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Abstract. When using a polynomial approximating function the most con-
tentious aspect of the Heat Balance Integral Method is the choice of power
of the highest order term. In this paper we employ a method recently de-
veloped for thermal problems, where the exponent is determined during the
solution process, to analyse Stefan problems. This is achieved by minimising
an error function. The solution requires no knowledge of an exact solution and
generally produces significantly better results than all previous HBI models.
The method is illustrated by first applying it to standard thermal problems.
A Stefan problem with an analytical solution is then discussed and results
compared to the approximate solution. An ablation problem is also analysed
and results compared against a numerical solution. In both examples the
agreement is excellent. A Stefan problem where the boundary temperature
increases exponentially is analysed. This highlights the difficulties that can
be encountered with a time dependent boundary condition. Finally, melting
with a time-dependent flux is briefly analysed without applying analytical or
numerical results to assess the accuracy.

Nomenclature

En(t) Least squares error
en En(t) = entα error measure
n Exponent in approximating polynomial
s(t) Position of melt front
t1 Time when ablation begins
u(x, t) Temperature

β Inverse Stefan number
δ(t) Heat penetration depth
λ Growth rate s = 2λ

√
t

1. Introduction

The Heat Balance Integral Method (HBIM) was developed by Goodman, see
[7, 12], to find approximate solutions to the heat equation and Stefan problems.
In fact it is an adaptation of the earlier method of von Kárman and Pohlhausen
for analysing boundary layer flow [24]. Since there are many exact solutions to
the heat equation the HBIM has probably had the greatest impact on Stefan
problems, where very few analytical solutions exist.
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The HBIM is primarily employed in heat transfer problems. However, ob-
viously it may be applied to diffusion and porous media problems. The heat
equation arises in viscous flow when a plate is impulsively moved in a semi-
infinite viscous fluid. It is used in probability and describes random walks. It is
also applied in financial mathematics for this reason and is a particular limit of
the famous Black-Scholes equation. It is important in Riemannian geometry and
thus topology, see for example [6, 21]. The Schrödinger equation is related to the
heat equation but has a complex diffusivity. The HBIM has recently been applied
to modelling the temperature in a thermistor [10], the process of contact melt-
ing [19], the Korteweg-de-Vries equation [18] and the ignition time of wood [25].
A much more comprehensive list is given by Hristov [9]. Any improvement in the
method can therefore have far reaching implications.

When analysing the standard thermal problem of heating a semi-infinite mate-
rial occupying x ≥ 0 and initially at a constant temperature the HBIM involves
three steps:

(1) First the heat penetration depth, δ(t) is introduced. For x ≥ δ the tem-
perature change from the initial temperature is negligible.

(2) An approximating function, typically a polynomial, is introduced. This
describes the temperature for 0 ≤ x ≤ δ(t).

(3) The heat equation is integrated over x ∈ [0, δ] to produce what is termed
the heat balance integral. This is solved to determine δ(t) and hence the
temperature.

The result of this process is to reduce the governing heat equation to a single or-
dinary differential equation for δ, which may often be solved analytically. Note,
this final stage, to determine δ, means that the heat equation is only solved in
an integral sense [2]. That is, the choice of δ ensures that the area under ut

and uxx match. This means that ut can be very different to uxx and so it is no
surprise that certain choices of u perform significantly better than others. Con-
sequently there is much debate over, and variety in, the choice of approximating
function. Goodman initially proposed a quadratic, but also briefly mentioned a
cubic. Wood [26] showed that even for the quadratic there are six distinct for-
mulations and the one employed by Goodman is generally only the third most
accurate. In fact there is a seventh formulation, see [12]. Antic & Hill [2] employ
a cubic profile in the study of diffusion in grain silos. Myers et al [20] investigate
the melting of a finite thickness block. A pre-melting solution motivates their
choice of a cubic polynomial. Mitchell & Myers [13] use a pre-melting solution
to motivate a quartic approximation to the temperature in a study of ablation.
A distinct modification to the method, known as the Refined Integral Method
(RIM), was developed in [22, 23]. This involves changing step 3 of the HBIM to
evaluating a double integral. This method is discussed in more detail later.

With the correct scaling the standard approximating polynomials may be writ-
ten in the form [9]:

u = an

(

1 − x

δ

)n

.(1)

Most authors assume n to be an integer. Braga & Mantelli [3, 4] took the next
logical step and allowed n to be a non-integer. For an ablation problem they chose
n based on matching the time to melting predicted by the exact solution and the
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approximate one. After melting they increase n to give better agreement with a
numerical solution. In fact in [13] it is shown that increasing n leads to physically
unrealistic results; for a small time the ablated material returns. Hristov [9] has
carried out a detailed study of HBIM problems with a temperature of the form
(1) and also provides a comprehensive review of previous work. He introduces
two alternative constraints to determine n. The first requires matching the flux
at x = 0 with that of an exact solution. The second matches the integral of the
exact and approximate temperatures. In both cases, and for a fixed temperature
or fixed flux boundary condition, non-integer values of n are found. Hristov
states that ‘the results oscillate around n = 3 ’. This ties in with the fact that
the majority of studies take n ∈ [2, 4]. In a separate paper Hristov [8] uses an
entropy minimization technique that also involves matching at x = 0 and so the
results reduce to those of the previous paper.

