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Abstract:
encumbered 5 position is a challenge for modern synthetic approaches. Here

The synthesis of N-arylimidazoles substituted at the sterically

we report a new family of imidazolyl aryliodonium salts that serve as stepping
stones on route to the selective formation of N1-aryl-5-iodoimidazoles; the
iodine can now act as a “universal” placeholder to be transformed into further
substituents. These new A*-iodanes are produced by treating the NH-imidazole
with Arl(OAc)z, and are converted to N1-aryl-5-iodoimidazoles by a selective
Cu-catalyzed aryl migration. The method tolerates a variety of Ar fragments
and is also applicable to substituted imidazoles.

Imidazole is a ubiquitous heterocyclic core present in a wide
variety of biologically relevant molecules.! Although the
synthesis of imidazole derivatives is commonly accomplished
through a variety of cyclization routes, it is often desirable to
obtain a particular derivative starting from a preformed
heterocyclic ring. For this reason, imidazole derivatization has
been the focus of attention from a number of laboratories. A
particularly common challenge is the selective construction of
the 1,4- and 1,5-disubstituted imidazoles. Thus, the NH-arylation
of an imidazole substituted at the C4(5) position tends to
produce a mixture of isomers favoring the sterically less
encumbered NH position, i.e. that with a 1,4 substitution
pattern.3 This bias was recently perfected by Buchwald et al.
through the use of highly bulky biaryl phosphine ligand in Pd-
catalyzed imidazole N-arylation.®?! A similar preference for the
less encumbered NH position can also be seen in the oxidative
Chan-Lam N-arylation of imidazole (Scheme 1A).1
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Scheme 1. Examples of common imidazole N-arylation strategies (A) and the
relay arylation (B) proposed here.
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A challenge, however, remains to access selectively the
corresponding 1,5-disubstituted imidazoles. Progress made in
recent years includes the wusage of well-designed
protection/deprotection strategies,™ and the C5-selective CH-
borylationl® and CH-arylation!™ reactions.

Here we present a new route to a versatile class of
precursors for 1,5-disubstituted imidazoles. Specifically, the N1-
aryl-5-iodoimidazoles are produced via a relay in which a
hypervalent iodoarene fragment!® serves as a trampoline for aryl
transfer to the proximal NH site (Scheme 1B). We reasoned that
if the iodane | could be generated, it can then undergo a phenyl
transfer to produce I, perhaps akin the intramolecular O- and N-
arylation observed in iodonium ylides.[¥! Somewhat surprisingly,
the NH-heterocyclic A*-iodanes have only received a limited
attention beyond the early work by Neiland et al in the
1970's.11911 Recent reports, however, highlight the promise of
hypervalent iodine reactivity in azole functionalization, including
via heterocyclic A>-iodanes.!*?

In particular, we found only a single precedent of an
imidazolyl-A3-iodane; the species, however, was described as
containing the imidazole fragment bound to iodine through the N
atom.'8l A reaction between PhI(O,CCF3), and imidazole (2
equiv) in acetonitrile at room temp. produced a white precipitate
identified as [PhI(Imid)]TFA salt, 1a (58%). However, the
presence of just two imidazolic resonances in *H NMR (1H each)
strongly suggested a CH rather than NH functionalization of the
imidazole; accordingly, X-Ray crystallography revealed a
classical T-shaped diaryliodonium environment, with the
imidazole bound to the iodine through the C4(5) carbon atom
(Scheme 2). An analogous acetate salt 2a was obtained by
employing PhI(OAc),. A DFT analysis confirmed that both the
C2 and the N-bound isomer are higher in energy than the
observed C4(5) isomer. An N-bound species was found unlikely
even as an intermediate en route to la; rather, the reaction
appeared to proceed through a Wheland-type intermediate (see
Supporting Information).
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Scheme 2. Formation and structures of the imidazole-based A*-iodanes and of
the neutral (betaine) 3. Gibbs Energies (kcal.mol*) in CHsCN.



While sparingly soluble in CDCls;, 1a and 2a dissolved well in
MeOH and water. They also underwent a facile deprotonation to
a zwitterionic 3, for which both the solid state and DFT
structures show an essentially “normal” single Cimig-1 bond (2.051
and 2.076 A, respectively, vs 2.091 A observed for in 1a). We
quickly discovered that the desired I-to-N phenyl transfer does
not take place upon heating la, 2a or 3 in CH.Cl,, with or
without Cs,CO3. Consistently, only a high energy transition state
(35.6 kcal mol?) could be identified for the direct (non-catalyzed)
I-to-N 1,3 phenyl migration in 3 (Scheme 3).
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Scheme 3. Reaction path modelled for uncatalyzed 1,3 phenyl migration.

