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On the Number of Limit Cycles in Generalized Abel Equations
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Abstract. Given p, q  \2 with p = q, we study generalized Abel dierential equations dx
d\

= A(\)xp+B(\)xq,
where A and B are trigonometric polynomials of degrees n,m  1, respectively, and we are interested
in the number of limit cycles (i.e., isolated periodic orbits) that they can have. More concretely, in
this context, an open problem is to prove the existence of an integer, depending only on p, q,m, and
n and that we denote by \p,q(n,m), such that the above dierential equation has at most \p,q(n,m)
limit cycles. In the present paper, by means of a second order analysis using Melnikov functions, we
provide lower bounds of \p,q(n,m) that, to the best of our knowledge, are larger than the previous
ones appearing in the literature. In particular, for classical Abel dierential equations (i.e., p = 3
and q = 2), we prove that \3,2(n,m)  2(n+m) 1.
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1. Introduction and statements of main results. The study of the existence of periodic
orbits in ordinary dierential equations has been an interesting problem for years in many
areas of mathematics, particularly in qualitative theory of dierential equations. In this area of
interest, when we focus on planar polynomial vector elds, one of the most renowned classical
problems arises: to know the number and location of isolated periodic orbits, the socalled
limit cycles, in terms of its degree n. The study of this problem began at the end of the 19th
century with the seminal works by Poincare, but takes its name after Hilbert because of his
famous list of unsolved problems published in 1900. From the original list of 23 problems, the
16th is still open, in particular, its second part. More precisely (see [26, 36] for details), the
`existential" Hilbert's 16th problem is to prove that for any n  2 there exists a nite number
(n) such that any polynomial vector eld of degree  n has less than (n) limit cycles.
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2344 J. HUANG, J. TORREGROSA, AND J. VILLADELPRAT

Motivated by Hilbert's 16th problem, a very related line of research is to investigate the
periodic solutions of scalar dierential equations

x :=
dx

d
=

k

i=0

ai()x
i,

where ai are periodic analytic functions. In this context an isolated periodic solution is called a
limit cycle and it occurs that its number increases with k. (The reader is referred to [15] for an
enlightening explanation of this fact.) Linear dierential equations have at most 1 limit cycle,
whereas the quadratic ones have at most 2. The latter are known as Riccati equations and the
upper bound follows from the fact that the return map is a M\obius function. Nevertheless the
situation is more intricate for degree three. The wellknown trigonometric Abel dierential
equation is written as

(1) x = A()x3 +B()x2 + C()x

with A,B, and C being trigonometric polynomials. Pliss [33] proves using the Schwarzian
derivative that if A does not change sign then the maximum number of limit cycles is 3.
However it was Lins Neto [31] who was the rst to show that, in general, there is no upper
bound for the number of limit cycles. Indeed, he proves that for every positive integer \ there
exists an Abel dierential equation with periodic coecients having \ limit cycles. He does it
by studying the perturbation x = A()x3+B()x2, where both coecients are trigonometric
polynomials of degree \.

In this paper we are interested in the number of limit cycles of generalized Abel equations

in terms of the trigonometric polynomial degree of their coecients. More concretely, we
study the dierential equation

(2) x = A()xp +B()xq,

where A and B are trigonometric polynomials and p, q  \2 with p = q. We say that a
solution x = x() of this dierential equation is a periodic orbit if it satises x( ) = x().
As before, a periodic orbit is called a limit cycle if it is isolated in the set of periodic orbits.
For xed exponents p and q, we dene the Hilbert number  = p,q(n,m) as the maxi
mum number of limit cycles that the dierential equation (2) can have for any trigonometric
polynomials A and B of degrees n and m, respectively. For the classical Abel equation, i.e.,
(p, q) = (3, 2), it is known as the Smale-Pugh problem; see [37]. So far it is even unknown
whether  exists. Our main contribution in the present paper is to provide a lower bound of
 that, to the best of our knowledge, improves the previous ones appearing in the literature.
We shall restrict ourselves to the case n,m  1 because from the results in [16, 18, 31] the
problem is completely solved when n = 0 or m = 0.

It is proved in [18] that the upper bound for the number of limit cycles of the dierential
equation (1) is three provided that A or B does not change sign. The authors use this result
in order to bound the number of hyperbolic limit cycles in some planar polynomial dierential
systems. (This idea is also used in many other papers; see [1, 2, 12, 20, 25], for example.) The
natural extension of this result to the equation x = A()xp +B()xq +C()x is considered in
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LIMIT CYCLES IN GENERALIZED ABEL EQUATIONS 2345

[16] where, under the same hypothesis, it is proved that the upper bound is 5 (respectively,
4) when max(p, q) is odd (respectively, even). This result, particularized to C = 0, gives
p,q(n,m) in the case that nm = 0. Therefore, as we explained before, for the the problem
that we tackle in the present paper it is natural to assume that n,m  1. Certainly the
problem is much more dicult when the coecients A and B do change sign. This is the case
studied in [4] where, under some other hypotheses on the coecients, it is proved that only one
limit cycle exists. Other upper bounds for the number of periodic solutions are given in [29]
under some conditions on the number of zeros of B(). More generally, also refer to the result
in [3], where it is proved that the dierential equation x =

m
i=0 ai()x

ni with 1  ni  n and
ai periodic analytic functions, can have at most 3n 1 limit cycles provided some transversal
conditions are veried. The extension of the aforesaid Lins Neto result to generalized Abel
dierential equations is also done in [16].

There are also some problems coming from planar polynomial dierential systems that
can be brought to a dierential equation as in (1) or (2). Among others, the homogeneous
nonlinear perturbations of the harmonic oscillator or the socalled rigid systems (  = 1); see
[10] and [19], respectively. More recently, it is shown in [5] that Abel dierential equations
(2) have also limit cycles of alien type. They are not of small amplitude, like in a Hopf
bifurcation, neither arising by the perturbation of an annulus that is foliated by periodic
orbits. Among the long list of references to Abel dierential equations (there are more than
three hundred in the literature) there are some that reduce real problems to this type of
dierential equation. In [13] the authors computed an approximation of an unstable limit
cycle that appears in an Abel equation arising in a tracking control problem that aects
an elementary, nonminimum phase, second order bilinear power converter. The authors in
[23] study a second order dierential equation that describes the relativistic evolution of
a causal dissipative cosmological uid in a conformally at spacetime. They reduce this
evolution equation to an Abel dierential equation. The same authors, in a more recent work
[24], consider quasistationary (traveling wave type) solutions of a nonlinear reactiondiusion
equation, which describes the evolution of glioblastomas. These aggressive primary brain
tumors are characterized by extensive inltration into the brain and are highly resistant to
treatment. The second order nonlinear equation describing the glioblastoma growth through
traveling waves is reduced to a dierential equation of Abel type. The relationship between
the Einstein-Friedmann and Abel equations is studied in [38]. In that work the authors
demonstrate how the latter might be applied to the inationary analysis in a spatially at
Friedmann universe lled with a realvalued scalar eld. They use an Abel equation to provide
the necessary and sucient conditions for both slowrolling and ination to be estimated with
respect to the initial value of the eld.

Coming back to the original Hilbert's 16th problem, due to the diculty in nding uniform
upper bounds for even subclasses of polynomial dierential systems, some weak versions have
appeared during the past decades. One of them was proposed by Arnol'd [8] and it focuses on
the study of limit cycles bifurcating from the period annulus of Hamiltonian systems. Closely
related to this, our approach, in order to improve the lower bounds for p,q(n,m) when n,m 
1, is to consider a second order perturbation of the generalized Abel dierential equation

(3) x = (sin  + P1() + 2P2())x
p + (Q1() + 2Q2())x

q,
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where the coecients of the perturbation are trigonometric polynomials of degrees n and m,
that is

Pi() = bi0 +

n

k=1


aik sin(k) + bik cos(k)


and Qi() = di0 +

m

k=1


cik sin(k) + dik cos(k)



for i = 1, 2. We note that the parameter space associated with (2) is 2(n+m+1) and that by
taking (3) we study the perturbation of a specic point, say 0  

2(n+m+1), corresponding
to x = sin  xp. The coecients of Pi and Qi, once determined, give a curve in 

2(n+m+1)

passing through 0 at  = 0. In what follows, for the sake of convenience, we will treat these
coecients as parameters too, setting  = (a,b, c,d), where

(4)
a = (a1k, a2k; k = 1, 2, . . . , n), c = (c1k, c2k; k = 1, 2, . . . ,m),
b = (b1k, b2k; k = 0, 1, . . . , n), d = (d1k, d2k; k = 0, 1, . . . ,m).

Thus   
4(n+m+1), although as we already mentioned the `ambient" parameter space is


2(n+m+1). That being said we denote by x(, ;, ) the solution of (3) with initial condition

x( , ;, ) = . One can readily prove (see Corollary 2.3) that the unperturbed system
veries x(, ;, 0) =  for all   I := (p,+), where

(5) p :=


  if p is odd,

 (2(p 1))
 1

p 1 if p is even.

