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On the Number of Limit Cycles in Generalized Abel Equations*
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Abstract. Given p,q € Z>» with p # g, we study generalized Abel differential equations 4 = A(#)z” + B(6)z",

where A and B are trigonometric polynomials of degrees n, m > 1, respectively, and we are interested
in the number of limit cycles (i.e., isolated periodic orbits) that they can have. More concretely, in
this context, an open problem is to prove the existence of an integer, depending only on p, ¢, m, and
n and that we denote by Hp,q(n, m), such that the above differential equation has at most Hyp,q(n, m)
limit cycles. In the present paper, by means of a second order analysis using Melnikov functions, we
provide lower bounds of H, 4(n, m) that, to the best of our knowledge, are larger than the previous
ones appearing in the literature. In particular, for classical Abel differential equations (i.e., p = 3
and ¢ = 2), we prove that Hsz2(n,m) > 2(n+m) — 1.
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1. Introduction and statements of main results. The study of the existence of periodic
orbits in ordinary differential equations has been an interesting problem for years in many
areas of mathematics, particularly in qualitative theory of differential equations. In this area of
interest, when we focus on planar polynomial vector fields, one of the most renowned classical
problems arises: to know the number and location of isolated periodic orbits, the so-called
limit cycles, in terms of its degree n. The study of this problem began at the end of the 19th
century with the seminal works by Poincaré, but takes its name after Hilbert because of his
famous list of unsolved problems published in 1900. From the original list of 23 problems, the
16th is still open, in particular, its second part. More precisely (see [26, 36] for details), the
“existential” Hilbert’s 16th problem is to prove that for any n > 2 there exists a finite number
‘H(n) such that any polynomial vector field of degree < n has less than H(n) limit cycles.
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Motivated by Hilbert’s 16th problem, a very related line of research is to investigate the
periodic solutions of scalar differential equations

k

. dx i
=g = Z{:)ai(e)x ,

where a; are periodic analytic functions. In this context an isolated periodic solution is called a
limit cycle and it occurs that its number increases with k. (The reader is referred to [15] for an
enlightening explanation of this fact.) Linear differential equations have at most 1 limit cycle,
whereas the quadratic ones have at most 2. The latter are known as Riccati equations and the
upper bound follows from the fact that the return map is a Mdbius function. Nevertheless the
situation is more intricate for degree three. The well-known trigonometric Abel differential
equation is written as

(1) i = A(0)z® + B(0)z* + C(0)z

with A, B, and C being trigonometric polynomials. Pliss [33] proves using the Schwarzian
derivative that if A does not change sign then the maximum number of limit cycles is 3.
However it was Lins Neto [31] who was the first to show that, in general, there is no upper
bound for the number of limit cycles. Indeed, he proves that for every positive integer £ there
exists an Abel differential equation with periodic coefficients having ¢ limit cycles. He does it
by studying the perturbation & = £ A(8)z3 + B(6)x?, where both coeficients are trigonometric
polynomials of degree /.

In this paper we are interested in the number of limit cycles of generalized Abel equations
in terms of the trigonometric polynomial degree of their coefficients. More concretely, we
study the differential equation

(2) i = A(0)a? + B(0)a",

where A and B are trigonometric polynomials and p,q € Z>2 with p # ¢. We say that a
solution = = x(0) of this differential equation is a periodic orbit if it satisfies x(—7n) = z(m).
As before, a periodic orbit is called a limit cycle if it is isolated in the set of periodic orbits.
For fixed exponents p and ¢, we define the Hilbert number H = H,4(n,m) as the maxi-
mum number of limit cycles that the differential equation (2) can have for any trigonometric
polynomials A and B of degrees n and m, respectively. For the classical Abel equation, i.e.,
(p,q) = (3,2), it is known as the Smale-Pugh problem; see [37]. So far it is even unknown
whether H exists. Our main contribution in the present paper is to provide a lower bound of
‘H that, to the best of our knowledge, improves the previous ones appearing in the literature.
We shall restrict ourselves to the case n,m > 1 because from the results in [16, 18, 31] the
problem is completely solved when n =0 or m = 0.

It is proved in [18] that the upper bound for the number of limit cycles of the differential
equation (1) is three provided that A or B does not change sign. The authors use this result
in order to bound the number of hyperbolic limit cycles in some planar polynomial differential
systems. (This idea is also used in many other papers; see [1, 2, 12, 20, 25], for example.) The
natural extension of this result to the equation & = A(0)zP + B(6)x? + C(0)z is considered in
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[16] where, under the same hypothesis, it is proved that the upper bound is 5 (respectively,
4) when max(p,q) is odd (respectively, even). This result, particularized to C' = 0, gives
Hpq(n,m) in the case that nm = 0. Therefore, as we explained before, for the the problem
that we tackle in the present paper it is natural to assume that n,m > 1. Certainly the
problem is much more difficult when the coefficients A and B do change sign. This is the case
studied in [4] where, under some other hypotheses on the coefficients, it is proved that only one
limit cycle exists. Other upper bounds for the number of periodic solutions are given in [29]
under some conditions on the number of zeros of B(#). More generally, also refer to the result
in [3], where it is proved that the differential equation # = >, a;(6)a™ with 1 < n; < n and
a; periodic analytic functions, can have at most 3n — 1 limit cycles provided some transversal
conditions are verified. The extension of the aforesaid Lins Neto result to generalized Abel
differential equations is also done in [16].

There are also some problems coming from planar polynomial differential systems that
can be brought to a differential equation as in (1) or (2). Among others, the homogeneous
nonlinear perturbations of the harmonic oscillator or the so-called rigid systems (6 = 1); see
[10] and [19], respectively. More recently, it is shown in [5] that Abel differential equations
(2) have also limit cycles of alien type. They are not of small amplitude, like in a Hopf
bifurcation, neither arising by the perturbation of an annulus that is foliated by periodic
orbits. Among the long list of references to Abel differential equations (there are more than
three hundred in the literature) there are some that reduce real problems to this type of
differential equation. In [13] the authors computed an approximation of an unstable limit
cycle that appears in an Abel equation arising in a tracking control problem that affects
an elementary, nonminimum phase, second order bilinear power converter. The authors in
[23] study a second order differential equation that describes the relativistic evolution of
a causal dissipative cosmological fluid in a conformally flat space-time. They reduce this
evolution equation to an Abel differential equation. The same authors, in a more recent work
[24], consider quasi-stationary (traveling wave type) solutions of a nonlinear reaction-diffusion
equation, which describes the evolution of glioblastomas. These aggressive primary brain
tumors are characterized by extensive infiltration into the brain and are highly resistant to
treatment. The second order nonlinear equation describing the glioblastoma growth through
traveling waves is reduced to a differential equation of Abel type. The relationship between
the Einstein-Friedmann and Abel equations is studied in [38]. In that work the authors
demonstrate how the latter might be applied to the inflationary analysis in a spatially flat
Friedmann universe filled with a real-valued scalar field. They use an Abel equation to provide
the necessary and sufficient conditions for both slow-rolling and inflation to be estimated with
respect to the initial value of the field.

Coming back to the original Hilbert’s 16th problem, due to the difficulty in finding uniform
upper bounds for even subclasses of polynomial differential systems, some weak versions have
appeared during the past decades. One of them was proposed by Arnol’d [8] and it focuses on
the study of limit cycles bifurcating from the period annulus of Hamiltonian systems. Closely
related to this, our approach, in order to improve the lower bounds for H,, 4(n, m) when n, m >
1, is to consider a second order perturbation of the generalized Abel differential equation

(3) @ = (sin@ + &Py (0) 4+ 2 Py(0))zP + (eQ1(0) + £2Q2(6))z",
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where the coefficients of the perturbation are trigonometric polynomials of degrees n and m,
that is

P;(0) = bip + Z (aik sin(k0) + b, cos(k8)) and Q;(0) = dio + Z (cik sin(k8) + d;i, cos(k6))
k=1 k=1

for i = 1,2. We note that the parameter space associated with (2) is R2(m+tm+1) and that by
taking (3) we study the perturbation of a specific point, say & € R2("+m+1), corresponding
to & = sin@xP. The coefficients of P; and Q;, once determined, give a curve in R2("+m+1)
passing through &y at € = 0. In what follows, for the sake of convenience, we will treat these
coefficients as parameters too, setting p = (a, b, c,d), where

(@) a= (a1g, a0k =1,2,...,n), c=(c1p,con;k=1,2,...,m),
b: (blk,bzk;k‘:O,l,...,n), dI (dlk,dgk;k:O,l,...,m).

Thus p € R*™tm+D) although as we already mentioned the “ambient” parameter space is
R2(+m+1) That being said we denote by x(6, p; i1, €) the solution of (3) with initial condition
x(—m, p;,€) = p. One can readily prove (see Corollary 2.3) that the unperturbed system
verifies x (7, p; 1, 0) = p for all p € I:= (kp, +00), where

)

) if p is odd,
P —@p—1) 7T if pis even.

