“This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acscatal.7b00360 ”. Asymmetric [4+2] Annulation Reactions Catalyzed by a Robust, Immobilized Isothiourea Shoulei Wang,‡ Javier Izquierdo,‡ Carles Rodríguez-Escrich,‡ and Miquel A. Pericàs*‡§ ‡ Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain. § Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08080 Barcelona, Spain. ABSTRACT: A polystyrene-supported isothiourea (1a) behaves as a highly efficient organocatalyst in a variety of formal [4+2] cycloaddition reactions. The catalytic system has proven to be highly versatile, leading to six-membered heterocycles and spiroheterocycles bearing an oxindole moiety in high yields and excellent enantioselectivities (32 examples, including the novel oxindole spiropyranopyrazolones 8). The remarkable chemical stability of 1a under operation conditions results in high recyclability (11 cycles, accumulated TON of 76.8) and allows the implementation of an extended-operation continuous flow process (no decrease in yield or ee after 18 h). KEYWORDS. Isothioureas • Enantioselective Catalysis • Solid-Supported Catalysts • Spirocyclic Compounds • Oxindoles Me 1. INTRODUCTION Since their introduction by Birman and Okamoto in the last decade,1 chiral isothioureas have become an important class of enantioselective organocatalysts.2 As chiral Lewis base catalysts, isothioureas have been explored in a large variety of asymmetric transformations, including acyl transfer,3 silyl transfer,4 formal pericyclic5 and domino reactions.6 Considering the importance of this type of catalyst in organic synthesis and our continuing interest toward the immobilization of homogeneous catalytic species,7 we recently synthesized a polystyrene-supported isothiourea organocatalyst that was successfully applied in the Michael addition/cyclization reaction with tosylimine derivatives.8 However, applications of this new immobilized isothiourea catalyst in new transformations have not been investigated in depth. Herein, we report the first enantioselective formal [4+2] cycloaddition reactions between several types of unsaturated heterocycles and in situ activated arylacetic acids in a process catalyzed by an immobilized isothiourea catalyst that can be operated in batch and flow. Heterocyclic compounds containing nitrogen-nitrogen and nitrogen-sulfur arrays are frequently encountered as privileged structural frameworks in numerous bioactive natural products and pharmaceuticals.9 Indeed, the pyrazolone, thiazolone or spiro-oxindole pyrazolone scaffolds can be found in antiplatelet,10 anti-inflammatory,11 anticancer,12 kinase-inhibitor13 and antibacterial14 compounds (Figure 1). In particular, chiral spirocyclic pyrazolones bearing a quaternary stereocenter (promising subsets of the spirocyclic family) are very interesting, albeit hardly available from a synthetic perspective.15 Indeed, despite some synthetic efforts devoted to the synthesis of functionalized pyranopyrazolone derivatives,16 the development of an efficient methodology for the catalytic asymmetric construction of pyranothiazolones17 and spiro-pyranopyrazolones bearing a quaternary stereocenter is still a challenging endeavor. Me Me Me Bn N N O antiplatelet H 2N O O N H anti-inflammatory H 2N O N NC NH O Me N R antibacterial N O O N R S NC Ar anticancer Figure 1. Examples of Biologically Active Pyrazolone and Thiazolone