This discussion obviously leads to the question, what is the best choice of n?
All the aforementioned works take n based on a knowledge of exact or numerical
solutions, which then limits the applicability of the method. The accuracy of the
method can then usually be measured by comparison with the known solution.
In effect this makes the method redundant; if the exact or numerical solution is
already known, why look for an approximate one?

Langford [11] allowed progress to be made on one front by introducing a defi-
nition for the error, and hence a measure of the accuracy, which does not require
a known solution:

En(t) =

∫ δ

0

[

∂u

∂t
− ∂2u

∂x2

]2

dx ≥ 0 .(2)

If u is an exact solution to the heat equation then obviously En = 0 for all
time. Approximate solutions will have En > 0. Taking the square of ut − uxx

prevents the cancelling of errors of opposite sign (this cancelling is the Achilles
heel of the HBIM) and also magnifies the importance of regions where u does not
closely satisfy the heat equation [11]. Langford studied the problem where the
temperature at x = 0 is fixed and found En = ent−3/2, where en depends on n.
In the following work we will employ (2) in a different way. We will treat n as an
unknown, rather than specifying it from the start, and then use (2) to provide
an extra equation to determine n.

We will first illustrate the new method by applying it to a standard problem
of heating a semi-infinite material. We will then extend the method to the corre-
sponding Stefan problem, where melting occurs due to this heating and then give
examples of ablation, travelling wave and time-dependent flux Stefan problems.
In the travelling wave example the temperature at x = 0 increases exponentially
and the results demonstrate that the method is only applicable for small times.

2. Standard thermal problems

2.1. Fixed temperature boundary condition. To introduce the optimal ex-
ponent method we now analyse what is perhaps the simplest thermal problem
defined on a semi-infinite media, namely that of a material initially at a constant
temperature which, at t = 0, is heated to a different temperature on the boundary
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x = 0, see [6, p58]. This problem may be expressed by

∂u

∂t
=

∂2u

∂x2
u(0, t) = 1 u|x→∞

→ 0 u(x, 0) = 0 .(3)

The exact solution is

u = erfc
x

2
√

t
.(4)

As discussed in the introduction, to apply the HBIM or RIM we must first
introduce a function, known as the heat penetration depth, δ(t). For x ≥ δ
the temperature change above the initial value is negligible (although we do not
define what constitutes negligible). For this example the heat penetration depth
is defined by u(δ, t) = 0. For smoothness we also invoke ux(δ, t) = 0. If necessary
a further condition can be obtained by noting

du

dt
(δ, t) =

(

∂u

∂x

dδ

dt
+

∂u

∂t

)
∣

∣

∣

∣

x=δ

= 0 ⇒ ∂2u

∂x2
(δ, t) = 0 ,(5)

see [13]. In fact any number of similar conditions may be defined by successive
differentiation of the boundary conditions. Subject to the above boundary con-
ditions the appropriate approximating polynomial then takes the form (1) where
an = 1.

Finally we calculate the Heat Balance Integral. The standard HBIM involves
integrating the heat equation over the region x ∈ [0, δ]. Since u(δ, t) = ux(δ, t) = 0
this leads to

(6)
d

dt

∫ δ

0

u dx = −∂u

∂x

∣

∣

∣

∣

x=0

.

Substituting for u from equation (1) gives a single ordinary differential equation
for δ with solution

δ =
√

2n(n + 1)t ,(7)

where we have applied δ(0) = 0.
The RIM formulation involves integrating the heat equation twice with respect

to x
∫ δ

0

(
∫ x

0

∂u

∂t
dξ

)

dx =

∫ δ

0

(

∂u

∂x
− ∂u

∂x

∣

∣

∣

∣

x=0

)

dx .(8)

After some manipulation this leads to the main equation for the RIM

d

dt

∫ δ

0

xu dx = u(0, t) ,(9)

for further details see [12, 16, 22]. Substituting for u we find an equation for the
heat penetration depth, which has the solution

δ =
√

(n + 1)(n + 2)t .(10)
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In both methods we are left with a function δ(t) = f(n)
√

t, which depends on
the choice of the unknown exponent n. To determine this we examine the error
defined by (2). This requires expressions for the two derivatives

∂u

∂t
=

nxδt

δ2

(

1 − x

δ

)n−1 ∂2u

∂x2
=

n(n − 1)

δ2

(

1 − x

δ

)n−2

.(11)

Then evaluating the integral gives

En(t) =
n2(2n + 1)[(2n − 1)(n − 1)2 − δδt(2n − 3)] + δ2δ2

t n(2n − 3)

δ3(2n − 3)(4n2 − 1)
.(12)

This is the function we must minimise to determine n. Substituting for δ for the
HBIM we find