Gratifyingly, the addition of 5 mol% of Cu(OTf), did allow for the
formation of two regioisomeric N-phenyl iodoimidazoles, with a
moderate selectivity towards the more hindered 4a achieved in
fluorinated alcohols (Table 1, runs 1-3, both isomers confirmed
by X-Ray diffraction). The wuse of Cs,CO3; in
hexafluoroisopropanol (HFIP) led to a combined yield of 86%
with a 4:1 ratio in favor of 4a (run 4). This ratio was further
improved by employing catalytic amounts of certain heterocyclic
additives (runs 5-7); e.g. the use of 20 mol% of N-Me-
benzimidazole (run 6) led to an 8:1 selectivity and a 93% yield.

Table 1. Cu-catalyzed I-to-N phenyl transfer in 2a.[

o 1
o i R
solvent, 50 °C, 16 h 4a N= s5a
Run Base Solvent Additive Yield(%)P!  4a/5a°
1 - CHzCl2 - 39 0.1:1
2 - CF3CH20H - 51 1.5:1
3 - HFIP - 53 4.2:1
4 Cs2COs  HFIP - 86 4.1:1
5 Cs2COs  HFIP 4-methylimidazole 90 7.3:1
6 Cs2CO3  HFIP benzimidazole 90 8.4:1
7 Cs2CO3  HFIP N-Me-benzimidazole 93 8.0:1

[a] Using 0.5 mmol 2a, 5 mol% Cu(OTf)2 and 1.6 equiv of base (if any) in 2.6
mL of solvent. [b] Total yield (%4a+%5a) and the ratio as determined by GC.

It was subsequently found that the highest yields of 2 were
achieved in trifluoroethanol*¥ and, notably, MeOH as solvents.

CHsCN, however, remained convenient for large scale
applications due to product precipitation, as seen in the
synthesis of a 23 g batch of 2a (Supp. Info). All the

aryl(imidazolyl)-A%-iodanes, 2, exhibited the corresponding Ar-
I(Imid)* cation in the HR (ESI+) mass spectra. These species
were subsequently transformed into the N1-aryl-5-iodoimidazole,
4, with good selectivities. As previously observed for 4a, in all
cases a characteristic *C resonance at 71-73 ppm was

observed for the *3C-I unit in 4, which is approx. 10 ppm lower
than in the corresponding 1,4 species 5 (82-85 ppm). Given the
synthetic potential of 4a, the method was extended to
structurally diverse aryl(imidazolyl)-A3-iodanes (Table 2). The
most robust protocol involves the use of 20 mol% of N-Me-
benzimidazole in combination with 5 mol% of Cu(OTf),.
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14 Benzimidazole (20 mol%) as additive. fel 4-methylimidazole (20 mol%) as additive.
1 Ar-I(imid)* OAc” was added before injection of the solvent; no additive was used.

The improved selectivity with these additives is likely due to the
formation of Cu-heterocycle complexes. Indeed, best results
were achieved by pre-mixing Cu(OTf), with the additive and
base for 20 min, presumably favoring complex formation. We



observed that while Cu(OTf), alone did not dissolve in HFIP, a
green solution formed upon addition of N-Me-benzimidazole.

Both electron-donating and mildly electron-withdrawing
substituents were well tolerated on the aryl fragment (4b-i, Table
2). In fact, even a di-ortho substitution was tolerated, as
illustrated in the successful synthesis of the highly hindered N-
mesityl-5-iodoimidazole, 4j. We were particularly pleased with
the successful incorporation of a second heterocycle, as in the
2- and 3-thienyl derivatives 4k and 4l. The 4-iodobiphenyl and 2-
iodonaphthalene derivatives could also be obtained in 70% and
74% vyield, respectively (4m and 4n). In the case of the 4-Me-
imidazolyl iodane 20, a 13:1 4/5 selectivity was achieved,
affording the target 40 in an 87% yield, with the selectivity
benefiting from hindrance at the competing N site. The aryl
transfer in the 2-Me derivative 2p was less efficient, providing 4p
in 31% vyield. The method was also applied to produce an 82%
of the 4,5-diiodo derivative 4q. In general, separation between 4
and 5 proved rather straightforward.