Then, thanks to the analytic dependence of solutions with respect to initial conditions and
parameters, we can write the Taylor series of the Poincare transition map as

x(, ;, ) = +



i=1

iMi(;),

where Mi is an analytic function on I
4(n+m+1). Setting 

+ = (0,+) and 
 = ( , 0),

for our rst main result we study the case M1 = 0 and M2 = 0 assuming that n,m  1.

Theorem 1.1. The function M1(  ;) vanishes identically if and only if

  L =   
4(n+m+1) : b10 = d10 =    = d1m = 0.

For a xed   L , let K be the number of zeros of M2(  ;) on I 
 taking multiplicities

into account. Then the following properties hold:

(a) If p and q are odd, then K  n + m. Moreover, there exists 0  L such that

M2(  ;0) has 2(n+m) simple zeros in I \ 0.
(b) If p is odd and q is even, then K  n+m and both equalities do not hold simultane-

ously. Moreover,

(i) when p < q, there exists 0  L such that M2(  ;0) has 2(n+m) 1 simple

zeros in I \ 0;
(ii) when p > q, there exists 0  L such that M2(  ;0) has 2(n+m 1) simple

zeros in I \ 0;
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(c) if p is even, q is odd, and p < q, then K+ + K  n + m. Moreover, there exists

0  L such that M2(  ;0) has n+m simple zeros in I \ 0;
(d) if p is even and either q is even or p > q, then K+ + K  n + m + 1. Moreover,

there exists 0  L such that M2(  ;0) has n+m+ 1 simple zeros in I \ 0.

Since x(, 0;, ) = 0 for all , note that Mi(0;) = 0 for all i  1 but we stress that the
zero  = 0 is not counted in the previous result. That being said, in order to be consistent with
the abovementioned papers on Abel dierential equations, we do count this zero limit cycle in
our next main result. Before giving its statement let us mention that in what follows we shall
call Mi the Melnikov function of ith order for the perturbed dierential equation (3). These
functions are clearly analytic on I and, by applying the Weierstrass preparation theorem, the
number of zeros (multiplicities taken into account) of the rst nonidentically zero Melnikov
function gives an upper bound for the number of roots of x(, ;, ) =  for   0. In other
words, it provides an upper bound for the number of limit cycles that bifurcate from the
continuum of periodic orbits of the unperturbed dierential equation. In its turn a lower
bound is given by the number of simple zeros thanks to the implicit function theorem. In
short this is how the general lower bound of the Hilbert number that we give in our next
result follows from Theorem 1.1.

Theorem 1.2. The Hilbert number for the Abel dierential equation (2) with p = 3 and

q = 2 veries

3,2(n,m)  2(n+m) 1,

where n,m  1 are, respectively, the degrees of the trigonometric polynomials A and B.
Moreover, 3,2(1, 3)  8 and 3,2(4, 1)  10.

As we explained above, the general lower bound in the rst assertion follows by the Mel
nikov theory. (The Melnikov theory for planar autonomous dierential equations is equivalent
to the socalled averaging theory; see [9].) By contrast the second assertion, which improves
the bound by one limit cycle in two particular cases, follows by using Lyapunov constants. In
order to make this clear and to facilitate the reading of the paper, for the reader's convenience
we prove the second assertion separately in an appendix, where we also introduce the basic
notions on Lyapunov constants.

There are two previous papers with results about the Hilbert number of Abel dierential
equations that should be referred. Recall that the general lower bound in Theorem 1.2 is
obtained by a second order perturbation in . The authors in [6] give lower bounds for
3,2(1,m) and 3,2(n, 1) by a rst order perturbation. On the other hand, the authors in
[17] give a lower bound for p,q(n, 1) by a rst order perturbation as well.

The paper is organized in the following way. In section 2 we study the perturbed dierential
equation x = h(x)f() +H(, x; ) and we give the expression of its rst nonidentically zero
Melnikov function (Theorem 2.1). This is a rather general result that, we believe, could be
very useful in the development of further research on the issue. Next, in section 3, we recall
the notion of Chebyshev system and explain the related basic results. We also state a key
result from [17] that turns out to be very important for our purposes (Theorem 3.4). Section 4
is devoted to showing that the Melnikov function M2 for the perturbed dierential equation
(3) belongs to an appropriate Chebyshev system (Proposition 4.4). The proofs of our two
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main results are given in section 5. Finally in the appendix we prove by using Lyapunov
constants that 3,2(1, 3)  8 and 3,2(4, 1)  10 (Propositions A.2 and A.3, respectively),
which improve in these particular cases the general lower bound that we obtain by using the
Melnikov theory of second order. These two lower bounds also improve some previous ones
obtained using Lyapunov constants as well. Here we follow a new approach using rst and
second order developments of the Lyapunov constants at some specic parameters having a
center. Finally we explain some numerical evidence in order to increase the lower bound given
in Theorem 1.2 for 3,2(1, 4) and 3,2(2, 3) by using Lyapunov constants.

2. Melnikov functions. In this section we consider the perturbed dierential equation

(6)
dx

d
= h(x)f() +H(, x; ),

where
 h is analytic on ,
 f is a 2periodic analytic function with

 

 
f(s)ds = 0, and

 H is an analytic function on ( 0, 0), for some 0 > 0, such that   H(, x; )
is 2periodic and H(, x; 0)  0.

Given   , let x(, ; ) denote the solution of (6) such that x( , ; ) = . (We shall
sometimes use the more compact notation x\(, ) for the sake of brevity.) In this section
we assume that the unperturbed dierential equation, i.e., (6) with  = 0, has a stripe of
periodic orbits. More precisely, that there exists an open interval I of initial conditions such
that x(, ; 0) =  for all   I. Note that, due to H(, x; 0)  0, a necessary condition for this
is that

 

 
f(s)ds = 0. Under this assumption, a sucient condition for the existence of such

an interval is that h vanishes at some point x0  . This is precisely the setting that we have
for the perturbed dierential equation (3), for which x0 = 0 and, as we will see, I = (p,+),
where p < 0 is given in (5).

By the analytic dependence of solutions with respect to initial conditions and parameters,
the solution x(, ; ) is welldened and analytic for all (, , )  [ ,] U, where U is an
open neighborhood of I  0 in 

2. We can thus consider the Taylor series of x(, ; ) at
 = 0,

x(, ; ) = +


i=1

Mi()
i,

where each Mi is an analytic function on I. We aim to study the xed points of   x(, ; )
that persist for small  = 0 and to this end an explicit expression of the rst Mi = 0 is needed.
Our rst result is addressed to this and in order to state it we introduce some more notation.
We write the Taylor series of the perturbation at  = 0 as

H(, x; ) =



i=1

\i(, x)
i.

We also use the dierential operator

x := h(x)x

and denote k
x = x 

(k)
    x. Furthermore we consider the incomplete exponential Bell

D
o

w
n

lo
ad

ed
 1

0
/2

7
/2

0
 t

o
 1

5
6

.6
2

.3
.1

1
. 

R
ed

is
tr

ib
u

ti
o

n
 s

u
b

je
ct

 t
o

 S
IA

M
 l

ic
en

se
 o

r 
co

p
y

ri
g

h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b

s.
si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIMIT CYCLES IN GENERALIZED ABEL EQUATIONS 2349

polynomials n,k(x1, x2, . . . , xn k+1), which can be dened recursively by means of

n,k =
n k+1

i=1


n 1

i 1


xin i,k 1,

setting 0,0 = 1, n,0 = 0 for n  1, and 0,k = 0 for k  1 (see, for instance, [14, 27]).

Theorem 2.1. If M1 = M2 =    = Mn 1 = 0 then Mn() =
1
n!h()Ln(, ) for all   I

such that h() = 0, where the sequence Lnn\1
is dened recursively by means of

Ln(, ) =
n 1

i=0

n!

i!

i

k=0

 

 


k
x


\n i(s, x)

h(x)


x=x0(s,)

i,k


L1(s, ), L2(s, ), . . . , Li k+1(s, )


ds.

Proof. For each (, )  [ ,]  I, let the Taylor series of x(, ; ) at  = 0 be written
as

x\(, ) = x0(, ) +


i=1

Si(, )
i.

Notice in particular that, by denition, Mi() = Si(, ).
Fix any 0  I such that h(0) = 0. We claim that there exists  > 0 small enough such

that Mn() =
1
n!h()Ln(, ) for all   I with | 0| < . Clearly, due to the arbitrariness

of 0, the result will follow once we prove this claim. With this aim in view note rst that
if for a given   I there exists   [ ,] such that h(x0(

, )) = 0 then x0(, ) =  for
all   [ ,]. Thus, if we denote by I the connect component of I \ x   : h(x) = 0
that contains 0, then h(x0(, )) = 0 for all (, )  [  ,]  I. In other words, setting
I := x0(, ) :   [ ,],   I , we have that 0 / h(I). Accordingly, if

G() :=

 

0

du

h(u)

then G : I  G(I) is a welldened dieomorphism. One can readily verify that the coordinate
change y = G(x) brings the dierential equation (6) to

(7)
dy

d
= f() + H(, y; ) with H(, y; ) :=

H(, x; )

h(x)


x=G 1(y)

.