E(t) =
(6 n2 + 2 n4 + 2 n − 7 n3 − 1)

√

2n (n + 1)

4 (n + 1)2 (2 n − 3) (4 n2 − 1)
t−3/2 = ent

−3/2 ,(13)

where en depends solely on n. So our choice of n is based on minimizing en. For
the RIM the error is

E(t) =
n (10n5 − 39n4 + 34n3 + 27n2 − 20n − 12)

√

(n + 1) (n + 2)

4 (2n − 3) (4n2 − 1) (n + 1)2 (n + 2)2
t−3/2

= ent−3/2 ,

(14)

so again we look for a minimum of en.
To satisfy the condition uxx(δ, t) = 0 requires n ≥ 2, in which case there is a

single minimum of en for each formulation. For the HBIM we find a minimum
of en ≈ 0.0169 for n ≈ 2.235. the solution then asymptotes to 0.088 as n → ∞.
The minimum for the RIM formulation occurs for very similar n ≈ 2.218 with a
marginally smaller error, en ≈ 0.0167and an asymptote of 0.312. Note, in both
cases, n ∈ [2, 3] clarifying the popularity of the choices n = 2 or 3.

On Figure 1 we show a comparison of the exact solution against the approxi-
mate temperature from the HBIM and RIM formulations at t = 1. This means
that for the HBIM we set n = 2.235, use this value to calculate δ ≈ 3.802

√
t from

equation (7) and u is then given by (1). For the RIM we choose n = 2.218 and
use (10) to calculate δ ≈ 3.684

√
t. The approximate curves show excellent agree-

ment with the exact solution. Since en is independent of time the minimum value
of n will remain fixed, and the actual value of En ∼ t−3/2 will decrease; so we
expect this excellent agreement to continue for all time (this has been confirmed
by testing the solutions for a wide range of times t ∈ [10−4, 10]).

2.2. Constant flux and Newton cooling boundary conditions. If we
change the boundary condition at x = 0 to ux(0, t) = −1, that is a constant
flux condition then the approximate temperature has the form

u =
δ

n

(

1 − x

δ

)n

(15)

For the HBIM we find

δ =
√

n(n + 1)t(16)
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Figure 1. Plot of u(x, t) at t = 1. The exact solution is shown as
a solid line, the HBIM solution with n = 2.235 (dash-dot) and the
RIM solution with n = 2.218 (dashed)

whilst for RIM

δ =
√

2(n + 1)(n + 2)t/3 .(17)

The error integral becomes
(18)

En(t)=
n(2n+ 1) [n(2n− 1)(n− 1)2+δtδ(2n− 3)(3n− 2)]+δ2δ2

t (5n− 2)(2n− 3)

δn2(4n2 − 1)(2n − 3)
.

Note, this form is independent of whether HBIM or RIM is used. The difference
appears due to the different expressions for δ. Since δ ∼ t1/2 in both cases we
deduce En = ent

−1/2. The minimum error en and corresponding exponent values
for HBIM and RIM are (en, n) = (0.0024, 3.584), (0.0029, 3.822) respectively.

If we apply a cooling condition at the boundary, ux(0, t) = u(0, t) − 1, then

u =
δ

n + δ

(

1 − x

δ

)n

.(19)

Then δ satisfies

t =
1

n(n + 1)

[

δ2

2
+ nδ − n2 ln

n + δ

n

]

,(20)

for the HBIM formulation and

t =
1

(n + 1)(n + 2)

[

δ2 + nδ − n2 ln
n + δ

n

]

,(21)

for the RIM. In this case the loss of the simple square root behaviour means that
the minimisation process predicts an n which varies with time. In [16] it is shown
that En is a decreasing function of time hence to minimise the error overall the n
value corresponding to t = 0 should be applied. In the limit t → 0 the condition
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at the boundary become ux(0, t) → −1 and the appropriate choice of n is clearly
that obtained from the constant flux analysis.

2.3. Discussion. So far we have applied the method to the temperature over a
semi-infinite domain subject to the three standard boundary conditions. When
the temperature at the boundary is fixed the optimal value of n is close to 2
for both HBIM and RIM and the errors are similar with either method. Con-
sequently the usual choice of the HBIM with n = 2 will give accurate results.
With a constant flux boundary condition the HBIM and RIM lead to n ≈ 3.6, 3.8
respectively, again with similar errors. In this case the error decreases from that
obtained by using the HBIM with n = 2 by a factor of more than 30. In the
final case, applying Newtons law of cooling, we find that the optimal n varies
with time. Since the maximum error occurs near t = 0, where the cooling condi-
tion reduces to the constant flux condition, the improvement is similar to in the
constant flux case. These examples are covered in more detail in [18].

In summary, with a constant temperature boundary condition the RIM with
n = 2.218 gives the most accurate approximation. With constant flux and cooling
conditions the HBIM with n = 3.584 will be most accurate.