Derivatives. The exploitation of chiral isothioureas in asymmetric transformations via asymmetric ammonium enolate addition is a well-developed and powerful synthetic strategy.18 Romo et al. have pioneered the in situ generation of ammonium enolates from carboxylic acids and their application to a range of aldollactonization reactions.19 Building upon this work, Smith et al. have recently utilized chiral isothioureas to promote the intraand intermolecular asymmetric functionalization of carboxylic acids through a Michael-lactonization cascade reaction,20 which has also been described with NHC catalysts.16d, 17, 21 However, the use of isothioureas to promote an asymmetric Michael-lactonization sequence where a quaternary stereocenter is created remains underexplored due to the low reactivity of most substrates. Given the manifold interest of heterocycles of these classes, we wish to report a highly enantioselective version of the ammonium enolate addition involving unsaturated heterocycles and thus leading to a variety of optically pure, functionalized six-membered heterocycles bearing a tertiary or quaternary stereocenter (Scheme 1). Scheme 1. Formal [4+2] Cycloaddition with Unsaturated Heterocycles. Het R1 O O + R3 R2 nucleophilic center R3 R1 R2 O electrophilic center O BTM Het R3 Het BTM BTM O R2 R1 quaternary stereocenter O tertiary stereocenter 2. RESULTS AND DISCUSSION We initiated our study by investigating the reaction of alkylidene pyrazolone 2a with phenylacetic acid 3a, using pivaloyl chloride as a reagent to activate in situ the carboxylic acid (Table 1). Inspired by previous works, a protocol based on immobilized isothiourea 1a, PivCl, and i-Pr2NEt in CH2Cl2 at room temperature led to full conversion and provided the desired product in good diastereoselectivity and excellent enantioselectivity (entry 1). In contrast, when homogeneous benzotetramisole (BTM, 1b) was employed, only moderate diastereoselectivity was observed, albeit conversion and enantioselectivity remained the same (entry 2). This points out to an intimate interplay of steric effects that takes place due to the additional stereocenter present in 1a (the handle for immobilization). Table 2. Scope of the [4+2] Cycloaddition: Alkylidene Pyrazolones.a Table 1. Optimization of Reaction Conditions.a Cat. 1a (10 mol%) Me OH PivCl (2.0 equiv.) i-Pr2NEt (2.5 equiv.) N Me N N O Ph 2a Ph Ph + O 3a N N N O Ph N S N Ph CH2Cl2 (0.1 M) 2h N 1a showed negative impacts on either reactivity or selectivity (entries 6 and 7). We next studied the effect of the relative amounts of the different reactants (see the SI for details) and found that reducing the amount of i-Pr2NEt to 2.0 equivalents afforded the best result in terms of diastereo- and enantioselectivity (entry 8). On the other hand, decreasing the catalyst loading to 5 mol% resulted in lower stereoselectivity (entry 9). With the reaction conditions optimized for 2a, we investigated the substrate scope for this asymmetric cycloaddition reaction. As shown in Table 2, the course of the reaction was insensitive to electronic changes at the meta and para positions of the aromatic substituent R1 on alkylidenepyrazolones. Specifically, substrates with these substitution patterns (2b-2g) underwent reaction in good yields (71-84%), high diastereoselectivities (5:1 to 9:1 dr) and excellent enantioselectivities (9799% ee), both for electron-withdrawing or