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Abstract: The synthesis of N-arylimidazoles substituted at the sterically 

encumbered 5 position is a challenge for modern synthetic approaches. Here 

we report a new family of imidazolyl aryliodonium salts that serve as stepping 

stones on route to the selective formation of N1-aryl-5-iodoimidazoles; the 

iodine can now act as a “universal” placeholder to be transformed into further 

substituents. These new λ3-iodanes are produced by treating the NH-imidazole 

with ArI(OAc)2, and are converted to N1-aryl-5-iodoimidazoles by a selective 

Cu-catalyzed aryl migration. The method tolerates a variety of Ar fragments 

and is also applicable to substituted imidazoles. 

Imidazole is a ubiquitous heterocyclic core present in a wide 

variety of biologically relevant molecules.[1] Although the 

synthesis of imidazole derivatives is commonly accomplished 

through a variety of cyclization routes, it is often desirable to 

obtain a particular derivative starting from a preformed 

heterocyclic ring. For this reason, imidazole derivatization has 

been the focus of attention from a number of laboratories. A 

particularly common challenge is the selective construction of 

the 1,4- and 1,5-disubstituted imidazoles. Thus, the NH-arylation 

of an imidazole substituted at the C4(5) position tends to 

produce a mixture of isomers favoring the sterically less 

encumbered NH position, i.e. that with a 1,4 substitution 

pattern.[2,3] This bias was recently perfected by Buchwald et al. 

through the use of highly bulky biaryl phosphine ligand in Pd-

catalyzed imidazole N-arylation.[3b] A similar preference for the 

less encumbered NH position can also be seen in the oxidative 

Chan-Lam N-arylation of imidazole (Scheme 1A).[4] 

 

Scheme 1. Examples of common imidazole N-arylation strategies (A) and the 

relay arylation (B) proposed here. 

A challenge, however, remains to access selectively the 

corresponding 1,5-disubstituted imidazoles. Progress made in 

recent years includes the usage of well-designed 

protection/deprotection strategies,[5] and the C5-selective CH-

borylation[6] and CH-arylation[7] reactions. 

Here we present a new route to a versatile class of 

precursors for 1,5-disubstituted imidazoles. Specifically, the N1-

aryl-5-iodoimidazoles are produced via a relay in which a 

hypervalent iodoarene fragment[8] serves as a trampoline for aryl 

transfer to the proximal NH site (Scheme 1B). We reasoned that 

if the iodane I could be generated, it can then undergo a phenyl 

transfer to produce II, perhaps akin the intramolecular O- and N-

arylation observed in iodonium ylides.[9] Somewhat surprisingly, 

the NH-heterocyclic λ3-iodanes have only received a limited 

attention beyond the early work by Neiland et al in the 

1970’s.[10,11] Recent reports, however, highlight the promise of 

hypervalent iodine reactivity in azole functionalization, including 

via heterocyclic λ3-iodanes.[12]  

In particular, we found only a single precedent of an 

imidazolyl-λ3-iodane; the species, however, was described as 

containing the imidazole fragment bound to iodine through the N 

atom.[13] A reaction between PhI(O2CCF3)2 and imidazole (2 

equiv) in acetonitrile at room temp. produced a white precipitate 

identified as [PhI(Imid)]TFA salt, 1a (58%). However, the 

presence of just two imidazolic resonances in 1H NMR (1H each) 

strongly suggested a CH rather than NH functionalization of the 

imidazole; accordingly, X-Ray crystallography revealed a 

classical T-shaped diaryliodonium environment, with the 

imidazole bound to the iodine through the C4(5) carbon atom 

(Scheme 2). An analogous acetate salt 2a was obtained by 

employing PhI(OAc)2. A DFT analysis confirmed that both the 

C2 and the N-bound isomer are higher in energy than the 

observed C4(5) isomer. An N-bound species was found unlikely 

even as an intermediate en route to 1a; rather, the reaction 

appeared to proceed through a Wheland-type intermediate (see 

Supporting Information).  

 

Scheme 2. Formation and structures of the imidazole-based λ3-iodanes and of 

the neutral (betaine) 3. Gibbs Energies (kcal mol-1) in CH3CN. 
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While sparingly soluble in CDCl3, 1a and 2a dissolved well in 

MeOH and water. They also underwent a facile deprotonation to 

a zwitterionic 3, for which both the solid state and DFT 

structures show an essentially “normal” single Cimid-I bond (2.051 

and 2.076 Å, respectively, vs 2.091 Å observed for in 1a). We 

quickly discovered that the desired I-to-N phenyl transfer does 

not take place upon heating 1a, 2a or 3 in CH2Cl2, with or 

without Cs2CO3. Consistently, only a high energy transition state 

(35.6 kcal mol-1) could be identified for the direct (non-catalyzed) 

I-to-N 1,3 phenyl migration in 3 (Scheme 3). 