3. Application to Stefan problems

The HBIM and RIM can provide simple solutions to standard thermal prob-
lems. However, their greatest impact is in the field of Stefan problems, where very
few analytical solutions are known. We now apply the method of the previous
section to three problems involving a change of phase. These highlight different
challenges and results for the new method. In the first we consider the classical
problem of the melting of a semi-infinite material at solidus. In the second we
re-examine the ablation problem of [3, 4, 20]. Finally we look at the classical
travelling wave solution.

Note, in the preceding section we restricted our attention to cases where n ≥ 2
in order to permit solutions that merge smoothly with the constant far field
temperature. In the following we do not have such a restriction. In fact we
expect non-zero gradients and second derivatives since it is the jump in gradient
that drives the interface motion. In the following example we will see that n ≈ 1.8
provides the best results.

3.1. Melting of a semi-infinite material at the solidus. Consider a semi-
infinite material initially at the solidus, occupying x ≥ 0. At t = 0 the point
x = 0 is instantaneously heated to a constant temperature greater than the
solidus. The material subsequently melts and the position of the melt front is
denoted by x = s(t). The non-dimensional problem is described by

∂u

∂t
=

∂2u

∂x2
0 < x < s(t)(22)

u(0, t) = 1 u(s, t) = 0 β
ds

dt
= − ∂u

∂x

∣

∣

∣

∣

x=s

.(23)

This has the exact solution

(24) u(x, t) = 1 −
erf

[

x/(2
√

t)
]

erf(λ)
, s(t) = 2λ

√
t ,



8 T. G. MYERS

where λ satisfies the transcendental equation

(25)
√

πβλ erf(λ)eλ2

= 1 .

To solve this problem using the HBIM or RIM the approximating function is
now expressed in terms of the melt front s (since the material is at the solidus
we cannot define a δ). We are unable to use a single term model of the form (1)
since, for n > 1, this gives ux(s, t) = 0 and the melt front is stationary, while
for n < 1 the front velocity is infinite. Consequently, we augment the expression
with the simplest usable function, namely a linear function

u = a
(

1 − x

s

)

+ (1 − a)
(

1 − x

s

)n

.(26)

This form satisfies u(0, t) = 1, u(s, t) = 0. At x = s the gradient ux = −a/s, so
for a positive front velocity we require a > 0.

For the HBIM we integrate the heat equation for x ∈ [0, s] to give

d

dt

∫ s

0

u dx = ux(s, t) − ux(0, t) .(27)

We calculate ux(0, t) and the integral of u using (26). The expression for ux(s, t) =
−βst is replaced using the Stefan condition. Note we could also calculate ux(s, t)
via the expression (26), this is one of the different formulations discussed in
[12, 26]. We choose to use the Stefan condition to specify ux since this was shown
to be the most accurate in [12]. This leads to

s
ds

dt
=

2(n + 1)(a + (1 − a)n)

2 + an − a + 2β(n + 1)
.(28)

The Stefan condition may be written

s
ds

dt
=

a

β
.(29)

Assuming a and n are constant gives s =
√

2at/β. Combining equations (28)
and (29) gives a quadratic for a

2(n + 1)(a + (1 − a)n)

2 + an − a + 2β(n + 1)
=

a

β
.(30)

The problem therefore reduces to simply solving (30) for a, which in turn deter-

mines s =
√

2at/β and therefore u through (26). With a and s known in terms
of n and β we may calculate En.

The RIM leads to
d

dt

∫ s

0

xu dx = 1 + sux(s, t) = 1 − βs
ds

dt
.(31)

Evaluating the integral and rearranging

s
ds

dt
=

3 (n + 2) (n + 1)

3an + an2 − 4a + 6 + 3β(n + 1)(n + 2)
=

a

β
.(32)

So again we solve a quadratic for a and determine n by minimizing en.
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To calculate En we need expressions for ut and uxx, these are
(33)
∂u

∂t
=

xst

s2

[

a + n(1 − a)
(

1 − x

s

)n−1
]

∂2u

∂x2
=

(1 − a)n(n − 1)

s2

(

1 − x

s

)n−2

,

which involves the three unknowns a, n, s. Using a computer algebra package,
such as Maple, it is a simple matter to then calculate En. The expression is
cumbersome, so we do not write it down here. However, it is worth noting that
as in the example of §2.1 it has a denominator involving sst. As we will see
later s ∝ t1/2 and so sst is independent of time. The numerator involves s3,
consequently we may write En = ent−3/2. The minimum value of en therefore
depends on n and β and consequently we find that the optimal n varies with β.

1.8 2 2.2 2.4 2.6 2.8 3
0

0.05

0.1

0.15

0.2
e

n

n

Figure 2. Plot of en for the melting of a semi-infinite material
at solidus with β = 1, for the HBIM formulation (dashed line) and
the RIM formulation (solid line).