Then, thanks to the analytic dependence of solutions with respect to initial conditions and
parameters, we can write the Taylor series of the Poincaré transition map as

oo
2(m, pi ) = p+ Y& Mi(p; ),
i=1

where M; is an analytic function on Ix R*™+7m+1D) Setting Rt = (0, 4+00) and R~ = (—o0, 0),
for our first main result we study the case M; = 0 and My # 0 assuming that n,m > 1.

Theorem 1.1. The function Mi(-;u) vanishes identically if and only if
pel ={peRmmHD py —dig = = dy,, = 0},

For a fized i € £, let K* be the number of zeros of Ma(-;u) on I NR* taking multiplicities
into account. Then the following properties hold:
(a) If p and q are odd, then K* < n+4m. Moreover, there exists uy € & such that
Ms( -5 po) has 2(n +m) simple zeros in I\ {0}.
(b) If p is odd and q is even, then K* < n+m and both equalities do not hold simultane-
ously. Moreover,
(i) when p < q, there exists py € £ such that Ma(-; o) has 2(n+m) — 1 simple
zeros in I\ {0};
(ii) when p > q, there exists py € £ such that Ma(-; o) has 2(n+m — 1) simple
zeros in I\ {0};
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(c) if p is even, q is odd, and p < q, then K* + K~ < n +m. Moreover, there exists
po € &L such that Ma(-;po) has n+m simple zeros in I\ {0};

(d) if p is even and either q is even or p > q, then KT + K~ < n+m+ 1. Moreover,
there exists po € £ such that Ma( -5 po) has n+m + 1 simple zeros in I\ {0}.

Since x(m,0; p,e) = 0 for all e, note that M;(0; ) = 0 for all ¢ > 1 but we stress that the
zero p = 0 is not counted in the previous result. That being said, in order to be consistent with
the above-mentioned papers on Abel differential equations, we do count this zero limit cycle in
our next main result. Before giving its statement let us mention that in what follows we shall
call M; the Melnikov function of ith order for the perturbed differential equation (3). These
functions are clearly analytic on I and, by applying the Weierstrass preparation theorem, the
number of zeros (multiplicities taken into account) of the first nonidentically zero Melnikov
function gives an upper bound for the number of roots of z(m, p; u,e) = p for e ~ 0. In other
words, it provides an upper bound for the number of limit cycles that bifurcate from the
continuum of periodic orbits of the unperturbed differential equation. In its turn a lower
bound is given by the number of simple zeros thanks to the implicit function theorem. In
short this is how the general lower bound of the Hilbert number that we give in our next
result follows from Theorem 1.1.

Theorem 1.2. The Hilbert number for the Abel differential equation (2) with p = 3 and
q = 2 verifies
H3a(n,m) > 2(n+m)—1,

where n,m > 1 are, respectively, the degrees of the trigonometric polynomials A and B.
Moreover, H32(1,3) > 8 and H32(4,1) > 10.

As we explained above, the general lower bound in the first assertion follows by the Mel-
nikov theory. (The Melnikov theory for planar autonomous differential equations is equivalent
to the so-called averaging theory; see [9].) By contrast the second assertion, which improves
the bound by one limit cycle in two particular cases, follows by using Lyapunov constants. In
order to make this clear and to facilitate the reading of the paper, for the reader’s convenience
we prove the second assertion separately in an appendix, where we also introduce the basic
notions on Lyapunov constants.

There are two previous papers with results about the Hilbert number of Abel differential
equations that should be referred. Recall that the general lower bound in Theorem 1.2 is
obtained by a second order perturbation in e. The authors in [6] give lower bounds for
Hs2(1,m) and Hz2(n,1) by a first order perturbation. On the other hand, the authors in
[17] give a lower bound for H, 4(n,1) by a first order perturbation as well.

The paper is organized in the following way. In section 2 we study the perturbed differential
equation & = h(z)f(0) + H(0,x;e) and we give the expression of its first nonidentically zero
Melnikov function (Theorem 2.1). This is a rather general result that, we believe, could be
very useful in the development of further research on the issue. Next, in section 3, we recall
the notion of Chebyshev system and explain the related basic results. We also state a key
result from [17] that turns out to be very important for our purposes (Theorem 3.4). Section 4
is devoted to showing that the Melnikov function Ms for the perturbed differential equation
(3) belongs to an appropriate Chebyshev system (Proposition 4.4). The proofs of our two
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main results are given in section 5. Finally in the appendix we prove by using Lyapunov
constants that H32(1,3) > 8 and Hsz2(4,1) > 10 (Propositions A.2 and A.3, respectively),
which improve in these particular cases the general lower bound that we obtain by using the
Melnikov theory of second order. These two lower bounds also improve some previous ones
obtained using Lyapunov constants as well. Here we follow a new approach using first and
second order developments of the Lyapunov constants at some specific parameters having a
center. Finally we explain some numerical evidence in order to increase the lower bound given
in Theorem 1.2 for H32(1,4) and #H32(2,3) by using Lyapunov constants.

2. Melnikov functions. In this section we consider the perturbed differential equation

(© W @) 10) + HO,2:0),
where
e h is analytic on R,
e [ is a 2m-periodic analytic function with [ f(s)ds =0, and
e H is an analytic function on R xR x (—¢, €g), for some ¢ > 0, such that 6 — H (6, x;¢)
is 2m-periodic and H(#,x;0) = 0.

Given p € R, let x(, p;e) denote the solution of (6) such that x(—m, p;e) = p. (We shall
sometimes use the more compact notation x.(6,p) for the sake of brevity.) In this section
we assume that the unperturbed differential equation, i.e., (6) with ¢ = 0, has a stripe of
periodic orbits. More precisely, that there exists an open interval I of initial conditions such
that z(m, p; 0) = p for all p € I. Note that, due to H(0,2;0) = 0, a necessary condition for this
is that [7_ f(s)ds = 0. Under this assumption, a sufficient condition for the existence of such
an interval is that h vanishes at some point zg € R. This is precisely the setting that we have
for the perturbed differential equation (3), for which z¢o = 0 and, as we will see, I = (kp, +00),
where x, < 0 is given in (5).

By the analytic dependence of solutions with respect to initial conditions and parameters,
the solution z(0, p; €) is well-defined and analytic for all (0, p,e) € [—m, 7] X U, where U is an
open neighborhood of I x {0} in R%2. We can thus consider the Taylor series of z(7, p;€) at
e=0,

o0
a(m, pie) = p+ Y Mi(p)e',
i=1
where each M; is an analytic function on I. We aim to study the fixed points of p — z(m, p; &)
that persist for small € # 0 and to this end an explicit expression of the first M; # 0 is needed.

Our first result is addressed to this and in order to state it we introduce some more notation.
We write the Taylor series of the perturbation at ¢ = 0 as

H(0,z;¢) = Z 00, x)e".
i=1

We also use the differential operator
O, := h(x)0,
(k)

and denote @g’ﬁ = 0, 0---00,;. Furthermore we consider the incomplete exponential Bell
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polynomials By, (1,22, .., Tp—k+1), which can be defined recursively by means of
n—k+1 n—1
By = z; (z B 1>xi6n—i,k—17
1=

setting Boo =1, Bpo =0 for n > 1, and By, = 0 for k > 1 (see, for instance, [14, 27]).

Theorem 2.1. If My = My = -+ = My,_y = 0 then M, (p) = Zh(p)Ln(m,p) for all p € I
such that h(p) # 0, where the sequence {Ln}nezZl is defined recursively by means of

Ln(0,p) = ;T;'Z/ ( m))

Proof. For each (0, p) € [—m, ] x I, let the Taylor series of x(6, p;€) at ¢ = 0 be written

Bi,k’ (L1(57 p)? L2(S7 p)7 s 7Lifk+1(37 p))ds

z=z0(s,p)

as
00

z:(0, p) = z0(0,p) + Z Si(0, p)e’
i=1
Notice in particular that, by definition, M;(p) = Si(m, p).

Fix any pp € I such that h(pg) # 0. We claim that there exists § > 0 small enough such
that M,(p) = Lh(p)Ln(m,p) for all p € I with [p — po| < 6. Clearly, due to the arbitrariness
of pg, the result will follow once we prove this claim. With this aim in view note first that
if for a given p € I there exists 6* € [—m, 7] such that h(zo(6*, p)) = 0 then z((0, p) = p for
all @ € [—m,7]. Thus, if we denote by I the connect component of I\ {z € R : h(z) = 0}
that contains po, then h(zo(0,p)) # 0 for all (6,p) € [ — 7] x I. In other words, setting
I:={x0(0,p):0 € [—m,],pel}, wehave that 0 ¢ h(I). Accordingly, if

)= / CZ)

then G : I — G(I) is a well-defined diffeomorphism. One can readily verify that the coordinate
change y = G(z) brings the differential equation (6) to

dy

" 75 = [(O) + H (0. y:¢) with H(6,y:¢):= H(0,x;¢)

(iL') x:G*l(y).