 

Scheme 3. Reaction path modelled for uncatalyzed 1,3 phenyl migration. 

Gratifyingly, the addition of 5 mol% of Cu(OTf)2 did allow for the 

formation of two regioisomeric N-phenyl iodoimidazoles, with a 

moderate selectivity towards the more hindered 4a achieved in 

fluorinated alcohols (Table 1, runs 1-3, both isomers confirmed 

by X-Ray diffraction). The use of Cs2CO3 in 

hexafluoroisopropanol (HFIP) led to a combined yield of 86% 

with a 4:1 ratio in favor of 4a (run 4). This ratio was further 

improved by employing catalytic amounts of certain heterocyclic 

additives (runs 5-7); e.g. the use of 20 mol% of N-Me-

benzimidazole (run 6) led to an 8:1 selectivity and a 93% yield. 

Table 1. Cu-catalyzed I-to-N phenyl transfer in 2a.[a]  

 

 

Run Base Solvent Additive Yield(%)[b] 4a/5ab 

1 --- CH2Cl2 -- 39 0.1:1 

2 --- CF3CH2OH -- 51 1.5:1 

3 --- HFIP -- 53 4.2:1 

4 Cs2CO3 HFIP -- 86 4.1:1 

5 Cs2CO3 HFIP 4-methylimidazole 90 7.3:1 

6 Cs2CO3 HFIP benzimidazole 90 8.4:1 

7 Cs2CO3 HFIP N-Me-benzimidazole 93 8.0:1 

[a] Using 0.5 mmol 2a, 5 mol% Cu(OTf)2 and 1.6 equiv of base (if any) in 2.6 

mL of solvent. [b] Total yield (%4a+%5a) and the ratio as determined by GC. 

It was subsequently found that the highest yields of 2 were 

achieved in trifluoroethanol[14] and, notably, MeOH as solvents. 

CH3CN, however, remained convenient for large scale 

applications due to product precipitation, as seen in the 

synthesis of a 23 g batch of 2a (Supp. Info). All the 

aryl(imidazolyl)-λ3-iodanes, 2, exhibited the corresponding Ar-

I(Imid)+ cation in the HR (ESI+) mass spectra. These species 

were subsequently transformed into the N1-aryl-5-iodoimidazole, 

4, with good selectivities. As previously observed for 4a, in all 

cases a characteristic 13C resonance at 71-73 ppm was 

observed for the 13C-I unit in 4, which is approx. 10 ppm lower 

than in the corresponding 1,4 species 5 (82-85 ppm). Given the 

synthetic potential of 4a, the method was extended to 

structurally diverse aryl(imidazolyl)-λ3-iodanes (Table 2). The 

most robust protocol involves the use of 20 mol% of N-Me-

benzimidazole in combination with 5 mol% of Cu(OTf)2. 

Table 2. Scope of the relay synthesis of N1-aryl-5-iodoimidazoles 4. 

 

The improved selectivity with these additives is likely due to the 

formation of Cu-heterocycle complexes. Indeed, best results 

were achieved by pre-mixing Cu(OTf)2 with the additive and 

base for 20 min, presumably favoring complex formation. We 



        

 

 

 

 

observed that while Cu(OTf)2 alone did not dissolve in HFIP, a 

green solution formed upon addition of N-Me-benzimidazole. 

Both electron-donating and mildly electron-withdrawing 

substituents were well tolerated on the aryl fragment (4b-i, Table 

2). In fact, even a di-ortho substitution was tolerated, as 

illustrated in the successful synthesis of the highly hindered N-

mesityl-5-iodoimidazole, 4j. We were particularly pleased with 

the successful incorporation of a second heterocycle, as in the 

2- and 3-thienyl derivatives 4k and 4l. The 4-iodobiphenyl and 2-

iodonaphthalene derivatives could also be obtained in 70% and 

74% yield, respectively (4m and 4n). In the case of the 4-Me-

imidazolyl iodane 2o, a 13:1 4/5 selectivity was achieved, 

affording the target 4o in an 87% yield, with the selectivity 

benefiting from hindrance at the competing N site. The aryl 

transfer in the 2-Me derivative 2p was less efficient, providing 4p 

in 31% yield. The method was also applied to produce an 82% 

of the 4,5-diiodo derivative 4q. In general, separation between 4 

and 5 proved rather straightforward. 