In Figure 2 we plot en for β = 1. We allow n < 2 since for this problem we do
not require the temperature to join smoothly to a constant solution. However,
singularities exist at n = 1/2, 3/2. The minimum of en and corresponding value
of n are (0.01, 1.794), (0.01, 1.798) for the HBIM and RIM formulations respec-
tively. On Figure 3 we show the temperature profiles predicted by the exact and
approximate methods at t = 0.1 (again for β = 1). The HBIM solution is the
dotted line slightly above the solid line of the exact solution. The dashed line of
the RIM solution shows excellent agreement, and is only distinguishable from the
exact solution over a small region. In this case, since we can obtain an expression
for en the appropriate value of n to minimise En will not depend on time and
we expect the error in temperature prediction, En(t), to decrease with time. The
variation of n with β is relatively small for realistic β; for β ∈ [0.7, 50] we find n
decreasing in the range [1.804, 1.765] for HBIM and [1.809, 1.769] for RIM.

The most important quantity of the Stefan problem is the position of the
moving front; this is shown in Figure 4 for β = 1. Five curves are plotted,
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Figure 3. Comparison of u(x, t) at t = 0.1 for exact (solid line),
RIM (dashed) and HBIM (dotted) solutions.
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t

s(t)

Figure 4. Comparison of s(t) predicted by exact and RIM with
n = 1.798 (solid line), HBIM with n = 1.794 (dashed) and HBIM
with n = 2, 3 (dotted and dash-dot lines) solutions.

although only four are visible. The solid line incorporates both the RIM and
exact solutions which are indistinguishable, the dashed line is the HBIM solution
with n = 1.794. The two lines above this are the standard HBIM solutions with
n = 2 and 3, shown as dotted and dash-dot lines. The close correspondence
between the optimal RIM and the exact solution may be inferred by comparing
the expressions for s, where we see that for the exact solution s = 2λ

√
t, for the

approximate solutions s =
√

2at/β. The percentage error between 2λ and
√

2a/β
for the optimized RIM solution is 0.02%. The percentage errors for optimized
HBIM and using n = 2, 3 are 1.5%, 2.65% and 6.1%, that is, the reduction in
error gained by using the optimized RIM over the HBIM with n = 3 is a factor
of over 300.
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Figure 5. Variation of en with β for the RIM (solid) and en/100
for HBIM (dashed) formulation.

It is well-known that the accuracy of HBIM and RIM solutions depends on
the value of β [12, 26]. The actual value of β is given by β = (ρs/ρl)Lm/(cl∆u),
where ρ represents the density of the solid or liquid phase, Lm is the latent
heat of melting, cl the heat capacity of the liquid and ∆u the temperature drop
us − ui. For an ice-water system appropriate values for these constants may be
found in [15, 17]. If we assume a maximum temperature difference ∆u = 100
then β ≥ 0.71. Alexiades & Solomon [1] state that for water and paraffin wax
typically β ∈ [1, 10], for metals β ∈ [0.1, 1].

For the current problem the HBIM error, whilst small, is two orders of magni-
tude larger than the RIM error, consequently on Figure 5 we show the minimum
value of en for the RIM and en/100 for the HBIM formulations with β ∈ [0.5, 10].
The error for the RIM peaks close to β = 1 (with a maximum around 0.024) and
then steadily decreases, at β = 10 the error is around 0.001. The example we
show in Figure 4, with β = 1, clearly shows excellent agreement with the exact
solution but, since the error is largest β ≈ 1, the approximate solution actually
shows close to the worst agreement with the exact solution that we could present.
In fact one reason for plotting solutions for this value of β is that for larger β it
is difficult to distinguish any of the curves.

3.2. Ablation due to a constant flux. Unlike the thermal problems of §2 the
previous example had no δ(t), since for x > s the temperature u = 0. So in the
following example we choose a case involving both s(t) and δ(t).

Consider a material occupying x ≥ 0, initially at temperature u(x, 0) = 0. At
time t = 0 a constant flux is applied at x = 0, this heats the material up to the
ablation temperature, u = 1, after which the ablated material is removed and
the remaining material occupies x ≥ s(t). Consequently this problem occurs in
two distinct stages. In the first the material has a fixed boundary and proceeds
as the constant flux example of §2. In the second stage the boundary s(t) moves
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while the boundary temperature remains at the ablation temperature. Braga &
Mantelli [3, 4] study this problem using n = π/(4 − π) in the initial heating up
phase and subsequently n = 7 during ablation. Mitchell & Myers [13] study the
same problem and take n = 4 in both cases. They also show that switching the
exponent once ablation starts is only valid provided the second exponent is not
greater than the initial exponent. If this is violated then for a small period the
ablated material returns. Comparison with numerical results in [13] shows that
n = 4 appears to give the best results for small times after ablation commences,
n = 7 is subsequently better but then the error grows. These results indicate
that n = n(t). This will be confirmed in our subsequent analysis.

The initial heating up phase is simply the constant flux case of §2.2. This ends
at time t1 when the boundary reaches the ablation temperature, which we have
conveniently scaled to be u(0, t) = 1. With the temperature given by equation
(15) we find an expression for δ1 = δ(t1) = n. We require δ1 to provide an initial
condition for δ in the ablation stage. Taking the relations for δ(t), equations
(16, 17), means that for the HBIM formulation t1 = n/(n + 1). For the RIM
t1 = 3n2/(2(n + 1)(n + 2)).