For each p € G(I ) we denote by y. (6, p) the solution of (7) with initial condition y.(—, p) = p.
Due to (6, G~ (p)) € I, for each fixed p there exists &€ > 0 small enough such that

y=(0,p) = G (2-(0,G'(p))) for all § € [—m,m].

Consequently, by continuity, there exists 6 > 0 small enough such that if |p — po| + |e| < ¢
then

z:(0,p) = G (y=(0,G(p))) for all 6 € [, ).
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Clearly H is an analytic function in a neighborhood of any (6,y,¢) € [—,7] x G(I) x {0}
and so we can consider its Taylor series at ¢ = 0:
h(x)

(8) H(0,y:¢) = > 6:(0,y)e", where {;(0,y) =

z=G~1(y) .
Let us consider at this point the Taylor series of y-(0, p) at € = 0, say
9) ve(0,0) = v0(0,p) + > Si(6, p)e’
i=1

and set ]\Z(p) := S;(m, p), which is well-defined for any p € G(I) such that |G~1(p) — po| < 6.
Then, taking the derivative with respect to 6 on both sides of the above equality, from (7)
and (8) we get that

69§n(9,,0) = % 85n (Z 5iéi(9>ys(0ap))>

e=0
- %2;( ) Seror (Bo.m)|
= I3 (Mo (bon.m)]|
Accordingly .
10) 95,(0.0) = Y o (B 0.)| = 5 300 (B0i00.9:0.0) |
=1 =

By applying Faa di Bruno’s formula for the chain rule (see [14, 27]) we can assert that

0:(456,9-(0.0))) = Za (450,900, ))) Bise(9:9-(0. ). 024c(0. ). .. 07140, )
Thus, on account of 0, y5(0,p)|6:0 = k!5(0, p), we get
02 (43(6,4:(6.)))|

e=0

i

=) 9y (@(97 yo(0, p))) B;k (§1(9, 0),255(8,p), .., (i — k + )18 k11 (6, p)) .

k=0
Therefore, since S, (—, p) = 0, from (10) it follows that
(11)
S (6, p)
n—1

i 0
/ a;: (en—i(57 yO(Sa p)))B’L,k(Sl(Sa p)7 2‘92(87 p)7 ERE (7’ —k+ 1)!S’L‘71€+1 (87 p)) ds.
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Recall now that z.(6,p) = G (y-(0,G(p))) = zo(0,p) + > o0y Si(0, p)e’ for all 6 € [—m, ]
provided that |p — po| + |¢| < 6. Hence, since (G™1)'(y) = h(G~'(y)) by definition,

Ma(p) = 5000, 9oy = -0 (G (4:(6, G p))

e=0,0=m

= %aen_l ((G71) (406, G (9))) 0-4:(0. G )

e=0,0=m

= 20 (W00, ))0-:0.G(0)))

e=0,0=m

_ % (" ) 1) 011 ({210, 9)) )05 (420, G (o))
k=0

n—1 .
_ %km( ) 1) o1 F (n(aat0.0)))|

where in the last equality we use (11) and ]\Z(,o) = §i(ﬂ,p). UM =My=-=M,1=0
then only the term for kK = n — 1 remains and

e=0,0=m

s (b DI (GU0)),

~

M, (p) = h(p)Mn(G(p)) = h(p)Su(r,G(p))

for all p € (po— 9, po+9). Note that by arguing recursively we get the same equality assuming
My=My=--=M,_4=0.

It only remains to express Sy (6, p) in terms of the solution zo(6, p) of (6). To this end
notice that, on account of (G~1)(y) = h(G~'(y)) once again, from (8) we get

)
aykgi(e,y) eF <€i5((93:) ))

Accordingly, due to yo(6, p) = G (z0(6,G~'(p))), we can assert that

oy (@i(s,yo(s,p))> - @gf(&]g(ﬁ;;;))

Taking this into account and setting L;(6, p):= i!S;(6, G(p)) for all i € N, from (9) we obtain
Ln(0, p) = 1150 (6,G(p))

-3 uy [ler(5)

and, hence, M, (p) = h(p)S,(r,G(p)) = 2h(p)Ln(m, p) for all p € (po —d, po+6). This proves
the claim and concludes the proof of the result. [ ]

Note that if we take p € I such that h(p) = 0 then zo(0,p) = p for all 6. It happens
then that the function L, (6, p) is not well-defined at p = p due to the denominator h(x(s, p))

2=G-1(y)

w=w0 (5,01 (p))

Bi,k (L1(87 p)7 L2(57 p)7 s 7L’L'fk+1 (Sa p))dS

z=x0(s,p)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/20 to 156.62.3.11. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

2352 J. HUANG, J. TORREGROSA, AND J. VILLADELPRAT

in its integrand. However, since M, is continuous (in fact analytic) at p = p, the limit of
h(p) Ly (7, p) as p tends to p exists and is equal to n!M,,(p). Thus the singularity of h(p) Ly, (7, p)
at p = p is removable. Our next result shows this for the perturbation associated with the
differential equation (3), for which we have p = 0. In its statement recall that , is given in

(5).
Remark 2.2. For the reader’s convenience we give the first terms in the recurrence of The-
orem 2.1. Since Bog =1, B1g = Bao = 0, B11(x1) = 21, Bo1 (71, 79) = 79, and Baao(x1) = 22,

£(6,0) = /9 Elh(< >) o
moep =2 [ (5o (e ) )|
i
= (181 204 0
co (7 e+ 0 (55D wear)| e

Corollary 2.3. Following the previous notation, for the differential equation (3) we have

p
(0, p; 0) = —
(14 pp=1(p — 1)(1 + cos 6))/# Y

so that x(m, p;0) = p for all p € I = (kp,+00). Moreover
Mi(p)=p" [ (P1(0) + Q1(0)zo(0,p)?7") db

and if Mi(p) =0 then

™

My(p) = 0% | (Pa(6) + Qa(6)0(8: )" + (a = D)Qu(O)S (6, p)o (0, p)* ") 6

—T
where

0
S(0,p) = / (Pu(s) + Qu(s)zo(s, p)1P) ds.

—T

Proof. The statement concerning the unperturbed equation follows from an easy compu-
tation. The second part follows by Theorem 2.1 particularizing the expressions given in Re-
mark 2.2 for the case f(0) = sin@, h(z) = 2P, and ¢;(0,x) = P;(0)2? +Q;(0)z? fori =1,2. W
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3. Extended complete Chebyshev (ECT)-systems. We begin this section by recalling
some properties about Chebyshev systems, then we extend some results in [17]. All of them
will be necessary in order to prove our main results.

Definition 3.1. Let fo, fi,..., fn be analytic functions on an open interval I C R. The
ordered set (fo, f1,- .-, fn) is an ECT-system on I if for each k = 0,1,2,...,n every nontrivial
linear combination

o fo(z) + arfi(z) + - + ap fr ()

has at most k isolated zeros on I counted with multiplicities.

Definition 3.2. Let fo, f1,-.., fx be analytic functions on an open interval I C R. Then
folx) o frl@)

: folw) - i)
W (for s fil () = det (17 (0) gy s = D ’

F@ e (@)
is the Wronskian of (fo, f1,...,fx) at x € I.

The following is a well-known result (see, for instance, [28, 32]) that enables us to charac-
terize Chebyshev systems in terms of Wronskians.

Lemma 3.3. (fo, f1,..., fn) is an ECT-system on an open interval I C R if and only if,
for each k=0,1,2,...,n,

Wfo, fi,---, fx](x) # 0 for all x € 1.

To study the zeros of the Melnikov functions in Corollary 2.3 we will apply [17, Theorem
AJ, which we state next for the reader’s convenience. In its statement g is an analytic function,
I, is the connected component of {y € R: 1 —yg() > 0 for all § € [-m, 7]} containing the
origin, and, for each k € Z>p and a € R,

™ k
(12) E,a(y) = / %de for all S [g-

Theorem 3.4. Consider a € R and n € Z>o. The following hold:
(a) If a & Z<o then (To,a, Tiar - - - s Tnya) s an ECT-system on I,.
(b) If a € Z<q then (To,a, Th,as- - > Tnya) is an ECT-system on I, if and only if n < —a.

The following technical lemmas extend some of the results in [17].

Lemma 35. If « € R and k € Z>q then (y°Tra(y)) = ay* ' Trat1(y) for ally € I, N
(0, +00).

Proof. This is an easy consequence of the following computation:

- k ™ k+1
" Tha ) = ay™™ /_ %da ! aya/_ %‘w = oy Thara(v).
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Lemma 3.6. If « € R\ Z<g and n € Z>( then
(@) (L,y*To,a(y),---,¥*Tna(y)) is an ECT-system on I, N (0, +00), and
(b) (L (=9)*To.a(y), -, (=4)*Tnaly)) is an ECT-system on I N (—00,0).