For each   G(I) we denote by y\(, ) the solution of (7) with initial condition y\( , ) = .
Due to x0(, G

 1())  I, for each xed  there exists  > 0 small enough such that

y\(, ) = G

x\(, G

 1())

for all   [ ,].

Consequently, by continuity, there exists  > 0 small enough such that if |  0| + || < 

then

x\(, ) = G 1

y\(, G())


for all   [ ,].
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Clearly H is an analytic function in a neighborhood of any (, y, )  [ ,]  G(I)  0
and so we can consider its Taylor series at  = 0:

(8) H(, y; ) =



i=1

\i(, y)
i, where \i(, y) =

\i(, x)

h(x)


x=G 1(y)

.

Let us consider at this point the Taylor series of y\(, ) at  = 0, say

(9) y\(, ) = y0(, ) +


i=1

Si(, )
i,

and set \Mi() := Si(, ), which is welldened for any   G(I) such that |G 1() 0| < .
Then, taking the derivative with respect to  on both sides of the above equality, from (7)
and (8) we get that

 Sn(, ) =
1

n!
 n
\




i=1

i\i(, y\(, ))


\=0

=
1

n!



i=1

n

k=0


n

k


dki

dk
 n k
\


\i(, y\(, ))


\=0

=
1

n!

n

i=1


n

i


i!  n i

\


\i(, y\(, ))


\=0

.

Accordingly

(10)  Sn(, ) =

n

i=1

1

(n i)!
 n i
\


\i(, y\(, ))


\=0

=

n 1

i=0

1

i!
 i
\


\n i(, y\(, ))


\=0

.

By applying Faa di Bruno's formula for the chain rule (see [14, 27]) we can assert that

 i
\


\j(, y\(, ))


=

i

k=0

 k
y


\j(, y\(, ))


i,k


\y\(, ), 

2
\ y\(, ), . . . , 

i k+1
\ y\(, )


.

Thus, on account of  k
\ y\(, )


\=0

= k!Sk(, ), we get

 i
\


\j(, y\(, ))


\=0

=

i

k=0

 k
y


\j(, y0(, ))


i,k


S1(, ), 2 S2(, ), . . . , (i k + 1)!Si k+1(, )


.

Therefore, since Sn( , ) = 0, from (10) it follows that

Sn(, )

(11)

=

n 1

i=0

1

i!

i

k=0

 

 

 k
y


\n i(s, y0(s, ))


i,k(S1(s, ), 2S2(s, ), . . . , (i k + 1)!Si k+1(s, )) ds.D
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Recall now that x\(, ) = G 1

y\(, G())


= x0(, ) +


i=1 Si(, )

i for all   [ ,]
provided that | 0|+ || < . Hence, since (G 1)(y) = h(G 1(y)) by denition,

Mn() = Sn(, )|= =
1

n!
 n
\


G 1


y\(, G())


\=0,=

=
1

n!
 n 1
\


(G 1)


y\(, G())


\y\(, G())


\=0,=

=
1

n!
 n 1
\


h

x\(, )


\y\(, G())


\=0,=

=
1

n!

n 1

k=0


n 1

k


 n 1 k
\


h

x\(, )


 k+1
\


y\(, G())


\=0,=

=
1

n!

n 1

k=0


n 1

k


 n 1 k
\


h

x\(, )


\=0,=

(k + 1)! Mk+1(G()),

where in the last equality we use (11) and Mi() = Si(, ). If M1 = M2 =    = Mn 1 = 0
then only the term for k = n 1 remains and

Mn() = h() Mn(G()) = h()Sn(, G())

for all   (0 , 0+). Note that by arguing recursively we get the same equality assuming
M1 = M2 =    = Mn 1 = 0.

It only remains to express Sn(, ) in terms of the solution x0(, ) of (6). To this end
notice that, on account of (G 1)(y) = h(G 1(y)) once again, from (8) we get

 k
y
\i(, y) = 

k
x


\i(, x)

h(x)


x=G 1(y)

.

Accordingly, due to y0(, ) = G

x0(, G

 1())

, we can assert that

 k
y


\i(s, y0(s, ))


= 

k
x


\i(s, x)

h(x)


x=x0(s,G 1())

.

Taking this into account and setting Li(, ) := i!Si(, G()) for all i  , from (9) we obtain

Ln(, ) = n!Sn(, G())

=
n 1

i=0

n!

i!

i

k=0

 

 


k
x


\i(s, x)

h(x)


x=x0(s,)

i,k


L1(s, ), L2(s, ), . . . , Li k+1(s, )


ds

and, hence, Mn() = h()Sn(, G()) = 1
n!h()Ln(, ) for all   (0 , 0+ ). This proves

the claim and concludes the proof of the result.

Note that if we take   I such that h() = 0 then x0(, ) =  for all . It happens
then that the function Ln(, ) is not welldened at  =  due to the denominator h(x0(s, ))
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in its integrand. However, since Mn is continuous (in fact analytic) at  = , the limit of
h()Ln(, ) as  tends to  exists and is equal to n!Mn(). Thus the singularity of h()Ln(, )
at  =  is removable. Our next result shows this for the perturbation associated with the
dierential equation (3), for which we have  = 0. In its statement recall that p is given in
(5).

Remark 2.2. For the reader's convenience we give the rst terms in the recurrence of The-

orem 2.1. Since 0,0 = 1, 1,0 = 2,0 = 0, 1,1(x1) = x1, 2,1(x1, x2) = x2, and 2,2(x1) = x21,
we get

L1(, ) =

 

 

\1(s, x)

h(x)


x=x0(s,)

ds,

L2(, ) = 2

 

 


\2(s, x)

h(x)
+x


\1(s, x)

h(x)


L1(s, )


x=x0(s,)

ds,

and

L3(, ) = 3

 

 


2
\3(s, x)

h(x)
+ 2x


\2(s, x)

h(x)


L1(s, )

+ x


\1(s, x)

h(x)


L2(s, ) +

2
x


\1(s, x)

h(x)


(L1(s, ))

2


x=x0(s,)

ds.

Corollary 2.3. Following the previous notation, for the dierential equation (3) we have

x(, ; 0) =



1 + p 1(p 1)(1 + cos )

1/(p 1) ,

so that x(, ; 0) =  for all   I = (p,+). Moreover

M1() = p
 

 


P1() +Q1()x0(, )

q p

d

and if M1()  0 then

M2() = p
 

 


P2() +Q2()x0(, )

q p + (q  p)Q1()S(, )x0(, )
q 1


d,

where

S(, ) =

 

 


P1(s) +Q1(s)x0(s, )

q p

ds.

Proof. The statement concerning the unperturbed equation follows from an easy compu
tation. The second part follows by Theorem 2.1 particularizing the expressions given in Re
mark 2.2 for the case f() = sin , h(x) = xp, and \i(, x) = Pi()x

p+Qi()x
q for i = 1, 2.
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3. Extended complete Chebyshev (ECT)-systems. We begin this section by recalling
some properties about Chebyshev systems, then we extend some results in [17]. All of them
will be necessary in order to prove our main results.

Denition 3.1. Let f0, f1, . . . , fn be analytic functions on an open interval I  . The

ordered set (f0, f1, . . . , fn) is an ECT-system on I if for each k = 0, 1, 2, . . . , n every nontrivial

linear combination

0f0(x) + 1f1(x) +   + kfk(x)

has at most k isolated zeros on I counted with multiplicities.

Denition 3.2. Let f0, f1, . . . , fk be analytic functions on an open interval I  . Then

W [f0, f1, . . . , fk](x) = det

f
(i)
j (x)


0i,jk

=



f0(x)    fk(x)
f 
0(x)    f 

k(x)
...

. . .
...

f
(k)
0 (x)    f

(k)
k (x)



is the Wronskian of (f0, f1, . . . , fk) at x  I.

The following is a wellknown result (see, for instance, [28, 32]) that enables us to charac
terize Chebyshev systems in terms of Wronskians.

Lemma 3.3. (f0, f1, . . . , fn) is an ECT-system on an open interval I   if and only if,

for each k = 0, 1, 2, . . . , n,

W [f0, f1, . . . , fk](x) = 0 for all x  I.

To study the zeros of the Melnikov functions in Corollary 2.3 we will apply [17, Theorem
A], which we state next for the reader's convenience. In its statement g is an analytic function,
Ig is the connected component of


y   : 1  yg() > 0 for all   [ ,]


containing the

origin, and, for each k  \0 and   ,

(12) k,(y) :=

 

 

gk()
1 yg()

d for all y  Ig.

Theorem 3.4. Consider    and n  \0. The following hold:

(a) If  / \0 then (0,, 1,, . . . , n,) is an ECT-system on Ig.
(b) If   \0 then (0,, 1,, . . . , n,) is an ECT-system on Ig if and only if n   .

