“This document is the Accepted Manuscript version of a Published Work that appeared in final form in [Organic Letters], copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.orglett.5b03575, see http://pubs.acs.org/page/policy/articlesonrequest/index.html ].” H-Bond-Directing Organocatalyst for Enantioselective [4+2] Cycloadditions via Dienamine Catalysis§ Shoulei Wang,a Carles Rodriguez-Escricha and Miquel A. Pericàsa,b* a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Av. Països Catalans 16, 43007 Tarragona (Spain) b Departament de Química Orgànica, Universitat de Barcelona, 08080, Barcelona (Spain) Supporting Information Placeholder H-bond-directing dienamine catalysis cat. HO R2 O Ph N N H R2 O + R1 N H OH (10 mol %) 17 examples up to 89% yield 13:1 dr, 99% ee R3 R1 N N Ph R3 O CHO ABSTRACT: An efficient, highly regio- and stereoselective [4+2] cycloaddition reaction to generate tetrahydropyranopyrazole frameworks has been developed. To this end, a dienamine-based catalytic strategy that relies on the H-bonddirecting effect of the hydroxy group of a dinaphthylprolinol-type aminocatalyst has been used. This enables the synthesis of multifunctionalized heterocyclic derivatives with three contiguous stereocenters in good yields and excellent enantioselectivities. Optically active pyrazolones and their derivatives are widely occurring scaffolds that can be found in many natural products and medicinally active molecules.1 As a consequence, the catalytic asymmetric synthesis of pyrazolones has been the subject of several studies,2 mainly involving three different strategies: (a) the deprotonation of the relatively acidic α-protons to generate a transient nucleophile;3 (b) the exploitation of the inherent nucleophilicity of the pyrazole nitrogens;4 and (c) the use of exocyclic alkylidene pyrazolones as Michael acceptors,5 which can lead to cascade processes for the construction of spirocycles. R Me N N O O H anti-inflammatory N Me O CN N Ph N HN O antiplatelet O N NH2 O antibacterial Figure 1. Some biologically active pyranopyrazol(on)es. Tetrahydropyranopyrazoles6 (THPPs) and dihydropyrano-pirazolones7 (DHPPOs) are formal derivatives of pyrazolones in which this heterocyclic moiety is fused to a pyran or pyranone ring, respectively. Several members of this subclass present interesting pharmaceutical and biological properties, which make them appealing synthetic targets (Figure 1). Nevertheless, the catalytic enantioselective transformation of pyrazolone derivatives into functionalized THPPs has received scant attention. In 2012, Enders disclosed an aminocatalytic 3-component reaction that provides THPPs with two stereocenters.8 One year later, Wang and co-workers reported the bifunctional thiourea-catalyzed asymmetric [4+2] cycloaddition of α,βunsaturated γ-butyrolactams with exocyclic alkylidene pyrazolones (Scheme 1, top).9 As for the related DHPPOs, the Ye and Biju groups independently reported NHC-catalyzed enantioselective annulations for the synthesis of these scaffolds.10 However, the catalytic enantioselective construction of THPP scaffolds bearing three contiguous stereocenters is still a challenging endeavour. Scheme 