Proof. For the sake of shortness let us prove the first assertion only (the other one follows
in exactly the same way). We claim that, for each k =0,1,...,n,

WL,y T0.6(¥), - s ¥ Tra(¥)] = (@ D" W [Toas1, Tiatts s Thatt) (¥)

for all y € I,M(0,400). Notice that, by applying Lemma 3.3 and Theorem 3.4, the result will
follow once we show the claim. To this end a computation shows that

WLy To.a®)s - ¥ Tea@®)] =W [(¥*T0.0a®)) s - - -, *Tra(v))']
=W [0y " To.at1(®), - 0y a1 (@)] = (e " W [Toatts - - Thart) (),

where the second equality follows by applying Lemma 3.5 and the third one by the so-called
Hesse—Christoffel’s identity (see [30, 34] for instance). This proves the validity of the claim
and hence the result follows. |

4. Melnikov functions for the differential equation (3). Recall that Corollary 2.3 pro-
vides an expression of My assuming that M; = 0. Our goal in this section is to write it as a
linear combination of functions belonging to an ECT-system. This will be done in Proposi-
tion 4.4. With this aim in view we first particularize the integrals 7 , defined in (12) with
a specific choice of function g and parameter « that is very related to the solution of the
unperturbed system. In order to stress this, and for the reader’s convenience, we introduce
the following additional notation

™ k
g”(0) . q—p
1 Ti(y)= [ —I 2 h =—(p-1(1 .
(13) k(y) /7T (1—yg(9))0‘d9 with g(6) (p—1)(1+ cosf) and « p—
Related to this we also define
(14) Culy):= / cos(kd) _do.

T (I+yp -1+ cos@))fﬁ

As will be clear in a moment, these integrals constitute the building blocks for the Melnikov
functions of the perturbed differential equation (3). In what follows recall that k, is given

in (5).

Proposition 4.1. (1, pTPTo(pP~ 1), ... ,pq_pl'n(pp_l)) is an ECT-system on the open inter-
vals (kp,0) and (0,400) for every n € Z>o. In addition the following equality between linear
spans holds:

(L o7 PTo (P, PP T (P = (1,07 PCo (0P, p1 P (7)),

Proof. Note (see (12) and (13)), that Zy(y) is Ti(y) particularized with g¢(f) =

n
—(p—1)(14cosf) and o = &=£. One can readily see that in this case the connected component

=
of
{yeR:1—yg(d) >0forall b€ |-mn]}
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containing the origin turns out to be I, = (2(17—_11), +00). Moreover, since g%’f € (—1,400)\{0}
due to p,q € Z>2 with p # ¢, we have that & € R\ Z<_;. Consequently, by applying
Lemma 3.6,

(i) (1,y°Zo(y),-..,y*Zn(y)) is an ECT-system on (0, +oc), and

(i) (1, (=v)*Zo(y),--.,(~y)*Zy(y)) is an ECT-system on (2(;—_11), 0).
Next we make the substitution y = pP~!. This formally corresponds to composing each
function with p + pP~1, which restricted to (—00,0) and (0, +0c0) is a diffeomorphism. In the
first case we get that

(15) (17 pq—pzo(pp—l)7 s ’pq—pl'n(pp—1>)

is an ECT-system on (0, +00) for every p and that it is an ECT-system on (—o00,0) in the
case that p is odd. In the second case we obtain that

(L (=p) " PZo(p" 1), .., (=) PLa(pP )

1
is an ECT-system on (—(2(p — 1)) #-1,0) if p is even. On account of the fact that (—1)977
1
is constant this implies that (15) is an ECT-system on (—(2(p — 1)) »=1,0) if p is even.
Accordingly, on account of the definition of x, given in (5), we have so far proved the validity
of the first assertion in the statement.

Finally, the assertion concerning the linear spans follows by noting that if we define Ej:=
(1,cos6,...,cos(kf)) then dim(Ey) = k+ 1 and

Ey, = (1,cos0,...,cos*0) = (1,9(6),...,q"(H)).

To get the first equality one can use that cos(kf) = Tj(cos@), where T} is the Chebyshev
polynomial of the first kind and degree k. This proves the result. |

The next result provides a more explicit expression of the Melnikov functions M; and M
for (3). In its statement we point out that a, bk, cik, and d;; are the coefficients of the
trigonometric polynomials in the perturbation and Cj, is the function defined in (14).

Proposition 4.2. The following holds for the perturbed differential equation (3).

(a) The first Melnikov function is given by Mi(p) = 2mbiop? + > pe d1xp?Ch (pp’l). More-

over, My =0 if and only if bjgp = d19p =+ = d1;n = 0.
(b) If M1 = 0 then the second Melnikov function is given by Ma(p) = Moi(p) +
(¢ — )P Mas(p), where

Mgl(p) = 2mwbygp? + Zkoquk(pp_l)
k=0

and

Mas(p):= Z bl’;:u/ sin(k6) sin(10)xo(6, p)7~tdb.
1<k<n -
1<1<m
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Proof. By applying Corollary 2.3, we get that the first Melnikov function is written as

Mi(p) = 27biop” + Y _ dux / cos(k0)zo(0, p)? P dO = 2mbiop” + > _ durp™Ch(pP1),
k=0 - k=0
where in the first equality we use that the solution z (0, p) of the unperturbed equation is even
in 6, whereas in the second one we take (14) into account. Then the second assertion in (a)
follows by Proposition 4.1, which shows that the ordered set (p?, p?Co(pP™1),..., piCu(pP™1))
is an ECT-system on (kp,0) and (0, 400).
Let us turn next to the proof of (b). If M; = 0 then, by Corollary 2.3 again, the second

Melnikov function is written as
s

Ma(p) = p [ (Pl6) + Qa(0)20(6. )7 + (4 = P)Qu(O)S(6. p)a (8, p)'~") b,

where

0
S(6, p) = / (Pu(s) + Qu(s)zo(s, p)?~P) ds.

—T

That the first summand in M is written as pP [T (P2(0) + Q2(0)xo(0,p)7P) df = Mai(p)
can be shown exactly as we did in (a). With regard to the second summand note that, on
account of (a),

Pi(0) = (argsin(kf) + by cos(k0)) and Q1(6) =Y _ ey sin(16).
k=1 =1

Thus, Q1(6)xo(6,p)? ! and f_97r Q1(s)zo(s, p)? Pds are odd and even functions in 6, respec-
tively. Hence the second summand in My is written as

T T %
QOO0 a0 = [~ Qu0)aato. o ([ Picssas) a

—T —T —T

_ﬂ Q1(0)zo(6, p)? ™! <Z %’“ sin(k9)> do

k=1

3 bl,;:u / sin(k6) sin(10)z(6, p)?~1do,
1<k<n -
1<i<m

which is equal to Maa(p). This completes the proof. [ |

As is clear from the previous result, the function Si; that we introduce in the next state-
ment is a building block of the second Melnikov function.

Proposition 4.3. For each r € Z>q, define B,:= (p?PCo(p*~"), ..., p7PC,(pP~1)). Then

Ski(p):= /F sin(k6) sin(10)xo(0, p)~ ' db

—T

belongs to Bj4i—1 for all k,l € Z>1. Furthermore,

Brsi-1=(pTPCo(PP71), .. pTPC(PP), Sk2(p), - - - Swi(p))
forall k>0 and l > 2.
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Proof. In order to prove the first assertion we can suppose without loss of generality that
k > 1. Tt is well known that cos(if) = T;(cos ) and sin((i + 1)0) = sin OU;(cos ), where T; and
U; are the ith degree Chebyshev polynomials of the first and second kind, respectively. (The
reader is referred to [35] for the formulas relating the Chebyshev polynomials that we shall
use hereafter.) Thus

Ski(p) = / Uy_1(cos 0)U;_1(cos 0) sin® 0 (6, p)T'db
(16) T
= — (Uk_l(cos 0)U;_1(cos @) sin G)Imo(ﬁ,p)q_pdﬂ,

b—=—q/)-x
where the second equality follows using that (6, p) is the solution of the unperturbed differ-
ential equation (3) to perform an integration by parts. Since

-1
Up1(2)Ui-1(x) = ) Up-i42,(x)
r=0

and, thanks to (22 — 1)U.(z) = (r + 1)T41(x) — 2U,(2),
(Ur(cos ) sin®) = (r + 1)1 (cos 0) = (r + 1) cos((r + 1)8),
we get that
ketl—1

(Uk_l(cose)Ul_l(cosﬁ)sin@)/: Z rcos(rf).

r=k—I+1
step 2

On account of (14), the substitution of this identity in (16) yields

pq,p k+1-1
(17) Ski(p) = — Z rCr(pP ).
p=q r=k—I+1
step 2

Accordingly the first assertion is true. With regard to the second one, it suffices to show that

P PChir (PP71) € (pT7PCo(pP1), .o, pTPCK(PPY), Sk (), - - -, Skl(p))

for all » = 1,2,...,1 — 1, which can be proved by induction on r taking (17) into account
again. This completes the proof of the result. [ |

In what follows we will need to further emphasize the dependence of the Melnikov functions
on the perturbative parameters. For this reason we use the notation u = (a,b,c,d) as
introduced in (4), so that p € R*™*™+1) and we denote the ith order Melnikov function
associated with the perturbed differential equation given in (3) by M;(p; p).

