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Catalytic Intermolecular Dicarbofunctionalization of Styrenes with 
CO2 and Radical Precursors 
Veera Reddy Yatham,  Yangyang Shen and Ruben Martin* 
Abstract: A redox-neutral intermolecular dicarbofunctionalization of 
styrenes with CO2 at atmospheric pressure and carbon-centered 
radicals is described. This mild protocol results in multiple C–C 
bond-forming reactions from simple precursors in the absence of 
stoichiometric reductants, thus exploiting a previously unrecognized 
opportunity that complements existing catalytic carboxylation events.  

 Driven by the abundance and inherent synthetic potential of 
carbon dioxide (CO2) as C1 source,[1] chemists have been 
challenging to design catalytic C–C bond-formations en route to 
carboxylic acids, privileged motifs in a myriad of molecules that 
display significant biological properties.[2] Despite the 
considerable advances realized, the catalytic synthesis of 
valuable phenylacetic acids from CO2 as C1 source remains 
confined to single C–C bond formations by using stoichiometric 
metal reductants with organic (pseudo)halides (Scheme 1, path 
a)[3,4] or stoichiometric amounts of well-defined, air-sensitive, 
organometallic reagents with styrenes as coupling counterparts 
(path b).[5] Unfortunatelly, specialized ancillary ligands are 
required in the former[4] whereas a limited set of substitution 
patterns are within reach in the latter,[5] thus reinforcing the need 
for a change in strategy.  

. 

 

Scheme 1. Catalytic preparation of phenyl acetic acids from CO2 

As part of our ongoing interest in Ni-catalyzed reductive 
carboxylation techniques with CO2,[6,7] we questioned whether a 
new design principle complementary to conventional 
carboxylation protocols with improved flexibility and versatility en 
route to phenyl acetic acids could ever be implemented. In 
particular, we speculated that a redox-neutral mechanism[8] 
might enable an intermolecular dicarbofunctionalization of 
styrenes with simple radical precursors via the intermediacy of I 
(Scheme 1, bottom), thus offering new vistas for an atom-
economical incorporation of CO2 into organic matter.[9] If 
successful, such a scenario might unravel a multifaceted 
challenge, not only providing the synergistic merger of visible 
light photoredox catalysis and CO2 with p-systems,[10,11] but also 
offering an unrecognized opportunity in catalytic carboxylations 
to enable multiple, intermolecular C–C bond-formations.[12,13] 
Herein, we report the successful realization of this goal. This 
protocol operates at atmospheric pressure of CO2 without the 
need for organic (pseudo)halides[4] or stoichiometric 
reductants.[5] The method is characterized by its mild conditions 
and wide substrate scope with a range of different radical 
precursors and/or styrenes possessing a diverse set of 
substitution patterns. 
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Scheme 2. Optimization of the reaction conditions. 1a (0.20 mmol), CF3SO2Na 
(0.24 mmol), Ir photocatalyst (1 mol%), CO2 (1 bar), DMF (0.10 M) at rt for 15 
h, followed by HCl (2M) quench. [a] NMR yields using PhCF3 as internal 
standard. [b] Isolated yield. Redox potentials of Ir photocatalysts: 2a (Ered 

[IrIII/IrII] = -1.51V vs SCE in MeCN); 2b (Ered [IrIII/IrII] = -1.37V vs SCE in MeCN); 
2c (Ered [IrIII/IrII] = -1.37V vs SCE in MeCN); 2d (Ered [IrIII/IrII] = -1.41V vs SCE in 
MeCN). 