The following technical lemmas extend some of the results in [17].

Lemma 3.5. If    and k  \0 then (yk,(y))
 = y 1k,+1(y) for all y  Ig 

(0,+).

Proof. This is an easy consequence of the following computation:

(yk,(y))
 = y 1

 

 

g()k
1 yg()

d + y
 

 

g()k+1


1 yg()

+1 d = y 1k,+1(y).
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Lemma 3.6. If    \ \0 and n  \0 then

(a)

1, y0,(y), . . . , y

n,(y)

is an ECT-system on Ig  (0,+), and

(b)

1, ( y)0,(y), . . . , ( y)

n,(y)

is an ECT-system on Ig  ( , 0).

Proof. For the sake of shortness let us prove the rst assertion only (the other one follows
in exactly the same way). We claim that, for each k = 0, 1, . . . , n,

W [1, y0,(y), . . . , y
k,(y)] = (y 1)k+1W [0,+1, 1,+1, . . . , k,+1] (y)

for all y  Ig  (0,+). Notice that, by applying Lemma 3.3 and Theorem 3.4, the result will
follow once we show the claim. To this end a computation shows that

W [1, y0,(y), . . . , y
k,(y)] = W


(y0,(y))

, . . . , (yk,(y))



= W

y 10,+1(y), . . . ,y

 1k,+1(y)

= (y 1)k+1W [0,+1, . . . , k,+1] (y),

where the second equality follows by applying Lemma 3.5 and the third one by the socalled
Hesse-Christoel's identity (see [30, 34] for instance). This proves the validity of the claim
and hence the result follows.

4. Melnikov functions for the dierential equation (3). Recall that Corollary 2.3 pro
vides an expression of M2 assuming that M1 = 0. Our goal in this section is to write it as a
linear combination of functions belonging to an ECTsystem. This will be done in Proposi
tion 4.4. With this aim in view we rst particularize the integrals k, dened in (12) with
a specic choice of function g and parameter  that is very related to the solution of the
unperturbed system. In order to stress this, and for the reader's convenience, we introduce
the following additional notation

(13) k(y) :=

 

 

gk()
1 yg()

d with g() =  (p 1)(1 + cos ) and  =
q  p

p 1
.

Related to this we also dene

(14) k(y) :=

 

 

cos(k)

1 + y(p 1)(1 + cos )

 q p

p 1

d.

As will be clear in a moment, these integrals constitute the building blocks for the Melnikov
functions of the perturbed dierential equation (3). In what follows recall that p is given
in (5).

Proposition 4.1.

1, q p0(

p 1), . . . , q pn(
p 1)


is an ECT-system on the open inter-

vals (p, 0) and (0,+) for every n  \0. In addition the following equality between linear

spans holds:

1, q p0(
p 1), . . . , q pn(

p 1) = 1, q p0(
p 1), . . . , q pn(

p 1).

Proof. Note (see (12) and (13)), that k(y) is k,(y) particularized with g() =
 (p 1)(1+cos ) and  = q p

p 1 . One can readily see that in this case the connected component
of 

y   : 1 yg() > 0 for all   [ ,]
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containing the origin turns out to be Ig = (  1
2(p 1) ,+). Moreover, since q p

p 1  ( 1,+)\0

due to p, q  \2 with p = q, we have that    \ \ 1. Consequently, by applying
Lemma 3.6,

(i)

1, y0(y), . . . , y

n(y)

is an ECTsystem on (0,+), and

(ii)

1, ( y)0(y), . . . , ( y)

n(y)

is an ECTsystem on (  1

2(p 1) , 0).

Next we make the substitution y = p 1. This formally corresponds to composing each
function with   p 1, which restricted to ( , 0) and (0,+) is a dieomorphism. In the
rst case we get that

(15)

1, q p0(

p 1), . . . , q pn(
p 1)



is an ECTsystem on (0,+) for every p and that it is an ECTsystem on ( , 0) in the
case that p is odd. In the second case we obtain that


1, ( )q p0(

p 1), . . . , ( )q pn(
p 1)



is an ECTsystem on ( (2(p  1))
 1

p 1 , 0) if p is even. On account of the fact that ( 1)q p

is constant this implies that (15) is an ECTsystem on ( (2(p  1))
 1

p 1 , 0) if p is even.
Accordingly, on account of the denition of p given in (5), we have so far proved the validity
of the rst assertion in the statement.

Finally, the assertion concerning the linear spans follows by noting that if we dene Ek :=
1, cos , . . . , cos(k) then dim(Ek) = k + 1 and

Ek = 1, cos , . . . , cosk  = 1, g(), . . . , gk().

To get the rst equality one can use that cos(k) = Tk(cos ), where Tk is the Chebyshev
polynomial of the rst kind and degree k. This proves the result.

The next result provides a more explicit expression of the Melnikov functions M1 and M2

for (3). In its statement we point out that aik, bik, cik, and dik are the coecients of the
trigonometric polynomials in the perturbation and k is the function dened in (14).

Proposition 4.2. The following holds for the perturbed dierential equation (3).
(a) The rst Melnikov function is given by M1() = 2b10

p+
m

k=0 d1k
qk


p 1


. More-

over, M1 = 0 if and only if b10 = d10 =    = d1m = 0.
(b) If M1 = 0 then the second Melnikov function is given by M2() = M21() +

(q  p)pM22(), where

M21() := 2b20
p +

m

k=0

d2k
qk(

p 1)

and

M22() :=


1kn
1lm

b1kc1l
k

 

 

sin(k) sin(l)x0(, )
q 1d.
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Proof. By applying Corollary 2.3, we get that the rst Melnikov function is written as

M1() = 2b10
p + p

m

k=0

d1k

 

 

cos(k)x0(, )
q p d = 2b10

p +
m

k=0

d1k
qk


p 1


,

where in the rst equality we use that the solution x0(, ) of the unperturbed equation is even
in , whereas in the second one we take (14) into account. Then the second assertion in (a)
follows by Proposition 4.1, which shows that the ordered set


p, q0(

p 1), . . . , qn(
p 1)



is an ECTsystem on (p, 0) and (0,+).
Let us turn next to the proof of (b). If M1 = 0 then, by Corollary 2.3 again, the second

Melnikov function is written as

M2() = p
 

 


P2() +Q2()x0(, )

q p + (q  p)Q1()S(, )x0(, )
q 1


d,

where
S(, ) =

 

 


P1(s) +Q1(s)x0(s, )

q p

ds.

That the rst summand in M2 is written as p
 

 
(P2() +Q2()x0(, )

q p) d = M21()
can be shown exactly as we did in (a). With regard to the second summand note that, on
account of (a),

P1() =
n

k=1

(a1k sin(k) + b1k cos(k)) and Q1() =
m

l=1

c1l sin(l).

Thus, Q1()x0(, )
q 1 and

 

 
Q1(s)x0(s, )

q pds are odd and even functions in , respec
tively. Hence the second summand in M2 is written as

 

 

Q1()S(, )x0(, )
q 1d =

 

 

Q1()x0(, )
q 1

 

 

P1(s)ds


d

=

 

 

Q1()x0(, )
q 1


n

k=1

b1k
k

sin(k)


d

=


1kn
1lm

b1kc1l
k

 

 

sin(k) sin(l)x0(, )
q 1d,

which is equal to M22(). This completes the proof.

As is clear from the previous result, the function kl that we introduce in the next state
ment is a building block of the second Melnikov function.

Proposition 4.3. For each r  \0, dene Br := q p0

p 1


, . . . , q pr


p 1). Then

kl() :=

 

 

sin(k) sin(l)x0(, )
q 1d

belongs to Bk+l 1 for all k, l  \1. Furthermore,

Bk+l 1= q p0

p 1


, . . . , q pk


p 1),k2(), . . . ,kl()

for all k  0 and l  2.D
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Proof. In order to prove the rst assertion we can suppose without loss of generality that
k  l. It is well known that cos(i) = Ti(cos ) and sin((i+1)) = sin Ui(cos ), where Ti and
Ui are the ith degree Chebyshev polynomials of the rst and second kind, respectively. (The
reader is referred to [35] for the formulas relating the Chebyshev polynomials that we shall
use hereafter.) Thus

(16)

kl() =

 

 

Uk 1(cos )Ul 1(cos ) sin
2  x0(, )

q 1d

=
1

p q

 

 


Uk 1(cos )Ul 1(cos ) sin 


x0(, )

q pd,

where the second equality follows using that x0(, ) is the solution of the unperturbed dier
ential equation (3) to perform an integration by parts. Since

Uk 1(x)Ul 1(x) =
l 1

r=0

Uk l+2r(x)

and, thanks to (x2  1)U 
r(x) = (r + 1)Tr+1(x) xUr(x),


Ur(cos ) sin 


= (r + 1)Tr+1(cos ) = (r + 1) cos((r + 1)),

we get that


Uk 1(cos )Ul 1(cos ) sin 


=

k+l 1

r=k l+1
\ 2

r cos(r).

