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Ni-catalyzed Carboxylation of Benzylic C-N bonds with CO2 
Toni Moragas,[a] Morgane Gaydou[a] and Ruben Martin*[a],[b] 

Abstract: A user-friendly Ni-catalyzed reductive carboxylation of 
benzylic C–N bonds with CO2 is described. This protocol 
outperforms state-of-the-art carboxylation techniques of benzyl 
electrophiles by avoiding commonly observed parasitic pathways 
such as homodimerization or β-hydride elimination, thus leading to 
new knowledge in cross-electrophile events. 

Cross-electrophile reactions have recently gained considerable 
attention, becoming direct and practical alternatives to classical 
nucleophile/electrophile regimes based on stoichiometric 
organometallic reagents.[1] While the utilization of organic 
halides and homogeneous reagents has become routine in 
these endeavors,[1] the extension to other coupling partners is 
still largely underdeveloped, an important drawback when 
compared with the broad applicability of classical 
nucleophile/electrophile events.[2] Undoubtedly, new catalytic 
protocols based on unconventional, yet practical, electrophilic 
partners would be highly rewarding, thus improving our flexibility 
in synthetic design. 

 

Scheme 1. Reductive carboxylation towards phenylacetic acids. 

The utilization of carbon dioxide (CO2) as renewable C1 
synthon holds great promise to define new paradigms in 
retrosynthetic analysis.[3] Following the pioneering work of 
Osakada,[4] we[5] and others[6] have designed reductive 
carboxylation techniques of organic (pseudo)halides with CO2, 
becoming alternatives to classical routes requiring 
organometallic species.[7],[8] Despite the advances realized, a 
general route towards α-substituted phenylacetic acids, 
privileged motifs in a myriad of bioactive molecules, still remains 
elusive. It is worth noting that the current cross-electrophile 
portfolio of benzyl derivatives, including reductive carboxylation 
techniques, is unfortunately plagued by unavoidable 
dimerization, β-hydride elimination or the limited set of 

substitution patterns that can be introduced (Scheme 
1).[5e],[5f],[9],[10] Consequently, filling this gap was deemed crucial, 
particularly with non-toxic and easy to handle, yet highly reactive, 
alternative counterparts. Challenged by such perception, we 
wondered whether air and thermally stable ammonium salts, 
highly crystalline solids that are readily prepared in one-step 
from available amine precursors,[11] could improve upon 
carboxylation reactions while leading to a priori inaccessible 
building blocks via unconventional synergistic C–N 
cleavage/CO2 insertion. At the outset of our investigations, 
however, it was unclear whether such protocol could ever be 
implemented, as ammonium salts were exclusively employed in 
nucleophile/electrophile regimes using well-defined 
stoichiometric organometallic entities (Scheme 2, top).[12-14] If 
successful, such a method would represent a previously 
unrecognized opportunity for promoting C–N activation in cross-
electrophile endeavors. Herein, we describe our initial 
investigations towards this goal (Scheme 2, bottom). This user-
friendly and operationally-simple new procedure operates at 
atmospheric pressure of CO2 and outperforms all other 
carboxylation protocols of benzyl electrophiles (Scheme 1), 
demonstrating that ammonium salts are not merely substitutes 
of organic (pseudo)halides. We believe these results will pave 
the way for utilizing ammonium salts in cross-electrophile 
coupling events where homodimerization and β-hydride 
elimination pathways can´t be avoided, thus leading to new 
knowledge in synthetic design. 

 

Scheme 2. Cross-electrophile events via C-N cleavage.  