Prompted by the inherent interest of perfluorinated alkyl 
groups in drug discovery, particularly the trifluoromethyl group,[14] 
our investigations started by studying the catalytic redox-neutral 
trifluoromethylcarboxylation reaction of 1a with Langlois reagent 
(CF3SO2Na) and CO2 (1 bar) under blue light-emitting diodes 
(LEDs) irradiation at room temperature (Scheme 2).[15,16] As 
anticipated, the nature of the photocatalyst markedly influenced 
the reaction outcome, with 2a providing the best results (entry 
1).[17] Intriguingly, the use of 2b-2d resulted in significant lower 
yields of 3a. These findings might be interpreted on the basis of 
a more efficient SET from the reduced photocatalyst 2a Ered 

[IrIII/IrII] = -1.51V vs SCE in MeCN)[18] to 1,1-diphenyl 3,3,3-
trifluoropropane radical (Ered = –1.34V vs SCE in MeCN)[19] prior 
to CO2 insertion (Scheme 1, bottom).[20] As shown in entries 5-8, 
the employment of solvents other than DMF had a deleterious 
effect, resulting in lower yields of 3a. Rigorous control 
experiments revealed that all of the reaction parameters were 
crucial for the transformation to occur; indeed, not even traces of 
3a were found in the absence of light or 2a (entries 9 and 10).  

 

Scheme 3. Redox-neutral trifluoromethylcarboxylation of styrenes. Reaction 
conditions: as in Scheme 2 (entry 1). Isolated yields, average of at least two 
independent runs. [a] Reaction performed at 1.0 mmol scale (1a). [b] 2a (2 
mol%), CF3SO2Na (2.0 equiv) in DMF at 5 ºC for 15 h. [c] Isolated as the 
corresponding methyl ester upon exposure to TMSCHN2. 

Encouraged by these results, we turned our attention to 
examine the generality of our trifluoromethylcarboxylation with 
2a and CF3SO2Na (Scheme 3).[21,22] As shown, a host of 
differently substituted styrene derivatives could be used for our 
purposes. Particularly noteworthy was the observation that the 
reaction could be equally extended to a- or b-substituted 
styrenes, with the former resulting in quaternary carbon centers 
(3a-3g, 3s and 3t). These findings certainly constitute a bonus 
when compared to classical hydrocarboxylation reactions with 
CO2 that require either stoichiometric reductants or a rather 
limited set of substitution patterns on the styrene backbone.[5,11] 
The chemoselectivity profile of our trifluoromethylcarboxylation 
was illustrated by the tolerance of a variety of functional groups 
such as alkenes (3d),[23]  alkynes (3e), nitriles (3u), esters (3m, 
3q) or amides (3r), delivering the targeted phenyl acetic acids in 
good to excellent yields. While the use of aryl chlorides (3l, 3s), 
bromides (3k, 3p), tosylates (3h) or even aryl pivalates (3m) as 
coupling partners have become routine,[24] including related 
carboxylation events,[25] we found that the presence of these 
electrophilic sites did not compete with the efficacy of our 
reaction. Similarly, aryl boronates did not interfere, albeit in 
lower yields (3j).[26] These observations are particularly 
noteworthy, providing ample room for further derivatization via 
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either C–B or C-X (X = Br, Cl, OTs or OPiv) bond-cleavage, 
suggesting the viability for implementing orthogonal cross-
coupling techniques. Importantly, the reaction can be conducted 
at 1 mmol scale without a significant erosion in yield of 3a. 

 

Scheme 4. Dicarbofunctionalization of styrene derivatives using a diverse set 
of carbon-centered radical precursors. Reaction conditions: as in Scheme 2 
(entry 1). Isolated yields, average of at least two independent runs. [a] 2a (2 
mol%), CHF2SO2Na (2.0 equiv) at 5 ºC. [b] 2c (2 mol%).  [c] Isolated as the 
methyl ester upon exposure to TMSCHN2. 