electron-donating m- or p- substituents. The ortho-substituted derivative 2h required longer reaction times (6 h), but gave the desired product 4h in excellent diastereoselectivity (>20:1 dr), comparable enantioselectivity (99% ee) and good yield (68%). Furthermore, 4i bearing a heteroaromatic 2-thienyl group was also formed in good yield, excellent diastereoselectivity, and comparable ee (96%). On the other hand, the use of alkylsubstituted acetic acids failed to give good levels of conversion (see Supporting Information for unsuccessful substrates). Ph Ph Me + Ph N O 4a O OH R1 N Ph O O 2 3a Cat. 1a (10 mol%) Me PivCl (2.0 equiv.) i-Pr2NEt (2.0 equiv.) N CH2Cl2 (0.1 M) N 2h Ph R1 Ph O O 4 Entry N Yield (%) (4)b drc ee (%)d 1 Ph (2a) 83 (4a) 9:1 99 2 4-Br-C6H4 (2b) 83 (4b) 9:1 99 Ph N S R1 (2) 1b Entry Modification of std. conditions Conv. (%)b drb ee (%)c 3 4-Cl-C6H4 (2c) 81 (4c) 7:1 98 4 82 (4d) 8:1 98 1 Standard conditions > 95 8:1 98 4-F-C6H4 (2d) 5 5:1 99 Using 1b as the catalyst > 95 3:1 98 4-Me-C6H4 (2e) 72 (4e) 2 6 84 (4f) 7:1 97 3 Using Et3N as the base > 95 5:1 98 3-Cl-C6H4 (2f) 7 7:1 99 Using PhCOCl instead of PivCl 55 5:1 98 3-Me-C6H4 (2g) 71 (4g) 4 8 >20:1 99 With TsCl instead of PivCl 76 7:1 98 2-MeO-C6H4 (2h) 68 (4h) 5 9 2-thienyl (2i) 81 (4i) 6:1 96 6 With THF instead of CH2Cl2 90 3:1 98 7 With toluene instead of CH2Cl2 60 6:1 96 8 Using 2.0 equiv. i-Pr2NEt > 95 9:1 99 9 Using 5 mol% catalyst 81 5:1 98 a Reactions performed on a 0.1 mmol scale (see Supporting Information). b Determined by 1H NMR spectroscopy. c Determined by chiral HPLC. Evaluation of the effect of the base employed showed that Et3N led to lower diastereoselectivity (entry 3). Changing the activating reagent for PhCOCl and TsCl (entries 4 and 5) did not improve the results. Subsequently, solvent screening e a Reactions performed on a 0.1 mmol scale (see Supporting Information). b Isolated yield. c Determined by 1H NMR spectroscopy. d Determined by chiral HPLC. e Reaction time: 6 h. Next, the [4+2] cycloaddition with a variety of arylacetic acids was investigated under the optimized conditions (Scheme 2). A range of arylacetic acids with diverse electronic and steric properties worked well, giving rise to cycloadducts 4j4n in good yields (73-86%), excellent ee’s (96-99%) and good diastereoselectivities (5:1-13:1 dr). Acid 3o, bearing an Nmethylindole substituent, showed no decrease in yield or stereoselectivity. Scheme 2. Scope of the [4+2] Cycloaddition: Arylacetic Acids. Cat. 1a (10 mol%) Me OH PivCl (2.0 equiv.) i-Pr2NEt (2.0 equiv.) N O CH2Cl2 (0.1 M) N 2h Ph 3 Me Ph + R2 N N O Ph 2a Br R2 O O 4 Me OMe 4j: 75% 7:1 dr 98% ee Ph 4k: 82% 6:1 dr 98% ee 4l: 86% 6:1 dr 99% ee OMe NMe OMe 4m: 73% 5:1 dr 98% ee 4n: 81% 13:1 dr 96% ee 4o: 85% 5:1 dr 97% ee Dihydropyranothiazolones are another class of nitrogensulfur heterocycles present in several drug candidates. This encouraged us to study their ability to be engaged as substrates in an analogous transformation. Gratifyingly, cycloadducts 6 could be accessed under similar reaction conditions. Following a brief screening of reaction conditions, the reaction of alkylidenethiazolone 5a with substituted arylacetic acids furnished dihydropyranothiazolones (6a-6e, Scheme 3) in excellent enantio- (99%) and diastereoselectivities (>20:1 dr), with yields ranging 68–77%. ee). Based on this observation, we wondered whether an isatin