Proposition 4.4. Setting £ = { € R**m+0) - My (p: ) = 0 for all p € I}, there eists a
surjective map B : L — R FL such that

n+m—1

My(pip) = Br(p)p” + p7 Y B () Ti(p" ).

k=0
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Proof. We claim that there exists a surjective map B ¢ — R+ guch that

n+m—1

Ma(psp) = Br(1)p” +p7 Y Braa()Crl(p” ™).

k=0

The result will follow once we prove this because, by Proposition 4.1, we know that the
linear spans (1, p? PZo(pP~ 1), ..., p? P (pP~ 1)) and (1, p7 PCo(pP~ L), ..., p7 PCr(pP~ 1)) are
equal and have dimension k + 2 for all k¥ € Z>¢. In order to prove the claim let us fix any
uw=(a,b,c,d) € Z. Then, by applying Proposition 4.2,

“ _ bixc
(18) My(p; p) = 2mbaop” + > dop™Ch(p” ™) + (a — )PP Y | ”;C LSu(p).
k=0 1<k<n
1<i<m

By the first assertion in Proposition 4.3, for all k =1,2,...,nand [l =1,2,...,m,

Su(p) € (pT7PCo(p"1), .., pU PCrgm—1(PP71)).

On account of (18), this shows that Ma(p; i) € (pF, p?Co(p* "), ..., p?Cpim—1(pP~")), which
has dimension n 4+ m + 1 by Proposition 4.1. Hence there exists a unique B = B (n) € RHm+L

such that
n+m—1

My(pip) = Bip?” +p7 > BreaCrlp? ).

k=0

It only remains to be proved that B . ¥ — R+ g a surjective map. To this end it
suffices to verify that R"™™*! = (¥ N &), where

P ={uce RAHMAD =0, ¢ = 0, fori=1,...,m—1, and ¢y, = 1}.

Indeed, if p € £ N & then from (18) we get that

& b
My (p; i) = 2mbaop” + D dowp?Cr(p"™) + (¢ — p)p” Z = Skm(p)
k=0

Hence the inclusion R**™+1 ¢ 3 (ZN2) follows from the second assertion in Proposition 4.3.
Since the other inclusion is clear, this proves the validity of the claim and so the result
follows. |

5. Proof of the main results. This section is devoted to proving Theorems 1.1 and 1.2.
Let us advance that in order to complete the proof of the latter we will need some additional
results that for the sake of simplicity in the exposition we gather in the appendix.

Proof of Theorem 1.1. The fact that Mi(-;u) = 0if and only if bjg =digp =+ =dim =0
follows from (a) in Proposition 4.2. By applying Proposition 4.4, there exists a surjective
map S such that if u € £ then

n+m—1
(19)  Ma(p; ) = pPMa(p; ) with Ma(p; )= B () + p? " Z Breya ()T ("),
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It is clear that M5 and the rescaled ]\ng have the same number of positive and negative zeros
counted with multiplicities. For the sake of convenience we also define

n+m—1

N(p;p):=p"* Z B2 ()T (PP 1)

Recall (see (12) and (13)), that Zx(y) is equal to Tj(y) particularized with g(¢) =
—(p — 1)(1 4+ cosf) and a = Z=£. By abusing notation, in what follows we will write
Zi(y) = Tialy) for simplicity. Taking this into account, by applying Lemma 3.5, we get

that the derivative of N is

n+m—1

(20) N'(pin) = (q=p)p" " D Bera(i)Thar1 ().

k=0

In addition, the application of Theorem 3.4 to these Ty o and T, o1 easily shows the following:

Claim 1: N has at most n +m — 1 zeros in (kp, 0) counted with multiplicities. The same
is true in the interval (0, +00).

Claim 2: N’ has at most n +m — 1 zeros in (kp,0) counted with multiplicities. The same
is true in the interval (0, +00).

Claim 3: In the case that p is even, N has at most n +m — 1 zeros in (kp, +00) \ {0}
counted with multiplicities. The same is true for N'.

Above we have omitted the dependence on p for the sake of shortness. We will also do it
in what follows when there is no risk of confusion. Let us prove next each one of the assertions
in the statement of the result:

(a) From (19), by applying Proposition 4.1, we get that K* < n +m. In addition, thanks

to the surjectivity of 8, we can assert that there exists po € RA(+m+1) guch that
Mg(p, o) has exactly n+m positive simple zeros. Since Mg(p o) is an even function
in p in the case that p and ¢ are odd, we can conclude that it has the same number of
negative simple zeros.

(b) Exactly as before, K + < n+m. We prove by contradiction that the equalities cannot

hold simultaneously. So suppose that My has n + m positive zeros, say 0 < pf <

- < p:;rm, and n + m negative zeros, say 0 > —p; > .-+ > —p,_ ., counted with
multiplicities. Note that N(p) is an odd function because ¢ — p is odd and p — 1 is
even. Therefore

(21) N(p}) = M(p}) — B1 = —p1 and N(p;) = —Ms(—p; ) + B1 = B

for all 4,5 € {1,2,...,n 4+ m}. This shows in particular that 5, # 0 (otherwise we get
a contradiction with Claim 1), which in turn implies that p;” # p; for all i and j.
On the other hand, N’ = ]\~4’ has n +m — 1 positive zeros, say 0 < of < .-+ <
Qn+m Landn+m—1 negatlve zeros, say 0 > —oy > -+ > —g_. ., counted with
multiplicities, satisfying Ql [pl ) 05 +1] for all ¢. Since N’ is even, taking Claim 2 into
account we can assert that gl = p; for all i. In particular

(22) [ ] O o7 s piy] # 0 for all .
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For each ¢ = 1,2,...,n + m, let J; be the open interval with endpoints pj‘ and p; .
Then, on account of (22), it is easy to show that Jy,Ja, ..., Jytm are pairwise non-
intersecting. Since, due to (21), each J; contains at least one zero of N, this contradicts
Claim 1. Accordingly, either KT < n+m or K~ < n + m.

(i) By Theorem 3.4, we have that

(P PTo(p ), 0 PT(P),  Tpmea (77)

is an ECT-system on (0, +-00). Thus there exist 33,..., 3} ,,,1 € R such that

the function
n+m—1

pr— TP > BroTe(pP )
k=0
has n +m — 1 positive simple zeros and n +m — 1 negative simple zeros. Here
we use that the above function is odd due to the parity assumption on p and
q. For the same reason, p = 0 is a zero with odd multiplicity. Hence, taking
B7 = 0, the function

n+m—1

pr— BT Y BioTu(pP )

k=0

has 2(n + m) — 1 simple zeros on (kp,+00) \ {0}. We use at this point
the surjectivity of pu +— (B(u) to choose some pug € £ such that B(ug) =
(BT, 85, -, B me1). Then by construction (see (19)), Ma(p; po) has 2(n +
m) — 1 simple zeros on (k,, +00) \ {0}.

(ii) Exactly the same argument as before, but choosing f; = 0 guarantees the
existence of pg € Z such that Ma(p;po) has 2(n +m — 1) simple zeros on

(p, +00) \ {0}.

(c) Let pf <--- < p;rﬁ and p; < -+ < p._ be the zeros of ]\Nb(p; w) on (0,+00) and

(kp,0), respectively. Then M) = N’ has at least K™ — 1 zeros on [p], +00) and at
least K~ — 1 zeros on (kp, p; |, counted with multiplicities. Since p is even, it is clear

(cf. (20)), that
n+m—1

Ewim)= > Brya()Trat1(y)
k=0

has at least K — 1 zeros on [(pf)pfl, —I—oo) and at least K~ — 1 zeros on the interval
(2(;—}1), (p7)P~1], counted with multiplicities. (Here we use that b ' = 2(;—51)) By
Theorem 3.4,

(76,&—&-17 7—1,a+17 oo 77;7,+m—1,a+1)

is an ECT-system on (2(;—_11), +00). Hence € can have at most n+m — 1 zeros counted

with multiplicities in this interval. If £(0) = 0 then &£ has at least K™ + K~ — 1
zeros counted with multiplicites in this interval. Consequently K T+ K- <n+m.
If £(0) # 0 then the multiplicity of M} = N’ at p = 0 is exactly ¢ — p — 1, which is
an even number by assumption. On account of this, and the fact that Mg(pli) =0
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(d)

with p] <0 < pi‘, one can easily conclude the existence of a zero of J\Zfé = N’ on
(p1,p7) \ {0}. Thus N’ has at least n +m — 1 zeros on (k,, +00) \ {0} counted with
multiplicities. By Claim 3 we get the upper bound K™ + K~ < n + m also in this
case.