Our study began by evaluating the reaction of 1a with CO2 at 
atmospheric pressure (Scheme 3). Notably, not even traces of 
2a were detected under conditions previously employed for 
other benzyl electrophiles (Scheme 1, path b),[5e],[5f] indicating 
that the activation of C(sp3)–N bonds would be more problematic 
than anticipated. After a judicious screening of all reaction 
parameters,[15] a cocktail consisting of NiBr2·diglyme and L4, a 
bench-stable ligand prepared in multigram scale and in one-step 
operation,[15] in combination with Mn as reducing agent in DMF 
afforded 2a in 81% isolated yield (entry 1).[16] Importantly, not 
even traces of homodimerization were observed in the crude 
mixtures, constituting an important bonus when compared with 
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related carboxylation techniques (Scheme 1, path b).[5e],[5f] While 
other Ni(II) sources provided lower yields (entries 2 and 4), we 
found that Ni(COD)2 was not competent as precatalyst, 
suggesting that COD might compete with substrate binding 
(entry 3).[17] As shown in entries 5 and 6, the use of structurally 
related DMA, Zn as reducing agent or the inclusion of MgCl2 as 
additive had a deleterious effect (entries 4-7).[18] As anticipated, 
subtle differences in the ligand backbone exerted a profound 
influence on the reaction outcome. Specifically, we found an 
increased reactivity of 1,10-phenanthrolines over bipyridines or 
terpyridines, presumably due to their significant backbone 
rigidity compared to non-fused analogues. Although tentative, 
we believe that the greater activity of L4 over the L1-L6 series is 
attributed to an intimate interplay of electronic and steric effects 
of the substituents on the 1,10-phenanthroline backbone, thus 
increasing the robustness, reactivity and stability of the 
propagating Ni(0)Ln species.[19] As expected, control experiments 
revealed that all reaction parameters were critical for success 
(entry 15).[15],[20]  

 

Scheme 3. Screening of the reaction conditions. Reaction conditions: 1a (0.20 
mmol), NiBr2·diglyme (10 mol%), ligand (26 mol%), Mn (0.40 mmol), CO2 (1 
atm) in DMF (0.40 M) at 90 ºC for 72 h. [a] HPLC yields using anisole as 
internal standard. [b] Isolated yield. [c] L4 (10 mol%). 

With these conditions in hand, we focused our attention on the 
preparative scope of our Ni-catalyzed direct carboxylation of 
primary benzyl ammonium salts with CO2 (Scheme 4). 
Importantly, 1a-1n were all prepared from the corresponding 
amines in one step and used without further purification, thus 
representing a bonus from a practical standpoint. As becomes 
evident from the results compiled in Scheme 4, our synergistic 
C(sp3)–N cleavage/CO2 insertion was largely insensitive to 
electronic changes on the aromatic ring and could perfectly 
accommodate non-extended π-systems.[21] Similarly, the 
inclusion of ortho substituents posed no problems (2i-2k). The 
chemoselectivity profile was nicely illustrated by the fact that 

ammonium salts containing esters (1h), fluorides (1c), silyl 
ethers (1g) or acetals (1m), among others, were perfectly 
accommodated. Although one might argue that the inclusion of 
thioethers might be problematic due to the strong binding affinity 
of sulfur atoms to Ni centers,[22] we found that such motifs do not 
interfere with productive formation of 2j. Likewise, the presence 
of heteroaryl rings could be tolerated with equal ease (2n). This 
operationally simple procedure was also found to be scalable, 
and catalyst loadings could be reduced to 5 mol% without 
significant erosion in yield (2a; 70% yield). 

 

Scheme 4. Carboxylation of primary ammonium salts. Reaction conditions: as 
for Scheme 3, entry 1; Isolated yields, average of at least two independent 
runs. [a] 1a (1.0 mmol), NiBr2·diglyme (5 mol%). 

