
"This is the peer reviewed version of the following article: New vistas in transmetalation with discrete “AgCF3” 
species: Implications in Pd-mediated trifluoromethylation reactions which has been published in final form at  
https://onlinelibrary.wiley.com/doi/epdf/10.1002/chem.201802586 
 
This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-
Archiving." 

 
New vistas in transmetalation with discrete “AgCF3” species: 
Implications in Pd-mediated trifluoromethylation reactions 

Sara Martínez de Salinas,[a] Ángel L. Mudarra,[a],[b]  Jordi Benet-Buchholz,[a]  Teodor Parella,[c]  Feliu 

Maseras, [a],[d]  Mónica H. Pérez-Temprano*[a] 

Abstract: This work describes the employment of discrete “AgCF3” 

complexes as efficient transmetalating agents to PdIIto surmount 
overlooked challenges related to the transmetalation step in Pd-

catalyzed trifluoromethylation processes. We report the participation 

of a unique silver ate (Cs)[Ag(CF3)2] complex, under stoichiometric 

and catalytic conditions, in the unprecedented one-pot formation of 

PhCF3 using PhI as starting material. Moreover, we show that the 

transmetalation step, which is often ignored in these transformations, 

can also determine the success or failure of the coupling process. 

Over the past few years, organosilver(I) intermediates have 

demonstrated their potential as nucleophilic coupling partners in 

Pd-catalyzed transformations.1 However, their ability as 

transmetalating agents is far from being fully exploited, most likely 

due to their instability (e.g. photosensitivity).2 Therefore, important 

fundamental questions such as the scope of the transferred group 

or the reactivity of silver(I) ate complexes remains essentially 

unexplored. In this context, a particularly interesting test case is 

the synergistic Ag/Pd cooperation for the transfer of a CF3 moiety. 

This group is a prevalent structural motif in high-value molecules 

and organometallic scaffolds due to its unique capability to modify 

physicochemical and/or biological properties.3 A priori, the design 

of new CF3 shuttles for their use in Pd0/II-catalyzed aryl 

trifluoromethylation could seem unnecessary since the reductive 

elimination step is considered the central problem associated with 

these processes.4 However, a close look at the literature reveals 

that the transmetalation step can also dramatically hamper the C–

CF3 bond-forming reaction (Figure 1). A slow nucleophilic 

trifluoromethylation leads to undesired reactions by “mismatched” 

group exchanges.4a-b,d-e,h,5 Furthermore, CF3
– ions can displace 

the stabilizing ligands on Pd, forming inactive PdII(CF3)n 

species.4a, d-e, h-i,6  

Intrigued by these overlooked challenges, we envisioned to 

surmount these limitations by exploring “AgCF3” complexes as 

selective and rapid CF3 shuttles to PdII. We support our 

hypothesis on the well-known lability of the Ag–CF3 bond of in situ 

generated “AgCF3” species which readily form a silver(I) ate 

[Ag(CF3)2]– complex through a CF3 exchange reaction in polar 

solvents.7 Herein, we reveal the exceptional transmetalating 

activity of well-defined isolated “AgCF3” compounds to PdII metal 

centers (Figure 1), including: 1) their relative reactivity to a 

benchmark complex and their comparison to commercially 

available nucleophilic reagents; and 2) the high efficiency of 

[Ag(CF3)2]– species, only detected by NMR spectroscopy to date 

and whose reactivity has been unrecognized for decades,7b-d in 

one of the few productive PdII systems, in which the 

transmetalation has been pointed out as a challenging step. 

 

Figure 1. Exploration of trifluoromethylsilver(I) nucleophiles as efficient CF3 
shuttle to PdII systems. 

We started our study by exploring the relative reactivity of “AgCF3” 
complexes towards a PdII model system (Scheme 1). Several 
considerations were taken into account for this initial 
investigation. Firstly, (dppp)Pd(Ph)I (1; dppp = 1,3-
bis(diphenylphosphino)propane) was selected as benchmark 
complex because it contains a strong coordinating ligand that 
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prevents the formation of inactive poly(trifluoromethyl)palladium 
compounds and the resulting product (2) does not undergo Ph–
CF3 coupling.8 Secondly, only well-defined isolable 
trifluoromethylsilver(I) complexes were targeted to avoid potential 
reproducibility issues associated with in situ generated species. 
Finally, we pursued fast I-for-CF3 exchanges (< 30 minutes), to 
minimize possible undesired by-products related to long reaction 
times. 