As mentioned earlier (see Scheme 1), the high selectivity 

towards 4 would stem from an intramolecular aryl migration from 

iodine to the proximal nitrogen.[16] Accordingly, a cross-over 

experiment between 2a-d2 and 2c revealed a predominant 

formation of 4a-d2 and 4c expected for an intramolecular 

process (Scheme 4A).[15] Small amounts of the 1,4 isomers were 

also produced, and for these, full aryl/imidazole scrambling was 

observed, indicating their origin in a bimolecular process. 

Indirect support for an intramolecular manifold was also obtained 

from the poor performance of the pyrazole-derived iodane 6 

(<15% yield, Scheme 4B) lacking a proximal NH site. 

 

Scheme 4. Cross-over experiment (A), and the assay with pyrazol (B). 

We envisaged that 3 (formed upon deprotonation of 2), binds 

a Cu(I)-OTf fragment through N1 (Scheme 5).[17,18] Indeed, 

despite employing a Cu(II) precatalyst, the true catalytic species 

is likely a Cu(I) center.[18,19] The inclusion of MeOH in the 

coordination sphere of Cu (as a stand-in for a solvent molecule) 

was found to be beneficial to properly describe the Cu 

intermediate, and, given that the process was already 

moderately selective (up to 4:1) in the absence of an additive, 

this initial DFT study was performed in the absence of an added 

heterocycle. In the first step, the Ph group in A is transferred 

from I to Cu, leading to a formal Cu(III)-phenyl intermediate 

B.[19,20] This step features an activation barrier of 26.2 kcal mol-1 

(ts-1). A Localized Orbital analysis supports the change in Cu 

oxidation state and allows visualizing the flow of electrons (see 

small green spheres of ts-1 in Scheme 5 and Supporting 

Information). The final C-N bond is formed through an 

essentially barrierless reductive elimination step (Scheme 5, ts-

2). Given the energetic proximity between B and ts-2, the 

mechanism resembles a Cu-guided concerted I-to-N phenyl 

migration. A preliminary investigation also revealed that the 

coordination of N-Me-benzimidazole to the Cu(I) center may 

disfavor the binding of two molecule of 3 to the same Cu center, 

hence enforcing an intramolecular Ph transfer.[21] 

 

Scheme 5. A DFT profile for the Cu(I)-catalyzed aryl migration. Relative Gibbs 

energies in methanol (kcal mol-1). 

In agreement with Scheme 5, the preformed zwitterionic 3 was 

also an excellent substrate even in the absence of a base (Eq 1). 

 

The reason for the poor performance of solvents such as CH2Cl2 

is likely twofold. The deprotonation of 2 in CH2Cl2 appears 

sluggish, which negatively affects the selectivity, giving rise to 

by-molecular cross-over events (see Supporting Info). In 

addition, while the use of 3 does render the reaction moderately 

selective, the rate in CH2Cl2 remains low. 

Iodine introduced at the C5 position ushers the synthesis of a 

wide spectrum 1,5-imidazole derivatives (Scheme 6).  

 

Scheme 6. Versatility of the 1-aryl-5-iodoimidazoles in the synthesis of 1,5-

substituted imidazoles. 



        

 

 

 

 

Thus, the 5-alkynyl and 5-aryl derivatives 7 and 8 were prepared 

via Pd-catalyzed C-C coupling reactions. In addition, a Cu-

catalyzed C-N bond formation was readily accomplished to give 

9.[22] The 5-iodoimidazole 2a was also readily converted to an 

organomagnesium species,[23] which served as precursor to the 

5-formyl and the 5-borylderivatives 10 and 11.[23b,c] 

In conclusion, we have shown that the new (NH-

imidazolyl)aryl iodonium cation, readily obtained from imidazole 

and aryliodine diacetate, ArI(OAc)2, serves as an excellent 

stepping stone for the formation of N-arylimidazoles bearing an 

iodine substituent at the strategic C5 position. The method 

complements common existing protocols known to produce the 

sterically favored 1,4-derivatives. The method was tolerant of a 

variety of aryl substitution patterns, including mono- or bis-ortho 

substitution. Through subsequent transformation of the iodine 

group, the newly formed N1-aryl-5-iodoimidazole constitutes a 

valuable precursor to a wide range of products. Experimental 

and DFT data suggest that the selectivity is likely the result from 

an intramolecular copper-catalyzed iodine-to-nitrogen migration 

of the aryl fragments. 
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