Exactly as we did in the previous cases, Proposition 4.1 and the surjectivity of yu —
B(u) ensure the existence of some pg € £ such that Ma(-; p9) has n+m simple zeros
in, for instance, the interval (0, 400).

The number of zeros of N’ = ]\N@ on (kp,+00) \ {0} counted with multiplicities is
at least K™ + K~ — 2. Then, by Claim 3 again, we get K™ + K~ < n+m + 1.
In order to prove that this upper bound is sharp we will use that, by Theorem 3.4,
(ZO,Il, .. ,In+m,1) is an ECT-system on (2(;—}1), +00) and we consider two cases:
Case 1: g even and p < q. We take 33,...,08;,,,,,1 € R such that

n+m-—1

(23) Fp)i= > BiraTulp")
k=0

vanishes at 0 < p; < p2 < -+ < pPpym—1 With multiplicity one and satisfies F(0) # 0.
Thus p? PF(p) has a zero at p = 0 of multiplicity ¢ — p, which is an even number,
and vanishes with multiplicity one at p;, ¢ = 1,2,...,n+ m — 1. Consequently we
can choose ] small enough such that g7 + p?~PF(p) has n +m — 1 simple zeros near
p1 < p2 < -+ < Pptm—1, together with one positive and one negative zero near p = 0,
both being simple as well. Now, as we did before, we use the surjectivity of p —— ()
to choose some pg € £ such that 8(uo) = (87, 55, .-, Bh4my1)- Then by construction
(see (19)), Ma(p; o) has n 4+ m + 1 simple zeros on (kp, +00) \ {0} as desired.
Case 2: p > ¢. In this case we choose 33,..., 05, ,,,1 € R such that

n+m—1

Z B2 Lr(y)
k=0

has exactly n +m — 1 simple zeros in (2(;—}”, +00), one of them being y = 0 and the
other ones positive. Thus the function F(p) in (23) has exactly n + m — 2 positive
simple zeros, say ps < p3 < -+ < Pntm—1, and there exists an analytic function 7 such

that
n+m—1

Flp) =Y BiyaZi(") =nlp)pP~" with n(0) # 0.
k=0

Let us suppose, without loss of generality, that (0) > 0. Then, since p is even, there
exists p € (0, p2) such that pF(p) > 0 for all p € (—p,p) \ {0}. Let us define at this
point R
My (p; B1,0):=n(p)p"~" + Brp”~ 1+ oZTo(pP )
and split the proof into two subcases depending on the parity of q.
Subcase 2a: ¢ odd. In this case My(p; 81,0) = pP~4 (n(p)p?t + B1) with p—gq
odd and ¢ — 1 > 0 even. Hence, by continuity, there exist small enough 5 < 0 and
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p € (0, p) such that Ma(p; 87, 0) has n+m—2 positive simple zeros near pa, . . . , ppym—1
and, moreover,

My (—p; B7,0) < 0, Ma(—p3 B}, 0) > 0, Ma(p; B;,0) < 0, Ma(p; 55, 0) > 0.

Note also (see (13)), that Zo(pP~1) > 0 for all p. Thus, by continuity, we can take
o* > 0 small enough, such that My(p; 87, ") still has n +m — 2 positive simple zeros
near p2,. .., Pn+m—1 and also verifies My (0; 87, 0*) > 0, together with

My(—p; B5,0%) < 0, Ma(—p; 55, 0*) > 0, Ma(p; 85, 0%) < 0, Ma(p; BF, %) > 0.

Therefore My(p; 3F,0*) vanishes at least once in each interval (—p, —p), (0,75), and
(5,p). So the total number of zeros of My (p; BF,0*) on (Kp,400) \ {0} is at least
n+m + 1. On account of the surjectivity of 8 : .Z — R+ we can take yg € &
such that

Blpo) = (B1, B2 + 0% B35+ Bpm—1)-

Hence, by construction, Ma(p; po) = quQ(p; Bi,0%) has at least n +m + 1 zeros on
(Kp, +00) \ {0}. Finally, since we have already proved that K+ + K~ < n+m + 1,
these zeros must be simple, as desired.

Subcase 2b: ¢ even. In this case Ma(p; B1,0) = pP—4 (n(p)p? '+ B1) with p—q
even and ¢ —1 > 0 odd. Then, by continuity, we can take small enough g7 < 0 and
p € (0, p) such that Ma(p; 8%, 0) has n+m—2 positive simple zeros near pa, . . . , pppm—1
and R R ~

Ms(p; B1,0) > 0, Ma(—p; B1,0) <0, Ma(p; Br,0) <0.
Due to Zo(pP~!) > 0 for all p, taking o* > 0 small enough, ]\A42(p; B7,0*) still has
n + m — 2 positive simple zeros near pa, ..., pp+m—1 and, additionally,

Ma(p; B5,0%) > 0, My(—p; 55,0%) <0, Ma(p; Bf,0%) < 0, My(0;Bf,0%) > 0.

Thus My(p; 3F,0*) vanishes at least once in each interval (—p,0), (0,7), and (5, 5).
Exactly as we did in the previous subcase, there exists po € £ such that Ma(p; po) =
pIMs(p; B, 0%) has exactly n +m + 1 simple zeros on (k,, +00) \ {0}. [ ]

Remark 5.1. If we only consider K+ in Theorem 1.1, then by (19) and Proposition 4.1,
KT <n+m always holds and the upper bound can be achieved.

Proof of Theorem 1.2. Taking p = 3 and ¢ = 2, from point (ii) in assertion (b) of The-
orem 1.1 we know that there exists pg € R*™ ™D with M;(p; o) = 0 for all p € I and
such that Mas(p; o) has 2(n +m — 1) simple zeros in I \ {0}. Hence, due to x(7, p; o, ) =
p + 2 Ms(p; o) + o(e?), by applying the implicit function theorem we can assert that p
x(7, p; po, €) has at least 2(n+m—1) fixed points in I\ {0} for all € ~ 0. Since z (7, 0; pg, &) = 0
for all €, the first assertion follows. With regard to the second assertion, the bound Hz2(1,3) >
8 is proved in Proposition A.2, whereas #H32(4,1) > 10 is proved in Proposition A.3. [ ]

Appendix A. Improvements using Lyapunov constants. Our goal in this appendix is to
use Lyapunov constants in order to improve the general lower bound H3 2(n, m) > 2(n+m)—1
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in the case that (n,m) € {(1,3),(4,1)}. At the end we shall discuss the difficulties we have
found to tackle two other particular cases using the same approach.

In the last two decades, there have been several works about the Hilbert number #Hs 2(n, m).
Unfortunately the problem is far from being solved even for the case n = m = 1. We gather
in the following theorem the main results obtained in [6].

Theorem A.1. For any nonnegative integers n and m, we have Hz 2(n,0) = H32(0,m) = 2,
Hsa(n,1) > n+2, and Hz2(1,m) > 2m + 1. Moreover, H32(3,1) > 7 and H32(2,2) > 7.

As it occurs with our proof of Theorem 1.2, the general lower bounds in the above result
follow by using Melnikov functions, whereas the improvements for the particular cases follow
by means of Lyapunov constants, that enable us to study those limit cycles bifurcating from
p = 0. With this aim let us consider the differential equation # = A(#)z>® + B(#)2z? and write
its trigonometric polynomials as

(24) A(0) =bo+ > _ (axsin(k0) + by, cos(k0)) and B(0) = do+ Y _ (cx sin(k0) + d cos(kf)).
k=1 k=1

If (0, p) denotes the solution with initial condition z(0, p) = p then the hyperbolic limit cycles
near p = 0 can be viewed as simple zeros of the displacement map

(25) a(p)= 2ETD =P ZX ;.