derivative of the pyrazolone, would undergo the annulation reaction thanks to the less sterically demanding nature of the substrate. This would give rise to functionalized dihydropyranopyrazolones bearing a spirocyclic quaternary stereocenter. With this in mind, we first synthesized an N-methyl isatinderived pyrazolone and performed the cascade [4+2] reaction at 0 ºC. To our delight, the corresponding spiropyranopyrazolone 8b was obtained in 88% yield with excellent enantioselectivity in a very short reaction time (30 min). The minor, anti diastereoisomer was also isolated with high ee values. It is worth mentioning that, to the best of our knowledge, this is the first synthesis of optically pure spirocyclic oxindolepyranopyrazolone scaffolds.22 Biological studies to assess the therapeutic potential of these unique structures are currently underway. Subsequent studies showed the generality of this approach to assemble a range of optically active substituted spiropyranopyrazolones under the established optimal reaction conditions. As indicated in Scheme 4, variations in the electronic properties of the substituents on the benzene ring of the arylacetic acid 3 were investigated and the corresponding spirocyclic adducts (8b-8g) were isolated in good yields (81-91%) with high ee’s and moderate diastereoselectivities. To emphasize the generality of our approach, various N-substituted isatin-derived pyrazolones were also tested and participated equally well in the reaction (8h-8j). Furthermore, the extension of the substrate range to electron-poor or electron-rich substituted N-methyl isatin-derived pyrazolones was well tolerated, providing the [4+2] annulation products in good yields and excellent ee’s (8k-8l). The absolute configuration given for all of the dihydropyranopyrazolones 4, dihydropyranothiazolones 6 and spiropyranopyrazolones 8 is based on the X-ray analysis of the major diastereoisomers 4b, 6a, 8c and minor diastereoisomer 8c´ (see Figure 2 and SI). Scheme 3 Scope of Substituted Arylacetic Acids with a 5Alkylidene Thiazolone. Ph S Ph N 5a OH + R2 O O 3 Cat. 1a (10 mol%) PivCl (2.0 equiv.) i-Pr2NEt (2.0 equiv.) Ph Ph CH2Cl2 (0.1 M) 6h Ph R2 S N O 6a Me 6b: 70% > 20:1 dr 99% ee Me 6d: 71% > 20:1 dr 99% ee 4b 6 F 6a: 77% > 20:1 dr 99% ee O 6c: 73% > 20:1 dr 99% ee Me 6e: 68% > 20:1 dr 99% ee With the aim of probing the versatility of this strategy, we prepared different disubstituted alkylidenepyrazolones, which would afford the corresponding cycloadducts bearing an allcarbon quaternary stereocenter (see Scheme 4 and SI). While most disubstituted alkylidenepyrazolones did not engage in the reaction, the isopropylidene derivative afforded the desired product 8a in poor yield but excellent enantioselectivity (96% 8c 8c' Figure 2. X-ray structures; 4b: CCDC 1519361; 6a: CCDC 1519360; 8c: CCDC 1519359; 8c’: CCDC 1519358. From a practical perspective, the use of an immobilized isothiourea catalyst offers the inherent advantages of easy recovery and reuse. Under the standard conditions, we explored the recyclability of catalyst 1a in the reaction of alkylidene pyrazolone 2a with phenylacetic acid 3a as model substrates. After each run, the catalyst could be recovered by simple filtration and reused in the next cycle by adding fresh Scheme 4. Scope of the Reaction Between Different Disubstituted Alkylidene Pyrazolones and Arylacetic Acids. Ph N N Me O + OH R3 