1. [4+2] Cycloaddition with alkylidene pyrazolones. O NBoc N N Boc N N O N H-Bond-directing (bifunctional thiourea) Ph Ph O Jiang, Wang et al. 2013 R2 R2 O R1 R2 R3 R1 O H-Bond-directing Ph (dienamine catalysis) R1 N N R3 this work O CHO Cycloadditions play a pivotal role in the construction of diverse heterocyclic skeletons.11 Of special interest is the application of aminocatalytic [4+2] processes that involve dienamine intermediates. These can play a dual role as dienes or dienophiles12 and their nucleophilicity allows inverse-electron-demand hetero-Diels-Alder (IEDHDA) reactions to be carried out when they are combined with Michael acceptors. In 2012, Jørgensen et al. pioneered the H-bond-directing dienamine strategy in an excellent report showing a distal regio- and stereoselective IEDHDA reaction.13 More recently, the Chen group developed a [4+2] cycloaddition reaction of 1-aza-1,3-butadienes with α,β-unsaturated aldehydes by employing dienamine catalysis.14 Inspired by previous works on H-bond-directing dienamine-mediated strategies,13,15 we report herein an IEDHDA reaction between enals and alkylidene pyrazolones. This dienamine-mediated process gives rise to THPPs with three contiguous stereocenters in excellent stereoselectivities. We began to study this reaction with pyrrolidine-derived aminocatalysts, given their success in dienamine-mediated processes.16 Alkylidene pyrazolone 2a and α,β-unsaturated aldehyde 3a were chosen as model substrates and a range of solvents were screened at room temperature (Table 1). Table 1. Optimization of reaction conditions. a N N H + O Ph cat. 1 (10 mol %) solvent, rt Ph Ar N H 1a HO Ar N N R H H 1g 1b: R = OTMS, Ar = C6H5 1c: R = OTMS, Ar = 3,5-(CF3)2C6H3 1d: R = OH, Ar = C6H5 1e: R = OH, Ar = 3,5-(CF3)2C6H3 1f: R = OH, Ar = 2-naphthyl COOH Ar O Ar OH N H 1h: Ar = C6H5 1i: Ar = 2-naphthyl N H O N H N H 1j solvent 1a t yield b drc ee (%)d 70 1:1 11 1b CH2Cl2 36 78 4:1 24 1c CH2Cl2 48 76 4:1 43 1d CH2Cl2 48 72 6:1 67 1e CH2Cl2 60 61 6:1 66 1f CH2Cl2 72 63 6:1 74 7 1g CH2Cl2 6 77 4:1 20 8 1h CH2Cl2 48 80 7:1 78 9 1i CH2Cl2 48 76 7:1 81 10 1j CH2Cl2 48 65 4:1 –38 11 1i DCE 48 73 7:1 83 12 1i CHCl3 48 72 7:1 80 13 1i MeCN 48 75 7:1 80 14 1i Et2O 48 69 6:1 68 15 1i toluene 48 80 8:1 90 16 1i mesitylene 48 77 8:1 89 17 CF3 12 6 CF3 CH2Cl2 5 N N N N H (%) 4 O (h) 3 Ph 4a O 3a cat. 1 Ph N N Ph 2a entry 2 O Ph 1i DMF 48 >10 nd nd a Reactions performed on a 0.1 mmol scale (see Supporting Information). c 1 d Isolated yield. Determined by H NMR spectroscopy. Determined by chiral HPLC after reduction to the corresponding alcohol. b 2 We first examined the [4+2] cycloaddition reaction catalyzed by proline, which gave the desired product in excellent regioselectivity and yield, but with poor dr and ee (Table 1, entry 1). When α,α-diarylprolinol silyl ethers were employed, both dr and ee increased slightly (entries 2 and 3). Subsequently, screening of various α,α-diarylprolinols, gave a remarkable increase in stereoselectivity (entries 4-6). We tentatively attribute this to the H-bonding ability of the free hydroxy group. Notably, we found that tetrazole 1g could enhance the reactivity dramatically (6 h) but without any improvement in ee (entry 7). Pleasingly, compared to 1d, catalyst 1h (bearing an extra hydroxy group in C417) allowed to improve the yield with much higher ee and dr (entry 8). Based on this, we firstly prepared the more hindered 4-hydroxydinaphthylprolinol catalyst 1i, which proved beneficial in terms of ee (entry 9). Pyrrolidine-squaramide catalyst 1j failed to improve the catalytic activity and stereoselectivity (entry 10). Solvent screening (entries 11-17) indicated that toluene was the best option: in these conditions, using catalyst 1i, the THPP 4a could be isolated in 80% yield, 90% ee and 8:1 dr (entry 15). With the optimized conditions, the substrate scope of the asymmetric cycloaddition reaction was undertaken and a series of chiral THPPs were synthesized (Scheme 2). In general, alkylidene pyrazolones bearing different electron-withdrawing and electron-donating substituents were well tolerated. Specifically, all of the para-substituted substrates (4b-4h) were obtained in good yields (75-89%), high diastereoselectivities (8:1-10:1 dr) and excellent enantioselectivities (90-99% ee). In contrast to these, the meta-substituted 4i and 4j gave a little decrease in the diastereo- and enantioselectivity, while maintaining the high yields. Importantly, the system also admitted introduction of double substitution on the ortho-ortho´ position, providing 4k in excellent diastereoselectivity (13:1 dr), comparable enantioselectivity (87% ee) and slightly lower yield. Furthermore, 4l bearing a bulkier 2-naphthyl group was formed in moderate diastereoselectivity (4:1 dr) but with good yield (73%) and excellent enantioselectivity (93% ee). Scheme 2. Scope of alkylidene pyrazolones a Ph O N N O H + R1 cat. 1i (10 mol %) toluene, rt Ph R1 N N Ph O Ph 2 4 3a Br Cl O F 4a 48 h, 80% yield 8:1 dr, 90% ee Me 4b 72 h, 78% yield 9:1 dr, 95% ee OMe 4c 72 h, 75% yield 10:1 dr, 93% ee CF3 4d 72 h, 81% yield 9:1 dr, 90% ee 4e 48 h, 77% yield 8:1 dr, 93% ee 4f 72 h, 82% yield 8:1 dr, 94% ee Me 4g 48 h, 85% yield 10:1 dr, 93% ee 4h 48 h, 89% yield 10:1 dr, 99% ee OMe CN Me MeO OMe 4i b 48 h, 73% yield 5:1 dr, 87% ee a 4j 48 h, 81% yield 6:1 dr, 87% ee 4k 72 h, 56% yield 13:1 dr, 87% ee 4l 72 h, 73% yield 4:1 dr, 93% ee b Reactions performed on a 0.15 mmol scale (see the Supporting Information). Performed at 0 ºC. 3 R2 Ph O N N H cat. 1i (10 mol %) R2 + O Ph Ph N N R3 O toluene, rt Ph R3 2 R2 R3 4 3 R2 = Me = R3 Me R2 = Me = OMe 4n OMe 72 h, 74% yield 8:1 dr, 84% ee 4m 48 h, 72% yield 8:1 dr, 86% ee = = Me = CF3 4o 18 h, 82% yield 8:1 dr, 86% ee R2 = Me R3 R3 O R2 = n-Pr R3 F = 4q 72 h, 88% yield 7:1 dr, 90% ee 4p 48 h, 83% yield 8:1 dr, 88% ee Scheme 3. Scope of various enal reaction partners. a a Reactions performed on a 0.15 mmol scale (see Supporting Information). Next, we set our sights on the performance of various α,β-unsaturated aldehydes. As presented in Scheme 3, the [4+2] cycloaddition reactions proceeded smoothly when enals with diverse electronic properties were tested. The corresponding chiral tetrahydropyranopyrazoles 4m-4p were obtained with high enantioselectivities (84-88%), good diastereoselectivities (8:1 