The coeflicients X; of the Taylor development of A at p = 0 are polynomial on ay, b, ci, dj,
and the first X; which is not identically zero is called the jth order Lyapunov constant of the
corresponding Abel equation. Usually the Lyapunov constants appear in the context of planar
polynomial vector fields when studying the stability of equilibrium points of monodromic type.
They are polynomial in the coefficients of the vector field when we restrict the analysis to the
trace zero class and typically they are computed writing the planar differential equation in
polar coordinates; see [11]. In fact, (1) is the third degree truncation of this type of equation
and the zero trace class here is reduced to C' = 0, which is precisely the equation that we are
analyzing. Hence, the standard Lyapunov scheme applies, so that the Lyapunov constants
that we obtain are polynomials in the coefficients of A and B. As in the standard scheme here
we consider the transition map from 6 = 0 to 6 = 27. Only a constant translation 6 — 6 — 7
is needed to obtain the transition from § = —7 to § = 7. Clearly, the number of limit cycles
does not depend on this initial angle. Moreover, the Lyapunov constants are always defined
modulus the vanishing of all the previous ones, i.e., X;:= Xj|x,—..— ;_1=0- For simplicity, by
abusing notation we keep the same symbol to denote them. As is usual, we say that p = 0is a
weak focus of order k if X}, # 0 and X; =0 for j = 2,...,k — 1. Moreover, we say that p =0
is a center if all the solutions in a neighborhood of p = 0 are periodic, i.e., A(p) = 0. This
theory was initially developed for planar ordinary differential systems having an equilibrium
point of center-focus type (see [7]) but, writing in polar coordinates, both are equivalent. We
point out that here, contrary to what happens in the standard planar scheme, the coefficients
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with an even subindex do not vanish identically. The bifurcation phenomenon is known as
the degenerated Hopf bifurcation. In our context, since we have that X; = 0, one limit cycle
is always missing when we perturb a weak focus or a center. Note that if by and dj in (24)
are all zero then the equation & = A()z® + B(#)z? is invariant by the change 6 — — and,
consequently, it has a reversible center at the origin, so that all X; vanish. Therefore, when
b= (by,...,b,) and d = (do,...,dy,) are nonzero parameters, we can write the truncated first
order Taylor series of X; at (b,d) = (0,0) as

(26) X} = Z fik(a,c)by + Zgj7k(a70)dk for all j > 2,
k=0 k=0
where a = (a1,...,a,) and ¢ = (c1,...,¢n). We remark that the above expression has no

constant term because the return map is identically zero when b = d = 0 for every a and c.
Here we will use the ideas developed in [21] to work only with these linear developments in
order to increase the number of limit cycles of small amplitude for families of centers. In
[22] it is proved that these linear developments can also be obtained by computing the Taylor
series at p = 0 of the first Melnikov function M; as introduced in section 2.

In the next two propositions, since we treat the cases n = 1 and m = 1, we can follow
similarly as with the perturbed problem (3), taking the coefficients of sinf and cosf to be
1 and 0, respectively, since we can rescale x and do a translation in 6 if necessary. In the
proofs we will see that we are using all the other free parameters. This also shows that the
weak-focus order is maximal in the considered families.

Proposition A.2. Let us consider the Abel differential equation & = A(0)x> + B()x? taking
the trigonometric polynomials A and B as introduced in (24) with (n,m) = (1,3) and (a1,b1) =
(1,0). Then there exist parameters (bo,c,d) such that the origin is a weak focus of order 9
unfolding 7 nonzero limit cycles of small amplitude. Consequently Hz2(1,3) > 8.

Proof. In this case it turns out that all the Lyapunov constants that we need in order
to prove the result are linear with respect to (bo, do,d1,d2, ds), so that X; = le. The proof
follows by finding a transversal intersection point on the zero level set of X5, ..., Xg in which
Xy is nonvanishing. Then 7 nonzero limit cycles of small amplitude bifurcate from the origin
and p = 0 is still a hyperbolic solution that remains. The complete expressions are quite large
and we only show the first ones:

X2 - d07
X3 = bo,
X, =274,

X5 =1271(=3¢; + c3)dy — 127 cads,

X =16 (3c1co — 2)do + 3271 (4¢3 4 3)ds3,

X7 = 43271(=1674¢} — 1620c3 ¢y — 504cics — 432¢1¢3 + 162¢1cacs + 150c1 5 + 225¢3¢3
+ 234coc3 + 64c3 — 864c) — 162co + T2c3)do + 86471 (648¢3 — 828cicy + 216¢3c3
— 1242¢1¢3 — 720c1cac3 — 369c3 — 414ches — 128cach + 144c1 — 360c2)ds.

(27)
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Clearly X, X3, X4, X5 have degree one with respect to by, dg, d1, d2. Then, when 3¢y —c3 # 0
we can write X; = u; for j = 2,...,5 and we get

fj—5(Cl7 C2, CS)

ds for j =6,7,8,9
3c1 —c3

Xj|u2="'=u5=0 =Y
with some nonvanishing rational numbers C; and

fi =12¢} — 4cdez — 3eich — cheg + 4eo,
fo = 216¢} + 96¢3cy — 5dcica — 36¢3¢acs — 24c3c3 — 2Tcics — 36c1cacs
+ 4010203 9(:203 6(:%0?5 + 48(:% + 72¢1c9 — 16c1c3 + 36(:% + 24coc3,
f3 = 18792¢] + 16128¢ o + 5832¢]c3 — 828c3ch — 6725 cacs — 1824c¢c3 — 4536¢% ¢
— 6156¢7c3c3 — 1344c3 cacs — T36¢3cs — 1197cic5 — 3024c1cyes — 1224¢1c5c3 + 224¢;coc
— 399c3c3 — 504c3c — 184cacs + 13248¢3 + 10068cicy — 1728¢3 c3 + 4752¢1¢5
+ 2688cicocy — 896(:103 + 160802 + 15840203 + 7800203 4 432¢1 + 1728¢o — 144cs,
f1 = 80352¢8 + 99252c3 ¢y + 48384c 5 + 26352¢] 3 4 26388¢]cacs + 14406103
—20034c3cs — 28800ci cacs — 79443 cach — 5376¢5cs — 14364c3cs — 30618c3cacs
— 15120¢3¢3¢2 — 1728¢3cac — 1152¢3 ¢ — 2646¢1¢5 — 9576¢1 cacs — 8235¢1 ¢33
— 1728c1c5¢3 + 480c cacs — 882¢5c3 — 1596¢5¢3 — 1104c5¢3 — 288¢3cs + 110538¢]
+101808¢} c2 + 164703 c3 + 33678¢1c3 + 13344ci cacs — 11934(3103 +11196¢1 63
+ 9369610203 + 4992010203 — 19460103 + 360002 + 37320203 + 29250203
+ 13280203 + 1728001 + 22698c1co — 4032¢1c3 + 1080002 + 6156¢c9c3 — 5760%.

For ds # 0, the solutions of the system of equations defined by {f; = fo = f3 = 0} are written

as
B3 pa(B) Bps(pB ))
126976 ° 31744 )’

ct = (ClaCQaCJ) <Bv

where 3 is a simple real zero of p(z) = 50625216 — 207900212 + 11264428 — 268802 + 4096,
that one can verify it has exactly 4 simple real zeros near +0.7796202641 and £1.369217569,

and
po(z) = 1771875212 — 74565002 + 46433402 — 842624,

p3(x) = 16875212 — 1773002° + 398508z — 18304.

The proof will follow once we check that f4, the denominator 3c; —c3, and the determinant
of the Jacobian matrix of (f1, fo, f3) with respect to ¢ = (¢1, ¢2, ¢3) are all different from zero
evaluated at ¢ = ¢*. Straightforward computations show that

fa(c*) = (15187552 + 36495003° — 21481803 + 184448) /1984 =: p4(B),
det Jac(s, 1, 15)(c*) = B(1728003'% + 8432644° — 5160963" + 65536) =: p5(B),
3¢1 — c3)e = —B(1687562 — 1773008° + 3985083 — 113536) /31744 =: pg(3).
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For ¢ = 4,5, 6, one can verify that the resultant between p;(z) and p(x) is different from zero.
Consequently this implies that p;(8) # 0 for i = 4,5, 6, as desired. This concludes the proof
of the result. H

Proposition A.3. Let us consider the Abel differential equation i = A(0)z>+ B(0)z? taking
the trigonometric polynomials A and B as introduced in (24) with (n,m) = (4,1) and (c1,d;) =
(1,0). Then there exist parameters (a,b,dy) such that the origin is a weak focus of order 11
unfolding 9 nonzero limit cycles of small amplitude. Consequently Hs2(4,1) > 10.

Proof. The proof follows similarly as in the previous result, but here we must use the
linear Taylor developments of some X; as we have previously explained. This is so because in
this case not all Lyapunov constants are of degree 1 in the parameters (bg, b1, ba, b3, ba, dp). For
simplicity we will write a = (a1, a2, a3, a4). Since the expressions of the Lyapunov constants
are very large, for the sake of shortness we only show the first ones:

Xo = do,

X3 = by,

Xy =271,
X5 =47 1by,

X = 4871((2a9 — aq — 6)b3 + azby),

X; =247 Y(—4a; + 6ag — 3ay — 18)b3 + 161 (—ag + 2a3 + 1)by,

Xg = 96071 ((—60a? + 240a1as — 120a1a4 + 13503 + 80asas — 15azay — 40azay
- 30(1421 — 1840a; + 57bay — 240as — 643a4 — 2610)b3 + (—45a1a2 + 120a;1a3
+ 75agaz + 40a3 + 30azay + 145a; — 420ay + 463a3 + 420)by).

