

21st ISES Annual Meeting | Baltimore | Oct 23-27, 2011

Institute of Energy Economics and the Rational Use of Energy

Outline

1. Objectives

2. dynamiCROP Model

3. Parameterization

4. Conclusions

Structure & Features
Multicrop Aspects
Environmental Fate
Human Exposure

Evaluation
Compartments
Other Aspects
Regression Model

Objectives

Needs ...

- Pesticides residues in various food crops
- Species-specific plant characteristics
- Regression for use in spatial models

But ...

- No existing multicrop model
- No flexibility for crop-specific aspects
- No model simple enough for integration

Thus ...

- Dynamic crop-specific multicrop model
- Flexible analytical mass balance solution
- System analysis and parameterization

dynamiCROP – Structure

dynamiCROP – Features

System

- Dynamic over time, analytical solution
- Flexible set of connected compartments
- Intermittent character of rain considered

Crop aspects

- Protected (hull) and unprotected fruit
- Exchange between surface and interior
- Logistic growth for stem and root
- Complex growth for leaf area and fruit
- Crop-specific intake fractions

Exposure

Crop-specific food processing

Multicrop Aspects – Crops

- Wheat (68% of cereals)
- Paddy rice (97% of paddy cereals)
- **Tomato** (15% of herbaceous vegetables)
- Apple (13% of fruit trees)
- Lettuce (14% of leafy vegetables)
- Potato (51% of roots and tubers)

45% of global vegetal consumption

Multicrop Aspects – Criteria

	Residues	Characteristics	Consumed	Models/Experiments
Wheat	medium	grass-like	grain	√/√
Paddy rice	medium	grass-like; paddy water	grain	√ / √
Tomato	high	herbaceous	fruit	✓/✓
Apple	high	tree-like; perennial	fruit	√ / √
Lettuce	high	herbaceous; high adsorption	leaf	✓/✓
Potato	medium	herbaceous	root/stem tuber	√/√

Crop-specific compartment characteristics, processes and food processing considered!

Fantke et al. 2011a (doi: 10.1021/es201989d)

Physical System

Modeled System

Degradation
Diffusive process
Advective process
System loss

Mass Balance

Mass balance system:

$$\frac{d\vec{m}(t)}{dt} = \mathbf{K} \, \vec{m}(t)$$

$$\mathbf{K} : \text{matrix of rate constants } k \text{ [draw]}$$

$$t : \text{time [d]}$$

 \vec{m} : vector of masses [kg]

constants k [d⁻¹]

		air	soil	• • •	leat
K :=	air	$-k_{ m air,total}$	k _{air←soil}	•••	$k_{air \leftarrow leaf}$
	soil	$k_{soil\leftarrowair}$	$-k_{ m soil,total}$		0
	•	:		•••	:
	leaf	k _{leaf←air}	0	• • •	- k _{leaf,total}

Harvest Fraction residual mass in all harvested crop parts i relative to total applied mass

$$hF = \frac{\sum_{i=1}^{n} m_i(t)}{m_{\text{app}}}$$

hF: harvest fraction [kg_{in harvest}/kg_{applied}] m_i : residual mass in compartment i [kg_{in harvest}] m_{app} : total applied mass [kg_{applied}] t: harvest time [d]

Intake Fraction

mass taken in via consumption relative to total applied mass

$$iF = hF \times PF$$

iF : intake fraction [kg_{intake}/kg_{applied}]PF : food processing factor [kg_{intake}/kg_{in harvest}]

Human Exposure

Harvest Fraction residual mass in all harvested crop parts i relative to total applied mass

$$hF = rac{\sum_{i=1}^{n} m_i(t)}{m_{\mathrm{app}}}$$

hF: harvest fraction [kg_{in harvest}/kg_{applied}] m_i : residual mass in compartment i [kg_{in harvest}] m_{app} : total applied mass [kg_{applied}] t: harvest time [d]

Model parameterization

System Analysis

(reducing complex dynamic model by linear combination of different aspects)

Analysis – Evaluation

Comparison of modeled & experimental residues [mg/kg]

Fantke et al. 2011a (doi: 10.1021/es201989d)

•••••

Analysis – Compartments

Example: cyromazine (CAS: 66215-27-8) sprayed on wheat

Analysis – Other Aspects

385 pesticides sprayed on wheat at 4 different times (n=1540)

Time to harvest / degradation residence time in grains

Regression – Equation

Linear combination

$$hF = hF'_{grain} + hF'_{grain-surface} + hF'_{soil}$$
 $+ hF'_{soil} = hF'_{a,\beta}$: regression coefficients t : time to harvest [d]

hF : harvest fraction [kg_{in harvest}/kg_{applied}]

HL: degradation half-life [d]

: degradation residence time [d]

MW: molecular weight [g/mol]

with

$$\log(hF'_{\text{grain}}) = \alpha_{\text{grain}} + \beta_{\text{grain}} \frac{t}{HL_{\text{grain}} / \ln(2)} + \beta_{\text{MW}} (MW - MW_0)$$

$$\log(hF'_{\text{grain-surface}}) = \alpha_{\text{grain-surface}} + \beta_{\text{grain-surface}} \frac{t}{HL_{\text{grain-surface}}} + \beta_{\text{MW}} (MW - MW_0)$$

$$\log(hF'_{\text{soil}}) = \alpha_{\text{soil}} + \beta_{\text{soil}} \frac{t}{\tau_{\text{soil}}} + \beta_{\text{MW}} (MW - MW_0)$$

Regression – Results

385 pesticides sprayed on wheat at 4 different times (n=1540)

t: time from application to harvest [d]

 τ : degradation residence time in grains [d]

Regression – Other Crops

Adoption of regression to other crops requires ...

 Paddy rice (paddy water aspects, Kow, solubility, etc.)

Lettuce (air/leaf exchange aspects,
 Kaw, rain rate, etc.)

Potato (soil aspects, Koc, soil matrix, pH, porosity, etc.)

Adjustment of regression!

Conclusions

dynamiCROP full model

- Crop-specific model for characterizing pesticides residues in multiple crops
- Considered crops cover 45% of global vegetal consumption
- Flexible set of compartments and analytical mass balance allow for systematic analysis of system dynamics

Parameterization

- Regression model for wheat with dependency of only 5 input variables
- Deviation from full model of factor 22 over hF range of 10 order of magnitude

Development Team

Peter Fantke (USTUTT, Germany)
Olivier Jolliet (UMICH, U.S.)
Raphaël Charles (ACW, Switzerland)
Ronnie Juraske (ETHZ, Switzerland)

Acknowledgements

Stefan Trapp (DTU, Denmark)
Cédric Wannaz (UMICH, U.S.)
Kiyotada Hayashi (AFFRC, Japan)
Stefan Reichenberger (FOOTWAYS, France)
Peter Wieland (BOSCH, Germany)
Shanna Shaked (UMICH, U.S.)

Model: http://dynamicrop.org