On account of (14), the substitution of this identity in (16) yields

(17) kl() =
q p

p q

k+l 1

r=k l+1
\ 2

r r(
p 1).

Accordingly the rst assertion is true. With regard to the second one, it suces to show that

q pk+r


p 1)  q p0


p 1


, . . . , q pk


p 1),k2(), . . . ,kl()

for all r = 1, 2, . . . , l  1, which can be proved by induction on r taking (17) into account
again. This completes the proof of the result.

In what follows we will need to further emphasize the dependence of the Melnikov functions
on the perturbative parameters. For this reason we use the notation  = (a,b, c,d) as
introduced in (4), so that   

4(n+m+1), and we denote the ith order Melnikov function
associated with the perturbed dierential equation given in (3) by Mi(;).

Proposition 4.4. Setting L =   
4(n+m+1) : M1(;) = 0 for all   I, there exists a

surjective map  : L   
n+m+1 such that

M2(;) = 1()
p + q

n+m 1

k=0

k+2()k(
p 1).D
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Proof. We claim that there exists a surjective map  : L   
n+m+1 such that

M2(;) = 1()
p + q

n+m 1

k=0

k+2()k(
p 1).

The result will follow once we prove this because, by Proposition 4.1, we know that the
linear spans 1, q p0(

p 1), . . . , q pk(
p 1) and 1, q p0(

p 1), . . . , q pk(
p 1) are

equal and have dimension k + 2 for all k  \0. In order to prove the claim let us x any
 = (a,b, c,d)  L . Then, by applying Proposition 4.2,

(18) M2(;) = 2b20
p +

m

k=0

d2k
qk(

p 1) + (q  p)p


1kn
1lm

b1kc1l
k

kl().

By the rst assertion in Proposition 4.3, for all k = 1, 2, . . . , n and l = 1, 2, . . . ,m,

kl()  q p0

p 1


, . . . , q pn+m 1


p 1).

On account of (18), this shows that M2(;)  p, q0

p 1


, . . . , qn+m 1


p 1), which

has dimension n+m+1 by Proposition 4.1. Hence there exists a unique  = ()  
n+m+1

such that

M2(;) = 1
p + q

n+m 1

k=0

k+2k(
p 1).

It only remains to be proved that  : L   
n+m+1 is a surjective map. To this end it

suces to verify that n+m+1 = (L P), where

P :=   
4(n+m+1) : b11 = 0, c1l = 0, for l = 1, . . . ,m 1, and c1m = 1.

Indeed, if   L P then from (18) we get that

M2(;) = 2b20
p +

m

k=0

d2k
qk(

p 1) + (q  p)p
n

k=2

b1k
k

km().

Hence the inclusion 
n+m+1  (L P) follows from the second assertion in Proposition 4.3.

Since the other inclusion is clear, this proves the validity of the claim and so the result
follows.

5. Proof of the main results. This section is devoted to proving Theorems 1.1 and 1.2.
Let us advance that in order to complete the proof of the latter we will need some additional
results that for the sake of simplicity in the exposition we gather in the appendix.

Proof of Theorem 1.1. The fact that M1(  ;)  0 if and only if b10 = d10 =    = d1m = 0
follows from (a) in Proposition 4.2. By applying Proposition 4.4, there exists a surjective
map  such that if   L then

(19) M2(;) = p


M2(;) with


M2(;) := 1() + q p
n+m 1

k=0

k+2()k(
p 1).D
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It is clear that M2 and the rescaled


M2 have the same number of positive and negative zeros
counted with multiplicities. For the sake of convenience we also dene

N(;) := q p
n+m 1

k=0

k+2()k(
p 1).

Recall (see (12) and (13)), that k(y) is equal to k,(y) particularized with g() =
 (p  1)(1 + cos ) and  = q p

p 1 . By abusing notation, in what follows we will write
k(y) = k,(y) for simplicity. Taking this into account, by applying Lemma 3.5, we get
that the derivative of N is

(20) N (;) = (q  p)q p 1
n+m 1

k=0

k+2()k,+1(
p 1).

In addition, the application of Theorem 3.4 to these k, and k,+1 easily shows the following:
Claim 1: N has at most n+m 1 zeros in (p, 0) counted with multiplicities. The same

is true in the interval (0,+).
Claim 2: N  has at most n+m 1 zeros in (p, 0) counted with multiplicities. The same

is true in the interval (0,+).
Claim 3: In the case that p is even, N has at most n + m  1 zeros in (p,+) \ 0

counted with multiplicities. The same is true for N .
Above we have omitted the dependence on  for the sake of shortness. We will also do it

in what follows when there is no risk of confusion. Let us prove next each one of the assertions
in the statement of the result:

(a) From (19), by applying Proposition 4.1, we get that K  n+m. In addition, thanks
to the surjectivity of , we can assert that there exists 0  

4(n+m+1) such that


M2(;0) has exactly n+m positive simple zeros. Since


M2(;0) is an even function
in  in the case that p and q are odd, we can conclude that it has the same number of
negative simple zeros.

(b) Exactly as before, K  n+m. We prove by contradiction that the equalities cannot
hold simultaneously. So suppose that M2 has n + m positive zeros, say 0 < +1 
    +n+m, and n + m negative zeros, say 0 >   1        n+m, counted with
multiplicities. Note that N() is an odd function because q  p is odd and p  1 is
even. Therefore

(21) N(+i ) =


M2(
+
i ) 1 =  1 and N( j ) =  



M2( 
 
j ) + 1 = 1

for all i, j  1, 2, . . . , n+m. This shows in particular that 1 = 0 (otherwise we get
a contradiction with Claim 1), which in turn implies that +i =  j for all i and j.

On the other hand, N  =


M 
2 has n + m  1 positive zeros, say 0 < +1     

+n+m 1, and n+m 1 negative zeros, say 0 >   1        n+m 1, counted with
multiplicities, satisfying i  [i , 


i+1] for all i. Since N  is even, taking Claim 2 into

account we can assert that +i =  i for all i. In particular

(22) [+i , 
+
i+1]  [ i , 

 
i+1] =  for all i.
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For each i = 1, 2, . . . , n + m, let Ji be the open interval with endpoints +i and  i .
Then, on account of (22), it is easy to show that J1, J2, . . . , Jn+m are pairwise non
intersecting. Since, due to (21), each Ji contains at least one zero of N , this contradicts
Claim 1. Accordingly, either K+ < n+m or K < n+m.

(i) By Theorem 3.4, we have that


q p0(

p 1), q p1(
p 1), . . . , q pn+m 1(

p 1)


is an ECTsystem on (0,+). Thus there exist 
2 , . . . ,


n+m+1   such that

the function

   q p
n+m 1

k=0


k+2k(

p 1)

has n+m 1 positive simple zeros and n+m 1 negative simple zeros. Here
we use that the above function is odd due to the parity assumption on p and
q. For the same reason,  = 0 is a zero with odd multiplicity. Hence, taking

1  0, the function

   
1 + q p

n+m 1

k=0


k+2k(

p 1)

has 2(n + m)  1 simple zeros on (p,+) \ 0. We use at this point
the surjectivity of   () to choose some 0  L such that (0) =
(

1 ,

2 , . . . ,


n+m+1). Then by construction (see (19)), M2(;0) has 2(n +

m) 1 simple zeros on (p,+) \ 0.
(ii) Exactly the same argument as before, but choosing 

1 = 0 guarantees the
existence of 0  L such that M2(;0) has 2(n + m  1) simple zeros on
(p,+) \ 0.

(c) Let +1      +
K+ and  1       

K 
be the zeros of



M2(;) on (0,+) and

(p, 0), respectively. Then


M 
2 = N  has at least K+  1 zeros on [+1 ,+) and at

least K  1 zeros on (p, 
 
1 ], counted with multiplicities. Since p is even, it is clear

(cf. (20)), that

(y;) :=
n+m 1

k=0

k+2()k,+1(y)

has at least K+ 1 zeros on

(+1 )

p 1,+

and at least K  1 zeros on the interval

(  1
2(p 1) , (

 
1 )

p 1], counted with multiplicities. (Here we use that 
p 1
p =  1

2(p 1) .) By
Theorem 3.4,

(0,+1, 1,+1, . . . , n+m 1,+1)

is an ECTsystem on (  1
2(p 1) ,+). Hence  can have at most n+m 1 zeros counted

with multiplicities in this interval. If (0) = 0 then  has at least K+ + K  1
zeros counted with multiplicites in this interval. Consequently K+ + K  n + m.
If (0) = 0 then the multiplicity of



M 
2 = N  at  = 0 is exactly q  p  1, which is

an even number by assumption. On account of this, and the fact that M2(

1 ) = 0
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with  1 < 0 < +1 , one can easily conclude the existence of a zero of


M 
2 = N  on

( 1 , 
+
1 ) \ 0. Thus N

 has at least n+m 1 zeros on (p,+) \ 0 counted with
multiplicities. By Claim 3 we get the upper bound K+ + K  n + m also in this
case.
Exactly as we did in the previous cases, Proposition 4.1 and the surjectivity of   
() ensure the existence of some 0  L such that M2(  ;0) has n+m simple zeros
in, for instance, the interval (0,+).