dr) and good yields ranging from 72-83%. Gratifyingly, an alkylidene pyrazolone bearing a linear aliphatic substituent afforded product 4q in 88% yield and high stereoselectivity (7:1 dr, 90% ee). As for alkyl-substituted enals, we have only tested crotonaldehyde, which gave good yields but very poor stereoselectivities. The absolute configuration of tosylate 4b’’ (prepared from 4b’ as shown in Scheme 4) was unambiguously determined by X-ray single-crystal analysis.18 The rest of the cycloadducts have been assigned by analogy to 4b. Scheme 4. Synthesis and X-ray structure of 4b’’. Br Br Ph Ph Et3N N N CH2Cl2 N N Ph TsCl DMAP O Ph 4b' OH O 4b'' OTs The model we propose to account for the formation of the major product is depicted in Scheme 5. The regioselectivity of the attack can be easily inferred from the structure of the final product and it also matches with the expected course of action given the polarization of the dienamine and the alkylidene pyrazolone. Regarding the stereoselectivity, whereas the pyrazolone geometry is fixed, the dienamine can adopt several conformations. However, as demonstrated by Jørgensen and co-workers on the basis of DFT calculations,16a the (E,s-trans,E)-dienamine is the most stable conformer. Thus, out of the four possible approaches (see Supporting Information for details) only the one shown in Scheme 5 leads to the major stereoisomer. The preference for such an exo approach is justified in terms of (a) H-bonding between the hydroxy group of the diarylprolinol and the carbonyl of the pyrazolone and (b) the repulsion between the aromatic group in the pyrazolone (slightly tilted out-of-plane) and the dienamine, which would take place in an alternative endo approach. Scheme 5. Model proposed to explain the regio - and stereoselectivity. H-bond N Nap O H Nap H N O H OH N R2 H R1 R3 H R2 R1 N N Ph O R3 CHO exo approach 4 In summary, we have disclosed the first asymmetric [4+2] cycloaddition between alkylidene pyrazolones and enals through H-bond-directing dienamine catalysis. The reaction, promoted by a bifunctional 4-hydroxydinaphthylprolinol species, proceeds smoothly with excellent regioselectivity and high stereoselectivity (up to 89% yield, 13:1 dr, and 99% ee). Thus, we have disclosed a new and efficient protocol for the synthesis of enantioenriched, multifunctionalized tetrahydropyranopyrazole derivatives containing three contiguous stereocenters. Further application of this method and biological evaluation of the THPPs is currently underway. ASSOCIATED CONTENT Supporting Information Experimental procedures, characterization data and copies of NMR spectra and HPLC chromatograms (PDF). CIF file for 4b’’ (CIF). AUTHOR INFORMATION Corresponding Author * E-mail: mapericas@iciq.es Notes The authors declare no competing financial interest. ACKNOWLEDGMENT Financial support from the Institute of Chemical Research of Catalonia (ICIQ) Foundation, MINECO (grant CTQ2012–38594-C02– 01 and Severo Ochoa Excellence Accreditation 2014-2018: SEV-2013-0319) and DEC Generalitat de Catalunya (Grant 2014SGR827) is acknowledged. The CELLEX Foundation is also gratefully acknowledged for financing the High-Throughput