Once ablation starts the material occupies x ≥ s(t). At x = s we have u = 1,
while the Stefan condition is

β
ds

dt
= 1 +

∂u

∂x

∣

∣

∣

∣

x=s

.(34)

For the approximate solutions we also set u = ux = 0 at x = δ and find a
temperature of the form

u =

(

δ − x

δ − s

)n

.(35)

To apply the HBIM we integrate over x ∈ [s, δ] to find

d

dt

∫ δ

s

u dx +
ds

dt
= − ∂u

∂x

∣

∣

∣

∣

x=s

.(36)

Substituting for u and evaluating the integral leads to

dδ

dt
+ n

ds

dt
=

n(n + 1)

δ − s
.(37)

The Stefan condition provides a second equation for the unknowns

β
ds

dt
= 1 − n

δ − s
.(38)

Eliminating the denominator δ − s in the two equations results in an equation
that can be integrated immediately

δ + (n + (n + 1)β)s = (n + 1)(t − t1) + δ1 .(39)

This allows us to eliminate δ in one of the differential equations and integrate a
single equation numerically (for a given n).
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Figure 6. Plot of En for t = 2t1, 5t1.

When calculating En we note that the temperature is defined over x ∈ [s, δ] so
the integral must be evaluated over this domain (rather than x ∈ [0, δ] as in the
previous problems). The necessary derivatives are
(40)
∂u

∂t
= nδt

(δ − x)n−1

(δ − s)n
− n(δt − st)

(δ − x)n

(δ − s)n+1
,

∂2u

∂x2
= n(n− 1)

(δ − x)n−2

(δ − s)n
.

En is then calculated numerically after the δ’s have been found. Given that
there is no closed form solution for s and δ it seems unlikely we can express
En = entα. To demonstrate this in Figure 6 we plot the numerical solution for
En for two times, t = 2t1, 5t1 and find that the value of n that minimizes the
function changes from 3.136 to 8.154. So n is an increasing function of time.
However, an important feature of this solution is that although the optimal value
of n increases with time the error decreases. For example, at 2t1 the best value
is n = 3.136 with En(2t1) = 0.001. At t = 5t1, even though the error is a
minimum at n = 8.154, En(5t1) ≈ 10−5. In practice we can obtain good results
by minimizing the error for small time (so keeping n low) and for large times any
value of n greater than say 3.5 will retain a small error. As noted in [13] we cannot
increase the value of n from pre- to post-ablation. Given that the optimal n from
the pre-ablation is n = 3.584 then we can safely use this for all time knowing that
it provides the best solution for pre-ablation and a small error for post-ablation.
In Figure 7 we show the evolution of s(t) for the two cases n = 3.584, 8.154 and
compare these with a numerical solution obtained using the method described in
[13]. The numerical solution is shown as a solid line, with n = 3.584 as a dashed
line and n = 8.154 as a dotted line. An improved numerical method for dealing
with single phase Stefan problems, such as ablation is described in [14]. We only
take a small variation in time, since this allows us to see the difference in curves
more easily. If we take the final time for example as 10t1 then the larger scale
results in three barely distinguishable curves. Even with the small time range
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the curves are clearly very similar and so in Figure 7b we show a close-up of the
early time solution, where it may be seen that for n = 8.154 the melt position
initially becomes negative and then stays below the exact solution, for larger
times it approaches the numerical solution. The solution for n = 3.584 is almost
indistinguishable from the exact solution for small times but moves above the
numerical solution as time increases. If we take even larger times the curves do
not diverge from the numerical one, a fact that could be inferred from the plot
of En which decreases with time.
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Figure 7. a) Plot of s(t) calculated by numerical solution (solid
line) and HBIM with n = 3.584 (dashed) and n = 8.154 (dotted),
t ∈ [t1, 4t1] b) blow-up for small times

The RIM formulation leads to δ1 = n, t1 = 3n2/(2(n + 1)(n + 2)) and

d

dt

∫ δ

s

xu dx + s
ds

dt
=

nδ

δ − s
+ 1 − n(41)

which replaces equation (36). Again we find that the error depends on time and
conclude that the optimal n comes from pre-ablation. Taking n = 3.822 results
in a melt rate almost indistinguishable from the HBIM curve shown in Figure 7.

3.3. Example with growth rate ∝ t: a cautionary tale. We now look for
a travelling wave solution in terms of the variable η = x − ct. The result is a
solution of the form

(42) u(x, t) = β
(

e−c(x−ct) − 1
)

, s(t) = ct .

Consequently we can look for solutions using the approximate method subject to
the following time-dependent boundary conditions at x = 0:

(43) u(0, t) = β
(

ec2t − 1
)

.