In light of these results, we wondered whether our redox-
neutral dicarbofunctionalization reaction of styrenes with CO2 
could be extended to radical precursors other than 
CF3SO2Na.[27] As shown in Scheme 4, this turned out to be the 
case. Specifically, we found that difluoromethyl-containing 
phenyl acetic acids are easily within reach when using 
CHF2SO2Na under otherwise identical reaction conditions to 
those shown for CF3SO2Na (4a-4c). In light of these results, we 
questioned whether non-fluorinated radical analogues could also 
be used for similar purposes. Indeed, we found that easily 
accessible benzyl trifluoroborates (Eox = +1.1V vs SCE in 
MeCN)[28] and tert-butyl oxalates (Eox = +1.28V vs SCE in 
MeCN)[29] could be employed in our dicarbofunctionalization 
reaction. In this case, however, the more strongly oxidizing 
photocatalyst 2c (Ered [IrIII*/IrII] = +1.21V vs SCE in MeCN) was 
required, cleanly delivering 4d-4g in moderate to good yields.[30] 

Taken together, the results compiled in Schemes 3 and 4 stand 
as a testament to the prospective potential of redox-neutral 
catalysis for enabling dicarbofunctionalization reactions of p-
components with CO2 and radical precursors, representing a 
different, yet complementary, reactivity mode to existing catalytic 
carboxylation events.[31] We anticipate that these findings might 
open up new vistas for effecting otherwise inaccessible coupling 
processes involving CO2 as coupling partner. 

 
 

Scheme 5. Preliminary mechanistic studies 

The efficiency of our dicarbofunctionalization of styrenes with 
CO2 prompted us to conduct preliminary mechanistic studies 
(Scheme 5). As anticipated, “light-dark” experiments confirmed 
that our reaction required continuous visible light irradiation.[17] 
Stern-Volmer luminiscence studies demonstrated that the 
excited stated of 2a was quenched by CF3SO2Na (Eox = +1.05V 
vs SCE in MeCN)[15c] but not by 1a (Eox = +1.81V vs SCE in 
MeCN).[17,19a,32] These results suggested the involvement of a 
reductive quenching photocatalytic cycle, in which a transient 
carbon-centered radical, generated upon single electron transfer 
(SET) with the excited state of the photocatalyst, is added 
across the styrene backbone. A subsequent SET from the 
reduced photocatalyst to I (Scheme 1, bottom) might give rise to 
a benzylic carbanion that rapidly reacts with CO2.

[33,34] Although 
control experiments in the absence of CO2 resulted in 
competitive decarboxylation from 3a-Na (Eox = +1.05V vs SCE in 
MeCN),[35] trace amounts of 5, if any, were observed in the 
presence of CO2 (Scheme 5, top pathways). The intermediacy of 
transient benzyl anionic species via SET from the reduced 
photocatalyst 2a was indirectly confirmed by isotope-labelling 
studies (Scheme 5, bottom). Specifically, 6 and 7 (99%-D) were 
exclusively obtained upon exposure of 1m and 1q to CF3SO2Na 
under visible light irradiation with 2a and D2O in the absence of 
CO2, thus ruling out the participation of hydrogen atom transfer 
(HAT) with DMF. Note, however, that the available data do not 
allow us to rigorously rule out an alternative mechanistic 
scenario in which the transient benzyl radical intermediate reacts 
reversibly with CO2 followed by SET from the reduced 
photocatalyst 2a to the carboxyl radical intermediate, leading the 
final sodium carboxylate. Further mechanistic studies to unravel 
the intricacies of this transformation are ongoing. 

In summary, we have documented a catalytic intermolecular 
dicarbofunctionalization of styrenes with CO2 as C1 source and 
radical precursors. This mild and versatile protocol offers a 
reactivity principle that is complementary to classical catalytic 
carboxylations, unlocking previously inaccessible scenarios in 
the carboxylation arena based on multiple C–C bond-forming 
events from p-components and in the absence of stoichiometric 
reductants. Further work along these lines is currently underway 
in our laboratories. 
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A catalytic, redox-neutral dicarbofunctionalization of readily available styrenes with 
CO2 at atmospheric pressure has been developed. This mild protocol unlocks a 
previously inaccessible scenario that enables dicarbofunctionalization reactions of 
p-components with CO2 and radical precursors without stoichiometric reductants, 
thus offering a complementary reactivity mode to existing carboxylation events.  
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