(d) The number of zeros of N  =


M 
2 on (p,+) \ 0 counted with multiplicities is

at least K+ + K  2. Then, by Claim 3 again, we get K+ + K  n + m + 1.
In order to prove that this upper bound is sharp we will use that, by Theorem 3.4,
0, 1, . . . , n+m 1


is an ECTsystem on (  1

2(p 1) ,+) and we consider two cases:

Case 1: q even and p < q. We take 
2 , . . . ,


n+m+1   such that

(23) () :=
n+m 1

k=0


k+2k(

p 1)

vanishes at 0 < 1 < 2 <    < n+m 1 with multiplicity one and satises (0) = 0.
Thus q p() has a zero at  = 0 of multiplicity q  p, which is an even number,
and vanishes with multiplicity one at i, i = 1, 2, . . . , n + m  1. Consequently we
can choose 

1 small enough such that 
1 + q p() has n+m 1 simple zeros near

1 < 2 <    < n+m 1, together with one positive and one negative zero near  = 0,
both being simple as well. Now, as we did before, we use the surjectivity of    ()
to choose some 0  L such that (0) = (

1 ,

2 , . . . ,


n+m+1). Then by construction

(see (19)), M2(;0) has n+m+ 1 simple zeros on (p,+) \ 0 as desired.
Case 2: p > q. In this case we choose 

2 , . . . ,

n+m+1   such that

n+m 1

k=0


k+2k(y)

has exactly n+m 1 simple zeros in (  1
2(p 1) ,+), one of them being y = 0 and the

other ones positive. Thus the function () in (23) has exactly n + m  2 positive
simple zeros, say 2 < 3 <    < n+m 1, and there exists an analytic function  such
that

() =
n+m 1

k=0


k+2k(

p 1) = ()p 1 with (0) = 0.

Let us suppose, without loss of generality, that (0) > 0. Then, since p is even, there
exists   (0, 2) such that () > 0 for all   ( , ) \ 0. Let us dene at this
point

M2(;1,) := ()p 1 + 1
p q + 0(

p 1)

and split the proof into two subcases depending on the parity of q.
Subcase 2a: q odd. In this case M2(;1, 0) = p q


()q 1 + 1


with p q

odd and q  1 > 0 even. Hence, by continuity, there exist small enough 
1 < 0 and
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  (0, ) such that M2(;

1 , 0) has n+m 2 positive simple zeros near 2, . . . , n+m 1

and, moreover,

M2( ;
1 , 0) < 0, M2( ;

1 , 0) > 0, M2(;

1 , 0) < 0, M2(;


1 , 0) > 0.

Note also (see (13)), that 0(
p 1) > 0 for all . Thus, by continuity, we can take

 > 0 small enough, such that M2(;

1 ,

) still has n+m 2 positive simple zeros
near 2, . . . , n+m 1 and also veries M2(0;


1 ,

) > 0, together with

M2( ;
1 ,

) < 0, M2( ;
1 ,

) > 0, M2(;

1 ,

) < 0, M2(;

1 ,

) > 0.

Therefore M2(;

1 ,

) vanishes at least once in each interval ( , ), (0, ), and
(, ). So the total number of zeros of M2(;


1 ,

) on (p,+) \ 0 is at least
n+m+ 1. On account of the surjectivity of  : L   

n+m+1, we can take 0  L

such that
(0) = (

1 ,

2 + ,

3 , . . . ,

n+m 1).

Hence, by construction, M2(;0) = q M2(;

1 ,

) has at least n +m + 1 zeros on
(p,+) \ 0. Finally, since we have already proved that K+ + K  n + m + 1,
these zeros must be simple, as desired.

Subcase 2b: q even. In this case M2(;1, 0) = p q

()q 1+1


with p q

even and q  1 > 0 odd. Then, by continuity, we can take small enough 
1 < 0 and

  (0, ) such that M2(;

1 , 0) has n+m 2 positive simple zeros near 2, . . . , n+m 1

and
M2(;


1 , 0) > 0, M2( ;

1 , 0) < 0, M2(;

1 , 0) < 0.

Due to 0(
p 1) > 0 for all , taking  > 0 small enough, M2(;


1 ,

) still has
n+m 2 positive simple zeros near 2, . . . , n+m 1 and, additionally,

M2(;

1 ,

) > 0, M2( ;
1 ,

) < 0, M2(;

1 ,

) < 0, M2(0;

1 ,

) > 0.

Thus M2(;

1 ,

) vanishes at least once in each interval ( , 0), (0, ), and (, ).
Exactly as we did in the previous subcase, there exists 0  L such that M2(;0) =
q M2(;


1 ,

) has exactly n+m+ 1 simple zeros on (p,+) \ 0.

Remark 5.1. If we only consider K+ in Theorem 1.1, then by (19) and Proposition 4.1,
K+  n+m always holds and the upper bound can be achieved.

Proof of Theorem 1.2. Taking p = 3 and q = 2, from point (ii) in assertion (b) of The
orem 1.1 we know that there exists 0  

4(n+m+1) with M1(;0) = 0 for all   I and
such that M2(;0) has 2(n + m  1) simple zeros in I \ 0. Hence, due to x(, ;0, ) =
 + 2M2(;0) + o(2), by applying the implicit function theorem we can assert that  
x(, ;0, ) has at least 2(n+m 1) xed points in I \0 for all   0. Since x(, 0;0, ) = 0
for all , the rst assertion follows. With regard to the second assertion, the bound3,2(1, 3) 
8 is proved in Proposition A.2, whereas 3,2(4, 1)  10 is proved in Proposition A.3.

Appendix A. Improvements using Lyapunov constants. Our goal in this appendix is to
use Lyapunov constants in order to improve the general lower bound 3,2(n,m)  2(n+m) 1
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in the case that (n,m)  (1, 3), (4, 1). At the end we shall discuss the diculties we have
found to tackle two other particular cases using the same approach.

In the last two decades, there have been several works about the Hilbert number3,2(n,m).
Unfortunately the problem is far from being solved even for the case n = m = 1. We gather
in the following theorem the main results obtained in [6].

Theorem A.1. For any nonnegative integers n and m, we have 3,2(n, 0) = 3,2(0,m) = 2,
3,2(n, 1)  n+ 2, and 3,2(1,m)  2m+ 1. Moreover, 3,2(3, 1)  7 and 3,2(2, 2)  7.

As it occurs with our proof of Theorem 1.2, the general lower bounds in the above result
follow by using Melnikov functions, whereas the improvements for the particular cases follow
by means of Lyapunov constants, that enable us to study those limit cycles bifurcating from
 = 0. With this aim let us consider the dierential equation x = A()x3 +B()x2 and write
its trigonometric polynomials as

(24) A() = b0 +

n

k=1


ak sin(k) + bk cos(k)


and B() = d0 +

m

k=1


ck sin(k) + dk cos(k)


.

If x(, ) denotes the solution with initial condition x(0, ) =  then the hyperbolic limit cycles
near  = 0 can be viewed as simple zeros of the displacement map

(25) () :=
x(2, ) 

2
=



j=2

Xj
j .

The coecients Xj of the Taylor development of  at  = 0 are polynomial on ak, bk, ck, dk
and the rst Xj which is not identically zero is called the jth order Lyapunov constant of the
corresponding Abel equation. Usually the Lyapunov constants appear in the context of planar
polynomial vector elds when studying the stability of equilibrium points of monodromic type.
They are polynomial in the coecients of the vector eld when we restrict the analysis to the
trace zero class and typically they are computed writing the planar dierential equation in
polar coordinates; see [11]. In fact, (1) is the third degree truncation of this type of equation
and the zero trace class here is reduced to C = 0, which is precisely the equation that we are
analyzing. Hence, the standard Lyapunov scheme applies, so that the Lyapunov constants
that we obtain are polynomials in the coecients of A and B. As in the standard scheme here
we consider the transition map from  = 0 to  = 2. Only a constant translation     

is needed to obtain the transition from  =   to  = . Clearly, the number of limit cycles
does not depend on this initial angle. Moreover, the Lyapunov constants are always dened
modulus the vanishing of all the previous ones, i.e., Xj := Xj |X1==Xj 1=0. For simplicity, by
abusing notation we keep the same symbol to denote them. As is usual, we say that  = 0 is a
weak focus of order k if Xk = 0 and Xj = 0 for j = 2, . . . , k  1. Moreover, we say that  = 0
is a center if all the solutions in a neighborhood of  = 0 are periodic, i.e., ()  0. This
theory was initially developed for planar ordinary dierential systems having an equilibrium
point of center-focus type (see [7]) but, writing in polar coordinates, both are equivalent. We
point out that here, contrary to what happens in the standard planar scheme, the coecients
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with an even subindex do not vanish identically. The bifurcation phenomenon is known as
the degenerated Hopf bifurcation. In our context, since we have that X1 = 0, one limit cycle
is always missing when we perturb a weak focus or a center. Note that if bk and dk in (24)
are all zero then the equation x = A()x3 + B()x2 is invariant by the change     and,
consequently, it has a reversible center at the origin, so that all Xj vanish. Therefore, when
b = (b0, . . . , bn) and d = (d0, . . . , dm) are nonzero parameters, we can write the truncated rst
order Taylor series of Xj at (b, d) = (0, 0) as

(26) X1
j :=

n

k=0

fj,k(a, c)bk +
m

k=0

gj,k(a, c)dk for all j  2,

where a = (a1, . . . , an) and c = (c1, . . . , cm). We remark that the above expression has no
constant term because the return map is identically zero when b = d = 0 for every a and c.
Here we will use the ideas developed in [21] to work only with these linear developments in
order to increase the number of limit cycles of small amplitude for families of centers. In
[22] it is proved that these linear developments can also be obtained by computing the Taylor
series at  = 0 of the rst Melnikov function M1 as introduced in section 2.