So, for this example the melt front moves with a constant velocity. In order to
achieve this an exponentially increasing temperature is applied at the origin. One
can then view this example as having mathematical interest but, except for small
times, it is physically unrealistic. Caldwell & Kwan [5] study this problem with
β = c = 1. They also study a number of other problems and compare various
numerical methods and a linear discretised HBIM. However, they do not present
results for the HBIM approach to this problem, stating it is useful for situations
with a constant boundary condition but difficult to extend to time-dependent
ones. Mitchell & Myers [12] find solutions using HBIM, RIM and a modified
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RIM up to non-dimensional time t = 1. In each case the cubic approximating
function is more accurate than the quadratic.

As in §3.1 we use an approximating function with a linear term

u = a
(

1 − x

s

)

+ b
(

1 − x

s

)n

,(44)

where

b = β
(

ec2t − 1
)

− a .(45)

This satisfies the boundary conditions at x = 0, s(t). The HBIM gives

d

dt

[(

a

2
+

b

n + 1

)

s

]

= −β
ds

dt
+

(

a

s
+

bn

s

)

(46)

and the Stefan condition is

ds

dt
=

a

s
.(47)

So we have two equations for two unknowns, a and s (note we cannot assume a
is constant for this problem).

The RIM formulation leads to

d

dt

∫ s

0

xu dx = u(0, t) + sux(s, t)(48)

and so

d

dt

[(

a

6
+

b

(n + 1)(n + 2)

)

s2

]

= b .(49)

After minimizing En again we find that n varies with time. However, in this
case the error grows in time. Given that the temperature at x = 0 increases
exponentially this is not too surprising. Consequently for early times we can find
relatively accurate solutions, but as time increases the accuracy decreases. For
example, when the end time t = 1, for the RIM formulation, we find n = 2.39
and En(1) = 0.036, when t = 2, n = 3.05 and En(2) = 0.44, with t = 4, n = 5.1
and En(4) = 11.43. So the error grows rapidly as t increases (presumably expo-
nentially). The HBIM approach has a similar increase in the error. Consequently
one should only use this approach for small times. In Figure 8 we show two plots
for s(t) up to times t = 1 and 4. In Figure 8a) we take n = 2.386 and 2.392 for the
RIM and HBIM results respectively, corresponding to errors of 0.036, 0.04. The
small value of En indicates that the results are very close to the exact solution.
We could use these values of n for smaller time calculations and obtain errors
of this magnitude or we could reduce the error by recalculating n. However, for
larger times we will need larger values of n to prevent the error from increasing
too rapidly. In Figure 8b) we take n = 5.1 and 6.2 (the values calculated for
t = 4), corresponding to minimum errors of 11.4, 9.4. Now the large value of En

indicates that the results are not very accurate. As time increases our ability to
track the moving front deteriorates and the error grows.
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Figure 8. a) Plot of s(t) up to a) t = 1, b) t = 4 solid line is the
exact solution, dashed is the RIM and dash-dot the HBIM

3.4. Melting with a time-dependent flux. In all of the previous examples we
have dealt with problems where either an exact solution is known, or a numerical
solution can easily be calculated. We now construct and solve a problem without
resorting to a known solution.

Consider the situation described in §3.1, but with the boundary condition
u(0, t) = 1 changed to ux(0, t) = −1/s(t). We choose this form for two reasons.
Firstly, the expression for u is relatively simple with this choice and secondly, it
is difficult to analyse either analytically or numerically.

Taking a profile of the form (26) and applying ux(0, t) = −1/s(t) gives

(50) u = (1 − nan)
(

1 − x

s

)

+ an

(

1 − x

s

)n

.

The heat balance integral is

(51)
d

dt

[{

β +

(

1 − nan

2

)

+
an

n + 1

}

s

]

=
d

dt
(γ1s) =

1

s
,

where γ1 represents the terms in curly brackets, hence s =
√

2t/γ1. From the

Stefan condition s =
√

2(1 − nan)t/β. Equating these two expressions provides

a quadratic for an in terms of n, β. Using Maple we find En = ent
−3/2 and

consequently determine n = 1.718 by minimising en (with a minimum value
en = 0.0065). The small value of en indicates that this solution will be very
accurate.

For the RIM formulation

(52)
d

dt

[{

1 − nan

6
+

an

(n + 1)(n + 2)

}

s2

]

=
d

dt
(γ2s

2) = nan

and s =
√

ant/γ2. In this case en = 0.0072, so we expect the RIM to be slightly
less accurate, and n = 1.718 when β = 1. We do not present a comparison of
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results for this problem, since clearly s takes the standard square root form (see
figure 4) and the two sets of results are very similar.

3.5. Discussion. Four Stefan problems have been discussed in this section. The
results can be summarized as follows:

(1) Fixed temperature boundary condition: both HBIM and RIM are opti-
mized for n ≈ 1.8. The error obtained through the HBIM with n = 2 is
also relatively small (since the choice n = 2 is close to the optimal value).
However, even with this small variation in n, the error in the growth rate
reduces by a factor of 130 when using the optimized RIM rather than the
HBIM with n = 2. It is also worth noting that the optimum n varies
weakly with β (around a 2% variation for realistic β).