Cat. 1a (20 mol%) PivCl (2.0 equiv.) i-Pr2NEt (2.0 equiv.) O R1 Ph N N O O R2 3 O O Ph N N Ph Ph Me 8a: rt, 48 h 21% yield, 96% ee O Me O Ph N Me N O Me N Me 8d: 91% yield, 3:1 dr, 98% ee O Ph 7 O Ph N N O Me N Boc 8h: 76% yield 3:1 dr, 97% ee Me CO2Me 48 h < 5% yield O O Ph N N O Me N Me 8e: 88% yield 3:1 dr, 97% ee O Ph O N Ph N O Me N COtBu 8i: 75% yield 4:1 dr, 97% ee Ph reactants. Keeping the reaction time constant, nine consecutive reaction cycles were performed with 10 mol% of resin 1a, affording the cycloadducts with constant stereoselectivity and only marginal erosion in the yield (Scheme 5). To gain insight into the recyclability profile of 1a, the same catalyst was used in two more cycles (reaching a total of 11) increasing the reaction time to 24 h. Under these conditions, product 4a was obtained in higher yields and slightly lower enantioselectivities. The accumulated TON for the whole recycling experiment was 76.8. Indeed, the robustness of this catalytic system was further proven by implementing an 18-h continuous flow experiment that provided 2.74 g of 4a (67% yield and 99% ee) as a single diastereomer (see section 7 of the SI for details). The proposed catalytic cycle for these transformations (Scheme 6) proceeds through initial in situ formation of the mixed anhydride A from the arylacetic acid, followed by formation of the corresponding acyl ammonium species B. This is deprotonated by pivalate (the amine is just a shuttle base)23 to generate an enolate (C) which undergoes stereoselective conjugate addition (D), followed by lactonization, giving the cycloadduct product E and regenerating the immobilized isothiourea. The proposed approaches of dihydropyranopyrazolone 4 and dihydropyranothiazolone 6 are in accordance to previous reports and configurational analysis. Our current working hypothesis involves an epimerization of the stereocenter a to the lactone C=O, a situation that has been observed for related systems20e (see Section 9 in the SI for details). Scheme 5. Recyclability Test. R3 CH2Cl2 (0.1 M) 15-40 min, 0 ºC O Ph N N O O R1 R2 O Cl Ph O Me 8 O N N Ph O Me N Me 8b: 88% yield 2:1 dr, 96/83% ee O O Ph N N O Me N Me 8f: 86% yield 3:1 dr, 87% ee O Ph X Me Cat. 1a (10 mol%) PivCl (2.0 equiv.) OH i-Pr NEt (2.0 equiv.) 2 Ph + Ph O 2a Ph N N O Me N Me 8k (X = Cl): 82%, 4:1 dr, 93% ee 8l (X = OMe): 92%, 3:1 dr, 96% ee N H 8j: 78% yield 2:1 dr, 98% ee N Ph O Ph O Me N O Me N Me 8c: 89% yield, 2.5:1 dr, 89/80% ee O O S Ph N N O Me N Me 8g: 81% yield 3:1 dr, 93% ee O Ph N N O Ph N N O 3a CH2Cl2 (0.1 M) 2h Me Ph Ph N N Ph O O 4a 100 80 60 40 20 0 Yield ee 3. CONCLUSIONS In summary, we have disclosed an asymmetric polystyrenesupported isothiourea catalyzed formal [4+2] cycloaddition of unsaturated heterocycles with in situ activated arylacetic acids. The annulation strategy described represents an efficient approach to access a series of dihydropyranopyrazolone and dihydropyranothiazolone derivatives, as well as spiropyranopyrazolones bearing a quaternary stereocenter, in excellent yields and stereoselectivities. Compared to its homogeneous counterpart, 1a displays higher stereoselectivity and the same reactivity. In addition, it can be recycled at least eleven times by simple filtration of the reaction mixture. Finally, the implementation of a continuous flow process with this catalytic resin illustrates the benefits of this approach. Further