In the next two propositions, since we treat the cases n = 1 and m = 1, we can follow
similarly as with the perturbed problem (3), taking the coecients of sin  and cos  to be
1 and 0, respectively, since we can rescale x and do a translation in  if necessary. In the
proofs we will see that we are using all the other free parameters. This also shows that the
weakfocus order is maximal in the considered families.

Proposition A.2. Let us consider the Abel dierential equation x = A()x3+B()x2 taking

the trigonometric polynomials A and B as introduced in (24) with (n,m) = (1, 3) and (a1, b1) =
(1, 0). Then there exist parameters (b0, c, d) such that the origin is a weak focus of order 9
unfolding 7 nonzero limit cycles of small amplitude. Consequently 3,2(1, 3)  8.

Proof. In this case it turns out that all the Lyapunov constants that we need in order
to prove the result are linear with respect to (b0, d0, d1, d2, d3), so that Xj = X1

j . The proof
follows by nding a transversal intersection point on the zero level set of X2, . . . , X8 in which
X9 is nonvanishing. Then 7 nonzero limit cycles of small amplitude bifurcate from the origin
and  = 0 is still a hyperbolic solution that remains. The complete expressions are quite large
and we only show the rst ones:

(27)

X2 = d0,

X3 = b0,

X4 = 2 1d1,

X5 = 12 1( 3c1 + c3)d2  12 1c2d3,

X6 = 16 1(3c1c2  2)d2 + 32 1(4c21 + c22)d3,

X7 = 432 1( 1674c31  1620c21c2  504c21c3  432c1c
2
2 + 162c1c2c3 + 150c1c

2
3 + 225c22c3

+ 234c2c
2
3 + 64c33  864c1  162c2 + 72c3)d2 + 864 1(648c31  828c21c2 + 216c21c3

 1242c1c
2
2  720c1c2c3  369c32  414c22c3  128c2c

2
3 + 144c1  360c2)d3.D

o
w

n
lo

ad
ed

 1
0

/2
7

/2
0

 t
o

 1
5

6
.6

2
.3

.1
1

. 
R

ed
is

tr
ib

u
ti

o
n

 s
u

b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p

y
ri

g
h

t;
 s

ee
 h

tt
p

s:
//

ep
u

b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIMIT CYCLES IN GENERALIZED ABEL EQUATIONS 2365

Clearly X2, X3, X4, X5 have degree one with respect to b0, d0, d1, d2. Then, when 3c1  c3 = 0
we can write Xj = uj for j = 2, . . . , 5 and we get

Xj |u2==u5=0 = Cj
fj 5(c1, c2, c3)

3c1  c3
d3 for j = 6, 7, 8, 9

with some nonvanishing rational numbers Cj and

f1 = 12c31  4c21c3  3c1c
2
2  c22c3 + 4c2,

f2 = 216c41 + 96c31c2  54c21c
2
2  36c21c2c3  24c21c

2
3  27c1c

3
2  36c1c

2
2c3

+ 4c1c2c
2
3  9c32c3  6c22c

2
3 + 48c21 + 72c1c2  16c1c3 + 36c22 + 24c2c3,

f3 = 18792c51 + 16128c41c2 + 5832c41c3  828c31c
2
2  672c31c2c3  1824c31c

2
3  4536c21c

3
2

 6156c21c
2
2c3  1344c21c2c

2
3  736c21c

3
3  1197c1c

4
2  3024c1c

3
2c3  1224c1c

2
2c

2
3 + 224c1c2c

3
3

 399c42c3  504c32c
2
3  184c22c

3
3 + 13248c31 + 10068c21c2  1728c21c3 + 4752c1c

2
2

+ 2688c1c2c3  896c1c
2
3 + 1608c32 + 1584c22c3 + 780c2c

2
3 + 432c1 + 1728c2  144c3,

f4 = 80352c61 + 99252c51c2 + 48384c51c3 + 26352c41c
2
2 + 26388c41c2c3 + 1440c41c

2
3

 20034c31c
3
2  28800c31c

2
2c3  7944c31c2c

2
3  5376c31c

3
3  14364c21c

4
2  30618c21c

3
2c3

 15120c21c
2
2c

2
3  1728c21c2c

3
3  1152c21c

4
3  2646c1c

5
2  9576c1c

4
2c3  8235c1c

3
2c

2
3

 1728c1c
2
2c

3
3 + 480c1c2c

4
3  882c52c3  1596c42c

2
3  1104c32c

3
3  288c22c

4
3 + 110538c41

+ 101808c31c2 + 16470c31c3 + 33678c21c
2
2 + 13344c21c2c3  11934c21c

2
3 + 11196c1c

3
2

+ 9369c1c
2
2c3 + 4992c1c2c

2
3  1946c1c

3
3 + 3600c42 + 3732c32c3 + 2925c22c

2
3

+ 1328c2c
3
3 + 17280c21 + 22698c1c2  4032c1c3 + 10800c22 + 6156c2c3  576c23.

For d3 = 0, the solutions of the system of equations dened by f1 = f2 = f3 = 0 are written
as

c = (c1, c

2, c


3) =


, 

3 p2()

126976
,
 p3()

31744


,

where  is a simple real zero of p(x) = 50625x16  207900x12 + 112644x8  26880x4 + 4096,
that one can verify it has exactly 4 simple real zeros near 0.7796202641 and 1.369217569,
and

p2(x) = 1771875x12  7456500x8 + 4643340x4  842624,

p3(x) = 16875x12  177300x8 + 398508x4  18304.

The proof will follow once we check that f4, the denominator 3c1 c3, and the determinant
of the Jacobian matrix of (f1, f2, f3) with respect to c = (c1, c2, c3) are all dierent from zero
evaluated at c = c. Straightforward computations show that

f4(c
) = (15187512 + 36495008  21481804 + 184448)/1984 =: p4(),

det Jac(f1,f2,f3)(c
) = (17280012 + 8432648  5160964 + 65536) =: p5(),

3c1  c3|c =  (1687512  1773008 + 3985084  113536)/31744 =: p6().
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For i = 4, 5, 6, one can verify that the resultant between pi(x) and p(x) is dierent from zero.
Consequently this implies that pi() = 0 for i = 4, 5, 6, as desired. This concludes the proof
of the result.

Proposition A.3. Let us consider the Abel dierential equation x = A()x3+B()x2 taking

the trigonometric polynomials A and B as introduced in (24) with (n,m) = (4, 1) and (c1, d1) =
(1, 0). Then there exist parameters (a, b, d0) such that the origin is a weak focus of order 11
unfolding 9 nonzero limit cycles of small amplitude. Consequently 3,2(4, 1)  10.

Proof. The proof follows similarly as in the previous result, but here we must use the
linear Taylor developments of some Xj as we have previously explained. This is so because in
this case not all Lyapunov constants are of degree 1 in the parameters (b0, b1, b2, b3, b4, d0). For
simplicity we will write a = (a1, a2, a3, a4). Since the expressions of the Lyapunov constants
are very large, for the sake of shortness we only show the rst ones:

X2 = d0,

X3 = b0,

X4 =  2
 1b1,

X5 = 4 1b2,

X6 = 48 1((2a2  a4  6)b3 + a3b4),

X7 = 24 1( 4a1 + 6a2  3a4  18)b3 + 16 1( a2 + 2a3 + 1)b4,

X8 = 960 1(( 60a21 + 240a1a2  120a1a4 + 135a22 + 80a2a3  15a2a4  40a3a4

 30a24  1840a1 + 575a2  240a3  643a4  2610)b3 + ( 45a1a2 + 120a1a3

+ 75a2a3 + 40a23 + 30a3a4 + 145a1  420a2 + 463a3 + 420)b4).