 

Scheme 1. Requirements for the initial study 

Before exploring the CF3 group transfer from Ag to (dppp)Pd(Ph)I, 
we established as touchstone the trifluoromethylation of 1 with the 
widely used nucleophilic trifluoromethyl sources R3SiCF3 (R = 
Me,9 Et4b,h-i) in combination with CsF. After 30 minutes, we only 
observed 2 in 19% and traces using Me3SiCF3 and Et3SiCF3, 
respectively (Figure 2a).10 With these results as a reference, we 
then focused on the activity of the scarce examples of isolated 
trifluoromethylsilver(I) compounds reported in the literature to 
date: SIPrAgCF3

11 (SIPr = bis(1,3-bis(2,6-
diisopropylphenyl)imidazole-2-ylidene) and 
(bathophenanthroline)Ag(CF3).12 The treatment of (dppp)Pd(Ph)I 
with 1.5 equiv of SIPrAgCF3 (3)13 resulted in <5% yield of 
(dppp)Pd(Ph)(CF3) after 30 minutes (Figure 2a). We discarded 
the exploration of the other known LAgCF3, bearing the 
bathophenanthroline ligand,12 due to stability issues under our 
reaction conditions.14 Notably, after some experimentation, using 
bathocuproine, we were able to prepare 4 in THF, as a mixture of 
(Bc)Ag(CF3) (4a; Bc = bathocuproine) in equilibrium with an ionic 
[Ag(CF3)2]– species (4b) (Figure 2b). Initially, we hypothesized 
that the structure of 4b was [(Bc)2Ag][Ag(CF3)2], by analogy to 
related copper compounds.15 However, a detailed NMR 
spectroscopic analysis, including DOSY experiments, confirmed 
the absence of [(Bc)2Ag]+ as the cation of 4b, on the basis of the 
higher hydrodynamic radius measured for [(Bc)2Ag](SbF6) (5) 
(6.86 Å), compared to 4 (4.33 Å). Challenged by this unexpected 
outcome, we performed computational studies which 
suggested,16 as the most stable cation for 4b, a structure that 
contains the silver center coordinated to a bathocuproine ligand 
along with two molecules of THF, and a second Bc bound to the 
system through stabilizing  interactions.17 In line with the DFT 
calculations, we observed the formation of [(Bc)Ag(THF)](SbF6) 
(6), characterized by X-ray diffraction, upon exposure of 5 to THF. 
With the structural information of 4a/4b in hand, we assessed the 
reactivity of this equilibrium mixture. Gratifyingly, the 
trifluoromethylation of (dppp)Pd(Ph)I with 1.5 equiv of 4 
proceeded cleanly and quantitatively in 10 minutes to afford 2 and 
an iodo-bridged dimeric compound with Ag–Ag interactions (7) 
(Figure 2a). 

 

Figure 2. (a) Reactivity of Me3SiCF3, Et3SiCF3, 3 and 4 towards 1. (b) Synthesis 
and characterization of 4. 

Inspired by the extraordinary transmetalating ability of 4, and 
prompted by its different behavior from 3, we wondered whether 
[Ag(CF3)2]– could be a non-innocent spectator and participate as 
CF3 shuttle.7 To unravel this key question, we targeted the 
synthesis of two well-defined (Cat)[Ag(CF3)2] salts, Cat = NBu4 

(8NBu4) or Cs (8Cs) to evaluate their relative stability and reactivity. 
As shown in Figure 3, the reaction of AgOAc with 4 equiv of 
Me3SiCF3, in THF at room temperature, in the presence of 4 equiv 
of KF and 1 equiv of NBu4OAc afforded a white crystalline solid, 
8NBu4, in 83% isolated yield. Following a similar synthetic route but 
using 2 equiv of CsF instead of the combination KF/NBu4OAc, we 
synthesized (Cs)[Ag(CF3)2] in 85% yield as a yellow solid. The 
structures of both salts, that can be stored for months at –30 ºC 
under inert atmosphere in the dark,18 were unambiguously 
confirmed by NMR spectroscopy, ESI-MS and single crystal X-ray 
diffraction. It is worth mentioning the different bonding situation 
between these ionic species. The X-ray structure of 8NBu4 shows 
a linear bis(trifluoromethyl)argentate paired together with the 
NBu4 cation. In sharp contrast, 8Cs presents a rather unique 
structure, with the silver atoms forming linear chains, and the 
cesium cations interacting with twelve different fluorine atoms.19 
Having synthesized and fully-characterized these singular ionic 
species, we next investigated their efficiency as nucleophilic 
trifluoromethyl sources. To our delight, the reaction of 
(dppp)Pd(Ph)I with 0.75 equiv of either of the two silver salts 
resulted in the quantitative formation of 2 in 10 minutes, when 
using 8Cs, and in 93% yield for 8NBu4.20 
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Figure 3. Synthesis, Characterization and Reactivity of (Cat)[Ag(CF3)2] (Cat = 
NBu4, Cs)  

