of ε. In [21] , the 

authors propose to perform a continuation method just for the parameterisation of the torus, �( θ ), and its internal dynamics 

f ( θ ), and omit the normal bundle N ( θ ) and the linearized dynamics �( θ ). We now describe this continuation method. 

Assume that for a given ε we have good approximations �ε( θ ) and f ε( θ ) of �( θ ), f ( θ ) respectively. Then, we define the 

initial seeds of the Newton method for the parameter ε + h as: 

�ε+ h 
0 (θ ) = �ε (θ ) + 

∂�ε 

∂ε 
(θ ) h, 

f ε+ h 
0 (θ ) = f ε (θ ) + 

∂ f ε 

∂ε 
(θ ) h. 

One can obtain the following invariance equation for ∂�ε 

∂ε 
and 

∂ f ε 

∂ε 
just by differentiating (24) with respect to ε: 

DF (�ε (θ )) 
∂�ε 

∂ε 
(θ ) = D �ε ( f ε (θ )) 

∂ f ε 

∂ε 
(θ ) + 

∂�ε 

∂ε 
(θ ) . (32) 

Now, writing ∂�ε 

∂ε 
and 

∂ f ε 

∂ε 
in the basis L ε( θ ), N 

ε( θ ) we obtain: 

∂�ε 

∂ε 
(θ ) = P ε (θ ) ξε (θ ) , 

∂ f ε 

∂ε 
(θ ) = ϕ 

ε (θ ) , 
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for some unknowns ξε( θ ) and ϕε( θ ). Again, ξε( θ ) can be taken of the form: 

ξε (θ ) = 

(
0 

ξ s,ε (θ ) 

)
, 

so that we just correct the torus in the normal direction. Let: 

R 

ε (θ ) = 

∂F 

∂ε 
( �ε (θ ) ) , ˜ R 

ε (θ ) = ( P ε ( f ε (θ )) ) 
−1 

R 

ε (θ ) . 

Then, performing the standard computations of Newton’s method, one obtains the following identities for ξ s , ε and ϕε: 

ξ s,ε (θ ) = �s,ε ( f −,ε 
i 

(θ )) ξ s,ε ( f −,ε 
i 

(θ )) + 

˜ R 

s,ε ( f −,ε 
i 

(θ )) , 

ϕ 

ε (θ ) = 

˜ R 

t,ε (θ ) . 

As above, the equation for ξ s , ε has a unique solution that can be found with the method described in Remark Appendix A.1 . 

In conclusion, after finding the corrections, we take the initial seeds �ε+ h 
0 

(θ ) and f ε+ h 
0 

(θ ) as: 

�ε+ h 
0 (θ ) = �ε (θ ) + N 

ε (θ ) ξ s,ε (θ ) h, 

f ε+ h 
0 (θ ) = f ε (θ ) + 

˜ R 

t,ε (θ ) h, 

and then we proceed again with the Newton-like method described above. 
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