Prompted by the inherent limitations posed by the available 
catalytic reductive carboxylation techniques en route to α-
substituted phenylacetic acids (Scheme 1), we wondered 
whether our protocol could be extended to secondary benzyl 
ammonium salts possessing β-hydrogens. Although one might 
anticipate parasitic homodimerization or β-hydride elimination 
pathways, an issue previously observed in a myriad of cross-
electrophile endeavors of benzyl derivatives, this was not the 
case and we found that a NiCl2/L6 regime afforded 4a in 93% 
yield.[23],[24] As for Scheme 4, we found that catalyst loadings 
could be reduced to 5 mol% without deterioration in yield at 
large scale. Importantly, a number of substrates possessing β-
hydrogens could successfully be carboxylated with equal ease, 
even with sterically encumbered backbones (3h) or groups 
possessing an innate proclivity for β-hydride elimination (3e). 
Likewise, the reaction was not hampered by the inclusion of 
nitriles (4m), esters (4f, 4n), alkenes (4g) as well as ortho 
substituents (4o, 4p). Particularly noteworthy was the ability to 
couple substrates possessing β-alkyl chains other than methyl 
groups (4c-h, 4k), showcasing the utility of this process when 
compared to benzyl electrophiles or styrene derivatives 
(Scheme 1).[5e],[5f],[9] To put these results into perspective, while 
4c was obtained in 85% yield from 3c, the utilization of organic 
halides (3c-Br) or pivalate analogues (3c-OPiv) under the 
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reported optimized conditions[5e],[5f] lead to exclusive β-hydride 
elimination and dimerization. Although inherently disposed to 
intramolecular C–C bond-formations, the presence of esters (3f) 
or alkenes (3g) on the side chain did not interfere, obtaining 
exclusively 4f and 4g.[25],[26] Taken together, the results of 
Schemes 4-5 illustrate that ammonium salts, conceptually and 
practicality aside, cannot be considered as merely substitutes of 
organic halides, thus leading to new knowledge in the cross-
electrophile coupling arena.[27] 

 

Scheme 5. Carboxylation of secondary ammonium salts. Reaction conditions: 
3 (0.20 mmol), NiCl2 (10 mol%), L6 (26 mol%), Mn (0.80 mmol), CO2 (1 atm) 
in DMF (0.20 M) at 70 ºC for 16 h; Isolated yields, average of at least two 
independent runs. [a] 3a (1.0 mmol), NiCl2 (5 mol%). [b] 4d (1:1 dr). [c] 90 ºC 
for 72 h. [d] Isolated as the corresponding methyl ester upon treatment with 
TMSCHN2. 

Although a comprehensive study detailing the mechanistic 
underpinnings of this reaction should await further investigations, 
we decided to study the reactivity of Ni(0)(L4)2 (5) and Ni(I)(L4)2 
species (6). While 18-electron complex 5 could be prepared in 
quantitative yield by reacting Ni(COD)2 and L4 in benzene at 40 
ºC, 6 was prepared from 5 upon exposure to AgOTf in THF at 
rt.[15],[28] As shown in Scheme 6, both structures were 
unambiguously characterized by X-Ray crystallography.[29],[30] 
Interestingly, 5 and 6 were found to be catalytically competent 
when using 1a as substrate, delivering 2a in 77% and 76% yield, 
respectively. Intriguingly, while a non-negligible erosion in yield 
of 2a was found when reacting 1a with 5 in a stoichiometric 
fashion in the absence of Mn, no reaction took place under 
otherwise identical conditions under a 6 regime.[31] Whether 
these results indicate the involvement of single electron transfer 
processes[32-34] or comproportionation events[35] via the 

intermediacy of benzyl Ni(I) species[36] or other mechanistic 
implications is subject of ongoing investigations. 

 
In summary, we have described the first cross-electrophile 

coupling reaction via unconventional C–N cleavage/CO2 
insertion. The success is attributed to the use of a new set of 
ligands with unprecedented reactivity while preventing parasitic 
reaction pathways commonly observed in cross-electrophile 
endeavors, thus outperforming previously developed 
carboxylation events. The wide substrate scope and the 
generality of this new protocol might lead to new knowledge in 
ligand design and augurs well for implementing C–N 
counterparts in cross-electrophile events. Further investigations 
along these lines are currently underway in our laboratories. 

 

Scheme 6. Stoichiometric experiments with 5 and 6. 
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COMMUNICATION 

A novel & user-friendly Ni-catalyzed reductive carboxylation of benzylic C–N bonds 
with CO2 is described. This protocol outperforms state-of-the-art carboxylation 
techniques of benzyl electrophiles by avoiding commonly observed parasitic 
pathways, thus leading to new knowledge in cross-electrophile events.  
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