appli- cation of the polystyrene-supported isothiourea catalyst and biological evaluation of the heterocycles prepared is currently underway. Scheme 6. Proposed Catalytic Pathway. O R= R1 R2 N N N R3 PivCl RO R3 O Het O E N O R3 Ph S O S O R1 R3 R3 N N Het O OR S N H Ph D O t-Bu O A acylation N lactonization R2 OH i-Pr2NEt N OR Ph B PivO S O conjugate addition R3 Het R1 O N R2 Ph deprotonation PivOH N OR C i-PrNEt2 i-PrNEt2·PivOH ASSOCIATED CONTENT Supporting Information The Supporting Information is available free of charge on the ACS Publications website. Electronic Supplementary Information (ESI) available: synthetic procedures, characterization data, copies of NMR spectra and HPLC chromatograms (PDF) AUTHOR INFORMATION Corresponding Author * E-mail: mapericas@iciq.es ACKNOWLEDGMENT Financial support from CERCA Programme / Generalitat de Catalunya, MINECO (grant CTQ2012-38594-C02-01 and Severo Ochoa Excellence Accreditation 2014-2018: SEV-2013-0319) and DEC Generalitat de Catalunya (Grant 2014SGR827) is acknowledged. The CELLEX Foundation is also gratefully acknowledged for financing the High Throughput Experimentation (HTE) laboratory. REFERENCES 1. (a) Birman, V. B.; Jiang, H.; Li, X.; Guo, L.; Uffman, E. W. J. Am. Chem. Soc. 2006, 128, 6536-6537; (b) Birman, V. B.; Li, X. Org. Lett. 2006, 8, 1351-1354; (c) Kobayashi, M.; Okamoto, S. Tetrahedron Lett. 2006, 47, 4347-4350; (d) Birman, V. B. Aldrichimica Acta 2016, 49, 23-33; (e) Merad, J.; Pons, J.-M.; Chuzel, O.; Bressy, C. Eur. J. Org. Chem. 2016, 2016, 5589-5610. 2. (a) Díaz-de-Villegas, M. D.; Gálvez, J. A.; Badorrey, R.; LópezRam-de-Víu, M. P. Chem. Eur. J. 2012, 18, 13920-13935; (b) Enriquez-Garcia, A.; Kundig, E. P. Chem. Soc. Rev. 2012, 41, 78037831; (c) Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012, 41, 2109-2121; (d) Morrill, L. C.; Smith, A. D. Chem. Soc. Rev. 2014, 43, 6214-6226. 3. (a) Yang, X.; Birman, V. B. Adv. Synth. Catal. 2009, 351, 23012304; (b) Yang, X.; Birman, V. B. Angew. Chem. Int. Ed. 2011, 50, 5553-5555; (c) Yang, X.; Liu, P.; Houk, K. N.; Birman, V. B. Angew. Chem. Int. Ed. 2012, 51, 9638-9642; (d) Yang, X.; Birman, V. B. Chem. Eur. J. 2011, 17, 11296-11304; (e) Bumbu, V. D.; Birman, V. B. J. Am. Chem. Soc. 2011, 133, 13902-13905; (f) Shiina, I.; Nakata, K.; Ono, K.; Onda, Y.-s.; Itagaki, M. J. Am. Chem. Soc. 2010, 132, 11629-11641; (g) Liu, P.; Yang, X.; Birman, V. B.; Houk, K. N. Org. Lett. 2012, 14, 3288-3291; (h) Li, X.; Jiang, H.; Uffman, E. W.; Guo, L.; Zhang, Y.; Yang, X.; Birman, V. B. J. Org. Chem. 2012, 77, 1722-1737; (i) Bumbu, V. D.; Yang, X.; Birman, V. B. Org. Lett. 2013, 15, 2790-2793. 4. (a) Wang, L.; Akhani, R. K.; Wiskur, S. L. Org. Lett. 2015, 17, 2408-2411; (b) Clark, R. W.; Deaton, T. M.; Zhang, Y.; Moore, M. I.; Wiskur, S. L. Org. Lett. 2013, 15, 6132-6135; (c) Akhani, R. K.; Moore, M. I.; Pribyl, J. G.; Wiskur, S. L. J. Org. Chem. 2014, 79, 2384-2396; (d) Sheppard, C. I.; Taylor, J. L.; Wiskur, S. L. Org. Lett. 2011, 13, 3794-3797. 5. (a) Leverett, C. A.; Purohit, V. C.; Johnson, A. G.; Davis, R. L.; Tantillo, D. J.; Romo, D. J. Am. Chem. Soc. 2012, 134, 13348-13356; (b) Smith, S. R.; Douglas, J.; Prevet, H.; Shapland, P.; Slawin, A. M. Z.; Smith, A. D. J. Org. Chem. 2014, 79, 1626-1639; (c) Morrill, L. C.; Smith, S. M.; Slawin, A. M. Z.; Smith, A. D. J. Org. Chem. 2014, 79, 1640-1655. 