The next necessary X, for k = 9,10, 11, have degree 3 in a3, a4 and we linearize them with
respect to as, as. As above, we start simplifying with the first that are linear, Xo, ..., X5, and
Xg, writing, when ag # 0, X = ug for k =2,...,6. Then, naming b3 = u7 we can write

C; .
(28)  Xjluy—mug=0 = X, + Oa(b3) = a—; fi—6(a) ur + Oz (uz) for j =7,8,9,10,11

with some C; nonvanishing rational numbers and

f1 = 8ajaz — 6a3 + 3azay + 24as — 3ay — 18,

fa = 60a2as — 90a1a2 + 45a1aza4 + 15a3a3 + 560a1az + 1120a1a3 — 145a;a4 — 840a3
— 99asa3 + 420asa4 — 870a1 4+ 3360as — 168as — 420a4 — 2520,

f3 = 750a%ay + 4800a%as — 375a3ay — 4680a1a3 + 1653a1aza3 + 2340a;azay + 11204, a’
+ 840aia3a4 — 1212@% — 480a%a3 — 24a%a4 — 98a2a§ + 420aqa3a4 + 315a2ai — 49a§a4
— 225003 + 23520a1ag + 13281a1a3 — 4740a a4 — 601203 + 984aza3 + T344aza4
+ 294a3 — 420azay — 315a3 — 28440a; + 39384as — 6552a3 — 7110as — 31320,

f1 = 3600a3as + 23040a3as — 1800asay — 34560ata3 + 11520a3azaz + 17280a3azay
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+ 7680ata3 + 5760a2azas — 17280a1a3 — 5760a;a3a3 — 1200a;aza3 + 5760a;1az2a3a4
+ 4320a1a9a% — 600a;a3ay + 3780a3a3 + 1920a3a3 + 1440a3asas — 225aza3a3
— 10800a? 4 323040a2ay + 579120a3a3 — 109680atay — 426816a1a3 + 235856a;azas
+ 293088a;azay + 144720a;1a3 + 88064aazay — 13920a1a5 — 14764843 — 101144a3a3
— 6144a3ay — 26784azaj + 43416asazay + 39984aza] + 81643 — 7056a3a4 + 1523aza;
— 65808042 + 2311584a1ay + 446352a1a3 — 521328a1a4 — 556843 + 221676azas3
+ 544128aga4 + 2083243 — 69048aza4 — 39984a3 — 2626848a; + 18812164,
— 625176a3 — 507744a4 — 1607040,

f5 = 720000a3as + 2386800a3as — 360000a5ay — 2438640a7a3 + 1869360a3asas
+ 135432003 agas + 1147200a%a3 + 772080atazas — 67500a3as — 1621440a; a3
— 526920a;a3a3 — 28800a1a3a4 + 266160a1a2a3 + 855540a1azazay + 419760a;aza3
+ 147600a1a3 + 136320a1a2a4 + 92040a1aza3 — 221400a3 — 121080a3a3 — 107460a3ay
— 60240a3a3 + 58560a3azas + 46890a3a3 — 23520asa3 + 20340asa3ay + 64350aza3a’
+ 31095a2a; — 11760a3as — 8820a2a3 — 2160000a3 + 16558560a3as + 12839120a3as
— 502632003 a4 — 4939840a1a3 + 7959200a1azaz + 9117760a1azas + 35029604, a3
— 377600a2a2 + 1230980a1aza4 — 848560a1a5 — 242852045 — 1888240a3a3
+ 489400a3a4 + 1309488asazay + 1108880aza3 + 11136043 — 191740a3a4 + 550aza’
— 3329503 — 2772792043 4 47743680a;az — 2597880a;a3 — 14256960a; a4
+ 352668003 + 5056920aza3 + 9864060azas — 19944043 — 2398224a3a4 — 11267704’
— 54993600a; + 24634440a9 — 13051440a3 — 9252000a, — 22140000.

We remark that the terms Oy are polynomial in u7; and rational in a. We claim that there
exists at least a transversal intersection point a* of the zero level sets of f1,..., f1, where f5
is nonvanishing. Once we prove the claim the result will follow because near this point a*,
thanks to the implicit function theorem, we can write (28) as X; = uyvj_¢, being v1,...,v4
are new independent variables. Hence, the existence of a weak focus of maximal order 11 is
clear and also its unfolding provides only 9 nonzero limit cycles because the displacement map
(25) starts with degree 2 terms. The extra limit cycle for proving the last statement follows
from the fact that p = 0 is an isolated solution.

Let us prove finally that the claim is true. To this end we note that the system of equations
{f1 = fa = f3 = fa = 0} has solutions that are written as

*

a = (ai,ag,ag)ai) = (B,Oé,ﬁp3(a),p4(a)),

where 5% = p2(a) with pe, p3, and ps some polynomials of degree 13 with rational coefficients,
and « is a simple real solution of the polynomial

p1(z) = 143521875002 — 6577767000002'% 4 1128473692987522
— 424064167598252' 1 — 13918990767163152'° + 230237627865119092°
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— 1233931066635868262° — 2182365035714705862" + 575636088434736349425
— 272726114667544811262° 4 55780715677026807263x" — 48094920597945273157x3
4 919396296195776335322 + 51054967383680436332 — 1609769302079739192

verifying pa(«) > 0. Straightforward computations show that there exist ps and pg, polynomi-
als of degree 13 with rational coefficients such that f5(a*) = ps(«) and the determinant of the
Jacobian matrix det JaC(fl7f2’f37f4)(a*) = pg(a). Moreover, the polynomials py for k =2,...,6
do not vanish at «, because the respective resultants with pj, with respect to «, are nonzero
rational numbers. It only remains to prove that there exists « such that also pa(«) > 0. This
follows just computing the real zeros of the polynomials p; and po, ordering them in the real
line, and comparing their plots. From the 8 simple real zeros of p; only 4 satisfy the condition
p2 > 0. They are located near —12.079846278, —6.6037190290, 1.81965668348,1.84169431112.
This concludes the proof of the result. [ ]

We remark that working on the last proof with the complete Lyapunov constants instead
of the linear developments we have not obtained more limit cycles, and the computations to
provide the weak focus of maximum order are even worse. Moreover, although from the proof
it seems that we are computing only linear developments, from the final writing X; = urv;_¢
it is clear that a second order bifurcation mechanism is used, as we have shown throughout
the present paper.

We finish the appendix by making some considerations about numerical simulations re-
garding other values of m and n. Theorem 1.2 improves the general lower bounds of Hz 2(n, m)
that appear in the literature, in particular the ones in [6]. The new general lower bound is
2(n+m)—1 and, as we have commented before, it is very close to the total number of param-
eters 2(n+m)+2 in the system. Since we can rescale x and do a translation in 6, two of these
parameters can be removed and only 2(n + m) remain. Hence it is reasonable to conjecture
that Hz2(n,m) = 2(n + m). Nevertheless it can be checked that with the degenerated Hopf
bifurcation explained above we cannot get such a number of limit cycles when n +m < 4
except for (n,m) = (1, 3); see Proposition A.2. Some of these computations were done in [6]
by studying the maximum weak-focus order. With regard to the segment n+m = 5, Proposi-
tion A.3 gets this value of limit cycles for (n,m) = (4, 1) whereas, numerically, we can get (also
using the technique explained in the last section) that Hs2(2,3) > 10* and Hs2(1,4) > 10*.
But we have not been able to improve, not even numerically, the lower bound H32(3,2) > 9.
(Here and below the superscript * means that we have not an analytic proof but only numer-
ical evidence.) The main difficulty is not in finding the system of equations to solve but in
solving it. The numerical solutions that we have found seem to be values to have a center at
the origin and not a weak focus of the order that we look for.

For (n,m) = (1,4), as we have done in Proposition A.2, we fix a; = 1 and b; = 0. The
next step is the computation of the first linearized Lyapunov constants in the form (26) that
are similar to (27). Then, again with the implicit function theorem, we write X = wuy for

k =2,...,6 and we obtain for X7,..., X1; the functions fi,..., f5 similarly as the ones in
(28), depending only on ¢ = (c1, ¢, c3,c4). Here the polynomials fr have degree k + 5 for
k=1,...,5. Hence, an equivalent Proposition A.3 could be conjectured for this case because,

working with enough precision to see the stabilization of the digits, we have found numerically
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a weak focus of order 11 at ¢* = (0.8339985012, 3.0122982805, 1.9052668985, —5.4437166429)
that unfolds 9 nonzero limit cycles of small amplitude and yields to Hz2(1,4) > 10*.

For (n,m) = (2,3) we can get a similar numerical result for H32(2,3) > 10*. The main
difference with the latter case is that the functions f; depend on (ai,as,c1,c2) and have
degree 3k + 7 for k = 1,...,5. Here the numerical approximation of the weak focus point is
(a¥, a3, ct, ) = (—0.05247784623,0.6187352312, —0.2084251822, 0.3470405002).
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