The next necessary Xk, for k = 9, 10, 11, have degree 3 in a3, a4 and we linearize them with
respect to a3, a4. As above, we start simplifying with the rst that are linear, X2, . . . , X5, and
X6, writing, when a3 = 0, Xk = uk for k = 2, . . . , 6. Then, naming b3 = u7 we can write

(28) Xj |u2==u6=0 = X1
j +O2(b3) =

Cj

a3
fj 6(a)u7 +O2(u7) for j = 7, 8, 9, 10, 11

with some Cj nonvanishing rational numbers and

f1 = 8a1a3  6a22 + 3a2a4 + 24a2  3a4  18,

f2 = 60a21a3  90a1a
2
2 + 45a1a2a4 + 15a22a3 + 560a1a2 + 1120a1a3  145a1a4  840a22

 99a2a3 + 420a2a4  870a1 + 3360a2  168a3  420a4  2520,

f3 = 750a21a2 + 4800a21a3  375a21a4  4680a1a
2
2 + 1653a1a2a3 + 2340a1a2a4 + 1120a1a

2
3

+ 840a1a3a4  1212a32  480a22a3  24a22a4  98a2a
2
3 + 420a2a3a4 + 315a2a

2
4  49a23a4

 2250a21 + 23520a1a2 + 13281a1a3  4740a1a4  6012a22 + 984a2a3 + 7344a2a4

+ 294a23  420a3a4  315a24  28440a1 + 39384a2  6552a3  7110a4  31320,

f4 = 3600a31a2 + 23040a31a3  1800a31a4  34560a21a
2
2 + 11520a21a2a3 + 17280a21a2a4
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+ 7680a21a
2
3 + 5760a21a3a4  17280a1a

3
2  5760a1a

2
2a3  1200a1a2a

2
3 + 5760a1a2a3a4

+ 4320a1a2a
2
4  600a1a

2
3a4 + 3780a32a3 + 1920a22a

2
3 + 1440a22a3a4  225a2a3a

2
4

 10800a31 + 323040a21a2 + 579120a21a3  109680a21a4  426816a1a
2
2 + 235856a1a2a3

+ 293088a1a2a4 + 144720a1a
2
3 + 88064a1a3a4  13920a1a

2
4  147648a32  101144a22a3

 6144a22a4  26784a2a
2
3 + 43416a2a3a4 + 39984a2a

2
4 + 816a33  7056a23a4 + 1523a3a

2
4

 658080a21 + 2311584a1a2 + 446352a1a3  521328a1a4  5568a22 + 221676a2a3

+ 544128a2a4 + 20832a23  69048a3a4  39984a24  2626848a1 + 1881216a2

 625176a3  507744a4  1607040,

f5 = 720000a31a2 + 2386800a31a3  360000a31a4  2438640a21a
2
2 + 1869360a21a2a3

+ 1354320a21a2a4 + 1147200a21a
2
3 + 772080a21a3a4  67500a21a

2
4  1621440a1a

3
2

 526920a1a
2
2a3  28800a1a

2
2a4 + 266160a1a2a

2
3 + 855540a1a2a3a4 + 419760a1a2a

2
4

+ 147600a1a
3
3 + 136320a1a

2
3a4 + 92040a1a3a

2
4  221400a42  121080a32a3  107460a32a4

 60240a22a
2
3 + 58560a22a3a4 + 46890a22a

2
4  23520a2a

3
3 + 20340a2a

2
3a4 + 64350a2a3a

2
4

+ 31095a2a
3
4  11760a33a4  8820a23a

2
4  2160000a31 + 16558560a21a2 + 12839120a21a3

 5026320a21a4  4939840a1a
2
2 + 7959200a1a2a3 + 9117760a1a2a4 + 3502960a1a

2
3

 377600a2a
2
3 + 1230980a1a3a4  848560a1a

2
4  2428520a32  1888240a22a3

+ 489400a22a4 + 1309488a2a3a4 + 1108880a2a
2
4 + 111360a33  191740a23a4 + 550a3a

2
4

 33295a34  27727920a21 + 47743680a1a2  2597880a1a3  14256960a1a4

+ 3526680a22 + 5056920a2a3 + 9864060a2a4  199440a23  2398224a3a4  1126770a24

 54993600a1 + 24634440a2  13051440a3  9252000a4  22140000.

We remark that the terms O2 are polynomial in u7 and rational in a. We claim that there
exists at least a transversal intersection point a of the zero level sets of f1, . . . , f4, where f5
is nonvanishing. Once we prove the claim the result will follow because near this point a,
thanks to the implicit function theorem, we can write (28) as Xj = u7vj 6, being v1, . . . , v4
are new independent variables. Hence, the existence of a weak focus of maximal order 11 is
clear and also its unfolding provides only 9 nonzero limit cycles because the displacement map
(25) starts with degree 2 terms. The extra limit cycle for proving the last statement follows
from the fact that  = 0 is an isolated solution.

Let us prove nally that the claim is true. To this end we note that the system of equations
f1 = f2 = f3 = f4 = 0 has solutions that are written as

a = (a1, a

2, a


3, a


4) = (,,p3(), p4()),

where 2 = p2() with p2, p3, and p4 some polynomials of degree 13 with rational coecients,
and  is a simple real solution of the polynomial

p1(x) = 14352187500x14  657776700000x13 + 11284736929875x12

 42406416759825x11  1391899076716315x10 + 23023762786511909x9
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 123393106663586826x8  218236503571470586x7 + 5756360884347363494x6

 27272611466754481126x5 + 55780715677026807263x4  48094920597945273157x3

+ 9193962961957763353x2 + 5105496738368043633x 1609769302079739192

verifying p2() > 0. Straightforward computations show that there exist p5 and p6, polynomi
als of degree 13 with rational coecients such that f5(a

) = p5() and the determinant of the
Jacobian matrix det Jac(f1,f2,f3,f4)(a

) = p6(). Moreover, the polynomials pk for k = 2, . . . , 6
do not vanish at , because the respective resultants with p1, with respect to , are nonzero
rational numbers. It only remains to prove that there exists  such that also p2() > 0. This
follows just computing the real zeros of the polynomials p1 and p2, ordering them in the real
line, and comparing their plots. From the 8 simple real zeros of p1 only 4 satisfy the condition
p2 > 0. They are located near  12.079846278, 6.6037190290, 1.81965668348, 1.84169431112.
This concludes the proof of the result.

We remark that working on the last proof with the complete Lyapunov constants instead
of the linear developments we have not obtained more limit cycles, and the computations to
provide the weak focus of maximum order are even worse. Moreover, although from the proof
it seems that we are computing only linear developments, from the nal writing Xj = u7vj 6
it is clear that a second order bifurcation mechanism is used, as we have shown throughout
the present paper.

We nish the appendix by making some considerations about numerical simulations re
garding other values of m and n. Theorem 1.2 improves the general lower bounds of 3,2(n,m)
that appear in the literature, in particular the ones in [6]. The new general lower bound is
2(n+m) 1 and, as we have commented before, it is very close to the total number of param

eters 2(n+m)+2 in the system. Since we can rescale x and do a translation in , two of these
parameters can be removed and only 2(n +m) remain. Hence it is reasonable to conjecture
that 3,2(n,m) = 2(n +m). Nevertheless it can be checked that with the degenerated Hopf
bifurcation explained above we cannot get such a number of limit cycles when n + m  4
except for (n,m) = (1, 3); see Proposition A.2. Some of these computations were done in [6]
by studying the maximum weakfocus order. With regard to the segment n+m = 5, Proposi
tion A.3 gets this value of limit cycles for (n,m) = (4, 1) whereas, numerically, we can get (also
using the technique explained in the last section) that 3,2(2, 3)  10 and 3,2(1, 4)  10.
But we have not been able to improve, not even numerically, the lower bound 3,2(3, 2)  9.
(Here and below the superscript  means that we have not an analytic proof but only numer
ical evidence.) The main diculty is not in nding the system of equations to solve but in
solving it. The numerical solutions that we have found seem to be values to have a center at
the origin and not a weak focus of the order that we look for.

For (n,m) = (1, 4), as we have done in Proposition A.2, we x a1 = 1 and b1 = 0. The
next step is the computation of the rst linearized Lyapunov constants in the form (26) that
are similar to (27). Then, again with the implicit function theorem, we write Xk = uk for
k = 2, . . . , 6 and we obtain for X7, . . . , X11 the functions f1, . . . , f5 similarly as the ones in
(28), depending only on c = (c1, c2, c3, c4). Here the polynomials fk have degree k + 5 for
k = 1, . . . , 5. Hence, an equivalent Proposition A.3 could be conjectured for this case because,
working with enough precision to see the stabilization of the digits, we have found numerically
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a weak focus of order 11 at c = (0.8339985012, 3.0122982805, 1.9052668985, 5.4437166429)
that unfolds 9 nonzero limit cycles of small amplitude and yields to 3,2(1, 4)  10.

For (n,m) = (2, 3) we can get a similar numerical result for 3,2(2, 3)  10. The main
dierence with the latter case is that the functions fk depend on (a1, a2, c1, c2) and have
degree 3k + 7 for k = 1, . . . , 5. Here the numerical approximation of the weak focus point is
(a1, a


2, c


1, c


2) = ( 0.05247784623, 0.6187352312, 0.2084251822, 0.3470405002).
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