As mentioned earlier (see Scheme 1), the high selectivity
towards 4 would stem from an intramolecular aryl migration from
iodine to the proximal nitrogen.*8! Accordingly, a cross-over
experiment between 2a-d, and 2c revealed a predominant
formation of 4a-d, and 4c expected for an intramolecular
process (Scheme 4A).1'S Small amounts of the 1,4 isomers were
also produced, and for these, full aryl/imidazole scrambling was
observed, indicating their origin in a bimolecular process.
Indirect support for an intramolecular manifold was also obtained
from the poor performance of the pyrazole-derived iodane 6
(<15% yield, Scheme 4B) lacking a proximal NH site.

expected for intramolecular
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Scheme 4. Cross-over experiment (A), and the assay with pyrazol (B).

We envisaged that 3 (formed upon deprotonation of 2), binds
a Cu(l)-OTf fragment through N1 (Scheme 5).7:18 Indeed,
despite employing a Cu(ll) precatalyst, the true catalytic species
is likely a Cu(l) center.'®9 The inclusion of MeOH in the
coordination sphere of Cu (as a stand-in for a solvent molecule)
was found to be beneficial to properly describe the Cu
intermediate, and, given that the process was already
moderately selective (up to 4:1) in the absence of an additive,
this initial DFT study was performed in the absence of an added
heterocycle. In the first step, the Ph group in A is transferred
from | to Cu, leading to a formal Cu(lll)-phenyl intermediate
B.11%20 This step features an activation barrier of 26.2 kcal mol*
(ts-1). A Localized Orbital analysis supports the change in Cu
oxidation state and allows visualizing the flow of electrons (see
small green spheres of ts-1 in Scheme 5 and Supporting

Information). The final C-N bond is formed through an
essentially barrierless reductive elimination step (Scheme 5, ts-
2). Given the energetic proximity between B and ts-2, the
mechanism resembles a Cu-guided concerted I-to-N phenyl
migration. A preliminary investigation also revealed that the
coordination of N-Me-benzimidazole to the Cu(l) center may
disfavor the binding of two molecule of 3 to the same Cu center,
hence enforcing an intramolecular Ph transfer.?4
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Scheme 5. A DFT profile for the Cu(l)-catalyzed aryl migration. Relative Gibbs
energies in methanol (kcal mol?).

In agreement with Scheme 5, the preformed zwitterionic 3 was
also an excellent substrate even in the absence of a base (Eq 1).

5 mol% Cu(OTf),

I
+|\(,@:N N-Me-bemzimidazole \F\N
(20 mol%) N Yield: 72% (4a)
3 +5a |selectivity: 12.8:1| )
HFIP, 50 °C, no base 4a

The reason for the poor performance of solvents such as CH,Cl,
is likely twofold. The deprotonation of 2 in CH.Cl, appears
sluggish, which negatively affects the selectivity, giving rise to
by-molecular cross-over events (see Supporting Info). In
addition, while the use of 3 does render the reaction moderately
selective, the rate in CH,Cl, remains low.

lodine introduced at the C5 position ushers the synthesis of a
wide spectrum 1,5-imidazole derivatives (Scheme 6).
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Scheme 6. Versatility of the 1-aryl-5-iodoimidazoles in the synthesis of 1,5-
substituted imidazoles.



Thus, the 5-alkynyl and 5-aryl derivatives 7 and 8 were prepared
via Pd-catalyzed C-C coupling reactions. In addition, a Cu-
catalyzed C-N bond formation was readily accomplished to give
9.2 The 5-iodoimidazole 2a was also readily converted to an
organomagnesium species,?® which served as precursor to the
5-formyl and the 5-borylderivatives 10 and 11.123><]

In conclusion, we have shown that the new (NH-
imidazolyl)aryl iodonium cation, readily obtained from imidazole
and aryliodine diacetate, Arl(OAc),, serves as an excellent
stepping stone for the formation of N-arylimidazoles bearing an
iodine substituent at the strategic C5 position. The method
complements common existing protocols known to produce the
sterically favored 1,4-derivatives. The method was tolerant of a
variety of aryl substitution patterns, including mono- or bis-ortho
substitution. Through subsequent transformation of the iodine
group, the newly formed N1-aryl-5-iodoimidazole constitutes a
valuable precursor to a wide range of products. Experimental
and DFT data suggest that the selectivity is likely the result from
an intramolecular copper-catalyzed iodine-to-nitrogen migration
of the aryl fragments.
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