(2) Ablation due to constant flux: we find n = n(t) and it appears best to
employ the HBIM with n ≈ 3.6 throughout the calculation. Using this
value will decrease the error in the position of the moving front by a factor
of around 20 when compared to the HBIM with n = 2.

(3) Travelling wave: n is a function of time and the error grows with t. In
this case heat balance methods should only be trusted for small times.

(4) Flux ∝ 1/s: the best method here is to use the HBIM with n ≈ 1.7.
When β = 1 the error en ≈ 0.0065. Using n = 2 gives en ≈ 0.013 (i.e. the
error is doubled).

4. Conclusion

The aim of this work was to determine the optimal value of the exponent n for
certain thermal and phase change problems, where optimal has been defined in the
sense of the Langford criteria of minimising the square of the heat equation. No
doubt other criteria could be used, however Langford’s method has the advantage
over standard error measures in that it does not require knowledge of an exact
solution. A definite disadvantage is observed in the cases where we could write
En(t) = entα. The value of α was always negative hence as t → 0, En → ∞
even though the approximation remains good. So, En can provide a rather poor
indication of the accuracy. The value of en appears to be a more reliable indicator,
but this does not exist for every problem. Perhaps then some normalisation of En

would resolve the issue, i.e. we define En =
∫

(ut−uxx)
2 dx/

∫

u2
xxdx for example.

We have demonstrated the method with a standard thermal problem and four
Stefan problems. For the thermal problem and the first two Stefan problems the
agreement with exact or numerical solutions was excellent. The third case, with
an exponentially growing heat source at the origin proved to be amenable to the
method only for small times. With the fourth example the value of en indicated
that the solution was accurate.

In Table 1 we summarise the cases and the value of n that should be used to
obtain the best results for three standard thermal problems and also the three
Stefan problems where the method worked well. Note, although we have worked
throughout with non-dimensional quantities the results hold for the equivalent
dimensional systems. For most situations the error when using HBIM or RIM
is similar, provided the correct value of n is used. The exception is the classical
problem of melting a semi-infinite material at the solidus. In this case the RIM
should be used, which shows errors two orders of magnitude less than HBIM.
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The optimal value of n depends on the parameter β, however for realistic β the
variation is small. We have quoted the values for β = 1 in the Table. For the
ablation problem we choose n from the pre-ablation problem. The maximum
error occurs just after ablation begins, at time t ≈ t1: in the table we show the
error when t = 1.001t1. If we were to use the value of n that minimizes En then
the maximum error would be O(0.03) in both cases, however, then we must vary
n as the ablation progresses.

For the problem where u(0, t) ∼ et we cannot in general define an optimal n.
Instead the best strategy appears to be to determine n for the final time and use
this throughout the calculation. However, the error will grow with t and so this
result should not be assumed accurate for large times.

Boundary condition HBIM n RIM n Error, HBIM Error, RIM

Thermal problems

Fixed temperature 2.235 2.218 en = 0.0169 en = 0.0167

Constant flux 3.584 3.82 en = 0.0024 en = 0.0029

Cooling condition n ≤ 3.58 n ≤ 3.82 En(t) < 0.02 En(t) < 0.02

Stefan problems

semi-∞ at solidus,
fixed temp⋆

n ≈ 1.79 n ≈ 1.8 en < 2 en < 0.025

semi-∞ at solidus,
ux(0, t) = −1/s⋆

1.716 1.724 en = 0.0066 en = 0.0069

Ablation, constant
flux

3.584 3.82 En(t) < 0.11 En(t) < 0.13

Table 1. Optimal values of n for different thermal problems
(⋆ requires extra term in temperature expression, see §3.1)

We have not carried out an exhaustive study of applications of the integral
methods, since there are too many of these. However, we have illustrated the
application of the new method to typical problems and hope this is sufficient to
guide the user in other applications. The majority of examples shown in this
paper were compared to existing solutions. This was done merely for the purpose
of demonstrating the accuracy of the method. In the final example we have no
analytical or numerical solution and so must trust to the method. The small
value of en indicates that the chosen polynomial is a good approximation. In
general this is how the method would ideally be used, namely, one merely finds
the value of n that minimises En and uses this throughout the calculation, safe
in the knowledge that the approximation will not improve with a different choice
of n.

One of the goals of this paper was to remove the ambiguity in the choice of
approximating function. For thermal problems this seems to have been achieved.
For Stefan problems some ambiguity remains. Two of the cases studied required
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the addition of an extra term in the temperature expression. We used a linear
function for simplicity; it drops out of the expression for uxx required in the error
calculation. Other terms could be employed. When the optimal n varies with
time we have chosen the value corresponding to t = 0 (or t1 if melting is not
immediate). This seems appropriate when En is a decreasing function of time, so
we attempt to minimize the maximum error. When En grows with time it is not
so clear what is the best choice. We took the value of n to minimize the error at
the final time. This choice may be open to debate.
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