6. (a) Liu, G.; Shirley, M. E.; Van, K. N.; McFarlin, R. L.; Romo, D. Nature Chem. 2013, 5, 1049-1057; (b) Fukata, Y.; Asano, K.; Matsubara, S. J. Am. Chem. Soc. 2015, 137, 5320-5323; (c) Robinson, E. R. T.; Fallan, C.; Simal, C.; Slawin, A. M. Z.; Smith, A. D. Chem. Sci. 2013, 4, 2193-2200; (d) Pandiancherri, S.; Ryan, S. J.; Lupton, D. W. Org. Biomol. Chem. 2012, 10, 7903-7911; (e) Abbasov, M. E.; Hudson, B. M.; Tantillo, D. J.; Romo, D. J. Am. Chem. Soc. 2014, 136, 4492-4495. 7. (a) Sagamanova, I.; Carles Rodríguez-Escrich, C.; Molnár, I. G.; Sayalero, S.; Gilmour, R.; Pericàs, M. A. ACS Catal. 2015, 5, 62416248; (b) Pericàs, M. A.; Castellnou, D.; Rodríguez, I.; Riera, A.; Solà, L. Adv. Synth. Catal. 2003, 345, 1305-1313; (c) Castellnou, D.; Solà, L.; Jimeno, C.; Fraile, J. M.; Mayoral, J. A.; Riera, A.; Pericàs, M. A. J. Org. Chem. 2005, 70, 433-438; (d) Martin-Rapun, R.; Sayalero, S.; Pericàs, M. A. Green Chem. 2013, 15, 3295-3301; (e) Popa, D.; Marcos, R.; Sayalero, S.; Vidal-Ferran, A.; Pericàs, M. A. Adv. Synth. Catal. 2009, 351, 1539-1556; (f) Kasaplar, P.; Riente, P.; Hartmann, C.; Pericàs, M. A. Adv. Synth. Catal. 2012, 354, 29052910; (g) Fan, X.; Rodríguez-Escrich, C.; Wang, S.; Sayalero, S.; Pericàs, M. A. Chem. Eur. J. 2014, 20, 13089-13093. 8. Izquierdo, J.; Pericàs, M. A. ACS Catal. 2016, 6, 348-356. 9. (a) Elfahham, H. A.; Abdel-Galil, F. M.; Ibraheim, Y. R.; Elnagdi, M. H. J. Heterocycl. Chem. 1983, 20, 667-670; (b) Khan, M. A.; Cosenza, A. G.; Ellis, G. P. J. Heterocycl. Chem. 1982, 19, 10771085; (c) Hofmann, B.; Barzen, S.; Rödl, C. B.; Kiehl, A.; Borig, J.; Živković, A.; Stark, H.; Schneider, G.; Steinhilber, D. J. Med. Chem. 2011, 54, 1943-1947; (d) Rudolph, J.; Chen, L.; Majumdar, D.; Bullock, W. H.; Burns, M.; Claus, T.; Dela Cruz, F. E.; Daly, M.; Ehrgott, F. J.; Johnson, J. S.; Livingston, J. N.; Schoenleber, R. W.; Shapiro, J.; Yang, L.; Tsutsumi, M.; Ma, X. J. Med. Chem. 2007, 50, 984-1000. 10. Huang, L.-J.; Hour, M.-J.; Teng, C.-M.; Kuo, S.-C. Chem. Pharm. Bull. 1992, 40, 2547-2551. 11. Kuo, S. C.; Huang, L. J.; Nakamura, H. J. Med. Chem. 1984, 27, 539-544. 12. Ghorab, M. M.; Ragab, F. A.; Heiba, H. I.; El-Hazek, R. M. Eur. J. Med. Chem 2011, 46, 5120-5126. 13. Foloppe, N.; Fisher, L. M.; Howes, R.; Potter, A.; Robertson, A. G. S.; Surgenor, A. E. Biorg. Med. Chem. 2006, 14, 4792-4802. 14. Mandha, S. R.; Siliveri, S.; Alla, M.; Bommena, V. R.; Bommineni, M. R.; Balasubramanian, S. Bioorg. Med. Chem. Lett. 2012, 22, 5272-5278. 15. (a) Cassani, C.; Melchiorre, P. Org. Lett. 2012, 14, 5590-5593; (b) Tan, B.; Candeias, N. R.; Barbas, C. F. Nature Chem. 2011, 3, 473-477; (c) Tan, B.; Candeias, N. R.; Barbas, C. F. J. Am. Chem. Soc. 2011, 133, 4672-4675; (d) Jiang, X.; Shi, X.; Wang, S.; Sun, T.; Cao, Y.; Wang, R. Angew. Chem. Int. Ed. 2012, 51, 2084-2087; (e) Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. J. Am. Chem. Soc. 2010, 132, 15328-15333; (f) Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131, 1381913825; (g) Bergonzini, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2012, 51, 971-974; (h) Ma, M.; Zhu, Y.; Sun, Q.; Li, X.; Su, J.; Zhao, L.; Zhao, Y.; Qiu, S.; Yan, W.; Wang, K.; Wang, R. Chem. Commun. 2015, 51, 8789-8792; (i) Wang, L.; Li, S.; Blümel, M.; Philipps, A. R.; Wang, A.; Puttreddy, R.; Rissanen, K.; Enders, D. Angew. Chem. Int. Ed. 2016, 55, 11110-11114; (j) Jiang, X.; Wang, R. Chem. Rev. 2013, 113, 5515-5546. 