Experimentation (HTE) laboratory. REFERENCES § Dedicated to Prof. Karl Anker Jørgensen on his 60th anniversary. (1) (a) Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes , A., Chem. Rev. 2011, 111, 6984-7034; (b) Sujatha, K.; Shanthi, G.; Selvam, N. P.; Manoharan, S.; Perumal, P. T.; Rajendran, M., Bioorg. Med. Chem. Lett. 2009, 19, 4501-4503; (c) Bondock, S.; Rabie, R.; Etman, H. A.; Fadda, A. A., Eur. J. Med. Chem. 2008, 43, 2122-2129; (d) Kimata, A.; Nakagawa, H.; Ohyama, R.; Fukuuchi, T.; Ohta, S.; Suzuki, T.; Miyata, N., J. Med. Chem. 2007, 50, 5053-5056. (2) For a review, see: Chauhan, P.; Mahajan, S.; Enders, D., Chem. Commun. 2015, 51, 12890-12907. (3) (a) Gogoi, S.; Zhao, C.-G., Tetrahedron Lett. 2009, 50, 2252-2255; (b) Yang, Z.; Wang, Z.; Bai, S.; Liu, X.; Lin, L.; Feng, X., Org. Lett. 2011, 13, 596-599; (c) Liao, Y.-H.; Chen, W.-B.; Wu, Z.-J.; Du, X.-L.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C., Adv. Synth. Catal. 2010, 352, 827-832; (d) Wang, Z.; Yang, Z.; Chen, D.; Liu, X.; Lin, L.; Feng, X., Angew. Chem. Int. Ed. 2011, 50, 4928-4932; (e) Alba, A.-N. R.; Zea, A.; Valero, G.; Calbet, T.; Font-Bardía, M.; Mazzanti, A.; Moyano, A.; Rios, R., Eur. J. Org. Chem. 2011, 1318-1325; (f) Wang, Z.; Chen, Z.; Bai, S.; Li, W.; Liu, X.; Lin, L.; Feng, X., Angew. Chem. Int. Ed. 2012, 51, 2776-2779; (g) Mazzanti, A.; Calbet, T.; Font-Bardia, M.; Moyano, A.; Rios, R., Org. Biomol. Chem. 2012, 10, 1645-1652; (h) Li, F.; Sun, L.; Teng, Y.; Yu, P.; Zhao, J. C.-G.; Ma, J.-A., Chem. Eur. J. 2012, 18, 14255-14260; (i) Wang, H.; Wang, Y.; Song, H.; Zhou, Z.; Tang, C., Eur. J. Org. Chem. 2013, 2013, 48444851; (j) Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Adele, A.; Gong, L.-Z., J. Am. Chem. Soc. 2013, 135, 9255-9258; (k) Li, J.-H.; Du, D.M., Org. Biomol. Chem. 2013, 11, 6215-6223; (l) Li, J.-H.; Du, D.-M., RSC Advances 2014, 4, 14538-14545; (m) Han, X.; Yao, W.; Wang, T.; Tan, Y. R.; Yan, Z.; Kwiatkowski, J.; Lu, Y., Angew. Chem. Int. Ed. 2014, 53, 5643-5647. (4) Gogoi, S.; Zhao, C.-G.; Ding, D., Org. Lett. 2009, 11, 2249-2252. (5) (a) Zea, A.; Alba, A.-N. R.; Mazzanti, A.; Moyano, A.; Rios, R., Org. Biomol. Chem. 2011, 9, 6519-6523; (b) Liu, L.; Zhong, Y.; Zhang, P.; Jiang, X.; Wang, R., J. Org. Chem. 2012, 77, 10228-10234; (c) Liang, J.; Chen, Q.; Liu, L.; Jiang, X.; Wang, R., Org. Biomol. Chem. 2013, 11, 1441-1445; (d) Chen, Q.; Liang, J.; Wang, S.; Wang, D.; Wang, R., Chem. Commun. 2013, 49, 1657-1659; (e) Geng, Z.-C.; Chen, X.; Zhang, J.-X.; Li, N.; Chen, J.; Huang, X.-F.; Zhang, S.-Y.; Tao, J.-C.; Wang, X.-W., Eur. J. Org. Chem. 2013, 4738-4743; (f) Zhang, J.-X.; Li, N.-K.; Liu, Z.-M.; Huang, X.-F.; Geng, Z.-C.; Wang, X.-W., Adv. Synth. Catal. 2013, 355, 797-808; (g) Chauhan, P.; Mahajan, S.; Loh, C. C. J.; Raabe, G.; Enders, D., Org. Lett. 2014, 16, 2954-2957; (h) Rassu, G.; Zambrano, V.; Pinna, L.; Curti, C.; Battistini, L.; Sartori, A.; Pelosi, G.; Casiraghi, G.; Zanardi, F., Adv. Synth. Catal. 