16. (a) Enders, D.; Grossmann, A.; Gieraths, B.; Düzdemir, M.; Merkens, C. Org. Lett. 2012, 14, 4254-4257; (b) Jiang, X.; Liu, L.; Zhang, P.; Zhong, Y.; Wang, R. Angew. Chem. Int. Ed. 2013, 52, 11329-11333; (c) Yetra, S. R.; Mondal, S.; Suresh, E.; Biju, A. T. Org. Lett. 2015, 17, 1417-1420; (d) Zhang, H.-M.; Lv, H.; Ye, S. Org. Biomol. Chem. 2013, 11, 6255-6257; (e) Wang, S.; RodriguezEscrich, C.; Pericàs, M. A. Org. Lett. 2016, 18, 556-559. 17. Lin, L.; Yang, Y.; Wang, M.; Lai, L.; Guo, Y.; Wang, R. Chem. Commun. 2015, 51, 8134-8137. 18. (a) Gaunt, M. J.; Johansson, C. C. C. Chem. Rev. 2007, 107, 5596-5605; (b) Lee, A.; Younai, A.; Price, C. K.; Izquierdo, J.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. 2014, 136, 1058910592; (c) Chen, X.-Y.; Gao, Z.-H.; Song, C.-Y.; Zhang, C.-L.; Wang, Z.-X.; Ye, S. Angew. Chem. Int. Ed. 2014, 53, 11611-11615; (d) Xie, Y.; Yu, C.; Li, T.; Tu, S.; Yao, C. Chem. Eur. J. 2015, 21, 5355-5359; (e) Jin, Z.; Jiang, K.; Fu, Z.; Torres, J.; Zheng, P.; Yang, S.; Song, B.-A.; Chi, Y. R. Chem. Eur. J. 2015, 21, 9360-9363. 19. (a) Ma, G.; Nguyen, H.; Romo, D. Org. Lett. 2007, 9, 21432146; (b) Nguyen, H.; Ma, G.; Romo, D. Chem. Commun. 2010, 46, 4803-4805; (c) Liu, G.; Romo, D. Angew. Chem. Int. Ed. 2011, 50, 7537-7540; (d) Liu, G.; Shirley, M. E.; Romo, D. J. Org. Chem. 2012, 77, 2496-2500; (e) Purohit, V. C.; Matla, A. S.; Romo, D. J. Am. Chem. Soc. 2008, 130, 10478-10479; (f) Leverett, C. A.; Purohit, V. C.; Romo, D. Angew. Chem. Int. Ed. 2010, 49, 9479-9483. 20. (a) Belmessieri, D.; Morrill, L. C.; Simal, C.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2011, 133, 2714-2720; (b) Belmessieri, D.; Cordes, D. B.; Slawin, A. M. Z.; Smith, A. D. Org. Lett. 2013, 15, 3472-3475; (c) Joannesse, C.; Johnston, C. P.; Concellón, C.; Simal, C.; Philp, D.; Smith, A. D. Angew. Chem. Int. Ed. 2009, 48, 8914-8918; (d) Morrill, L. C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D. Chem. Sci. 2012, 3, 2088-2093; (e) Morrill, L. C.; Douglas, J.; Lebl, T.; Slawin, A. M. Z.; Fox, D. J.; Smith, A. D. Chem. Sci. 2013, 4, 4146-4155; (f) Yeh, P.-P.; Daniels, D. S. B.; Cordes, D. B.; Slawin, A. M. Z.; Smith, A. D. Org. Lett. 2014, 16, 964-967; (g) Stark, D. G.; Morrill, L. C.; Yeh, P.-P.; Slawin, A. M. Z.; O'Riordan, T. J. C.; Smith, A. D. Angew. Chem. Int. Ed. 2013, 52, 11642-11646; (h) Simal, C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D. Angew. Chem. Int. Ed. 2012, 51, 3653-3657; (i) Stark, D. G.; Young, C. M.; O'Riordan, T. J. C.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem. 2016, 14, 8068-8073; (j) Robinson, E. R. T.; Walden, D. M.; Fallan, C.; Greenhalgh, M. D.; Cheong, P. H.-Y.; Smith, A. D. Chem. Sci. 2016, 7, 6919-6927. 21. (a) McCusker, E. O. B.; Scheidt, K. A. Angew. Chem. Int. Ed. 2013, 52, 13616-13620; (b) Yang, L.; Huang, W.; He, X.-H.; Yang, M.-C.; Li, X.; He, G.; Peng, C.; Han, B. Adv. Synth. Catal. 2016, 358, 2970-2975; (c) Lv, H.; You, L.; Ye, S. Adv. Synth. Catal. 2009, 351, 2822-2826. 22. Kumarswamyreddy, N.; Kesavan, V. Org. Lett. 2016, 18, 13541357. 23. (a) Xu, S.; Held, I.; Kempf, B.; Mayr, H.; Steglich, W.; Zipse, H. Chem. Eur. J. 2005, 11, 4751-4757; (b) Nakata, K.; Gotoh, K.; Ono, K.; Futami, K.; Shiina, I. Org. Lett. 2013, 15, 1170-1173. Table of Contents artwork O R3 PS-BTM •Recyclable •Flow Process O O O + t-Bu O Het R3 Het R2 O N N N O R1 Ph N S N PS-BTM R1 R2 ♦ 32 examples ♦ Up to 91% yield ♦ >20:1 dr, 99% ee ♦ TON 76.8 7