2014, 356, 2330-2336; (i) Yetra, S. R.; Mondal, S.; Mukherjee, S.; Gonnade, R. G.; Biju, A. T., Angew. Chem. Int. Ed. 2016, 55, 268-272. (6) (a) Mandha, S. R.; Siliveri, S.; Alla, M.; Bommena, V. R.; Bommineni, M. R.; Balasubramanian, S., Bioorg. Med. Chem. Lett. 2012, 22, 5272-5278; (b) Elfahham, H. A.; Abdel-Galil, F. M.; Ibraheim, Y. R.; Elnagdi, M. H., J. Heterocycl. Chem. 1983, 20, 667-670; (c) Khan, M. A.; Cosenza, A. G.; Ellis, G. P., J. Heterocycl. Chem. 1982, 19, 1077-1085. (7) (a) Azzam, S. H. S.; Pasha, M. A., Tetrahedron Lett. 2012, 53, 6834-6837; (b) Kuo, S. C.; Huang, L. J.; Nakamura, H., J. Med. Chem. 1984, 27, 539-544. (8) Enders, D.; Grossmann, A.; Gieraths, B.; Düzdemir, M.; Merkens, C., Org. Lett. 2012, 14, 4254-4257. (9) Jiang, X.; Liu, L.; Zhang, P.; Zhong, Y.; Wang, R., Angew. Chem. Int. Ed. 2013, 52, 11329-11333. (10) (a) Zhang, H.-M.; Lv, H.; Ye, S., Org. Biomol. Chem. 2013, 11, 6255-6257; (b) Yetra, S. R.; Mondal, S.; Suresh, E.; Biju, A. T., Org. Lett. 2015, 17, 1417-1420. 5 (11) For reviews, see: (a) Jiang, X.; Wang, R., Chem. Rev. 2013, 113, 5515-5546; (b) Pellissier, H., Tetrahedron 2009, 65, 2839-2877; (c) Jørgensen, K. A., Angew. Chem. Int. Ed. 2000, 39, 3558-3588; (d) Boger, D. L., Chem. Rev. 1986, 86, 781-793. (12) Jiang, H.; Albrecht, Ł.; Jørgensen, K. A., Chem. Sci. 2013, 4, 2287-2300. (13) (a) Albrecht, Ł.; Dickmeiss, G.; Weise, C. F.; Rodríguez-Escrich, C.; Jørgensen, K. A., Angew. Chem. Int. Ed. 2012, 51, 1310913113; (b) Weise, C. F.; Lauridsen, V. H.; Rambo, R. S.; Iversen, E. H.; Olsen, M.-L.; Jørgensen, K. A., J. Org. Chem. 2014, 79, 35373546. (14) Gu, J.; Ma, C.; Li, Q.-Z.; Du, W.; Chen, Y.-C., Org. Lett. 2014, 16, 3986-3989. (15) (a) Albrecht, Ł.; Dickmeiss, G.; Acosta, F. C.; Rodríguez-Escrich, C.; Davis, R. L.; Jørgensen, K. A., J. Am. Chem. Soc. 2012, 134, 2543-2546; (b) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A., Chem. Eur. J. 2014, 20, 358-368; (c) Qi, L.-W.; Yang, Y.; Gui, Y.-Y.; Zhang, Y.; Chen, F.; Tian, F.; Peng, L.; Wang, L.-X., Org. Lett. 2014, 16, 6436-6439. (16) For selected examples, see: (a) Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A., J. Am. Chem. Soc. 2006, 128, 12973-12980; (b) Han, B.; He, Z.-Q.; Li, J.-L.; Li, R.; Jiang, K.; Liu, T.-Y.; Chen, Y.-C., Angew. Chem. Int. Ed. 2009, 48, 5474-5477; (c) Li, J.-L.; Kang, T.-R.; Zhou, S.-L.; Li, R.; Wu, L.; Chen, Y.-C., Angew. Chem. Int. Ed. 2010, 49, 6418-6420; (d) Song, A.; Zhang, X.; Song, X.; Chen, X.; Yu, C.; Huang, H.; Li, H.; Wang, W., Angew. Chem. Int. Ed. 2014, 53, 4940-4944; (e) W. Li, J. Wei, Q. Jia, Z. Du, K. Zhang, J. Wang, Chem. Eur. J. 2014, 20, 6592-6596; (f) Orue, A.; Uria, U.; Reyes, E.; Carrillo, L.; Vicario, J. L., Angew. Chem. Int. Ed. 2015, 54, 3043-3046; for reviews, see: (g) Ramachary, D. B.; Reddy, Y. V., Eur. J. Org. Chem. 2012, 865-887; (h) Li, J.-L.; Liu, T.-Y.; Chen, Y.-C., Acc. Chem. Res. 2012, 45, 1491-1500; (i) Jurberg, I. D.; Chatterjee, I.; Tannert, R.; Melchiorre, P., Chem. Commun. 2013, 49, 4869-4883. (17) For examples where the substitution at C4 is important, see: (a) Li, Y.; Liu, X.; Yang, Y.; Zhao, G., J. Org. Chem. 2007, 72, 288-291; (b) Itoh, T.; Ishikawa, H.; Hayashi, Y., Org. Lett. 2009, 11, 3854-3857; (c) Caruana, L.; Kniep, F.; Johansen, T. K.; Poulsen, P. H.; Jørgensen, K. A., J. Am. Chem. Soc. 2014, 136, 15929-15932. (18) X-ray structure deposited under CCDC 1438957. 6