Next, we aimed at evaluating the real potential of our silver 
nucleophiles, focusing our attention on one of the few PdII 
systems which affords relatively facile PhCF3 coupling. In 2006, 
Grushin et al. reported the first example of C–CF3 bond-forming 
reductive elimination from an isolated Xantphos-based PdII 
derivative, synthetized by treatment of (Xantphos)Pd(Ph)F with 
Me3SiCF3.4a In this work and subsequent elegant mechanistic 
studies,4d the authors explained in detail, not only the challenges 
associated to the reductive elimination from this system, but also 
the appealing difficulties related to unfruitful attempts to achieve 
the nucleophilic trifluoromethylation of (Xantphos)Pd(Ph)I (9) 
using Me3SiCF3/CsF, such as: i) ligand displacement by CF3

–; 
and/or ii) the formation of unproductive Ph–Ph homocoupling.  
Encouraged by our previous results, we envisioned that our silver 
nucleophiles could overcome these shortcomings and provide the 
unprecedented formation of PhCF3 using 9 as starting material 
(Scheme 2). Following the same strategy used for 1, we first 
defined as touchstone the reactivity of 9 with R3SiCF3/F– (R = Me, 
Et), under comparable reaction conditions to those reported 
previously for the high-yielding formation of PhCF3 from 
(Xantphos)Pd(Ph)(CF3) (10).4a,d As expected, we observed the 
formation of the coupling product in low yields in the presence of 
CsF (14% and 20%, for Me3SiCF3 and Et3SiCF3 respectively). 
Then, we examined the reactivity of 9 with our most efficient Ag–
CF3 sources, 4a,21 8NBu4 and 8Cs. We were pleased to observe that 
all these transformations led to the targeted product in moderate 
to excellent yields (4: 70%,22 8NBu4: 42%, and 8Cs: 84%). The lower 
reactivity of (Bc)Ag(CF3) and (NBu4)[Ag(CF3)2] can be ascribed to 
unproductive pathways: 23 ligand scrambling between both metals 
which affords (Bc)Pd(Ph)(CF3) for 4,  and the formation of 
poly(trifluoromethyl)complexes and decomposition to AgIII for 
8NBu4.18,23 For 8Cs, we corroborated the rapid and selective CF3 

transfer by observing full conversion of 9 into 10 in less than 10 
minutes in C6H6 at room temperature.  

 

Scheme 2. Thermolysis of 9 with different “CF3
–” sources. aReaction conditions: 

9 (0.006 mmol), Xantphos (0.006 mmol), C6H6 (0.01 M) under Ar. b 19F NMR 
analysis using fluorobenzene or 4,4’-difluorobiphenyl as internal standards.  

Based on these promising data, we next examined the 
compatibility of 8Cs with all elementary steps involved in the 
catalytic cycle, under stoichiometric conditions in the presence of 
excess of PhI. As previously described, the accumulation of the 
oxidative addition product, (Xantphos)Pd(Ph)I, could favor the 
mismatched transmetalation shown in Figure 1. Delightfully, using 
Pd(dba)2 as Pd0 source and 30 equiv of PhI, we observed the 
desired product (11) in slightly higher yield (91%) when compared 
to the entry 5 of Scheme 2 (Scheme 3), along with the 
regeneration of the oxidative addition product.24 This result points 
out the capability of 8Cs for precluding the side-product formation 
that could potentially lead to dead-end routes under catalytic 
conditions using Xantphos as ligand. Indeed, as a proof-of-
concept, preliminary results show the formation of 11 in 56% yield 
by slow addition of 8Cs under catalytic conditions in the presence 
of 60 equiv of PhI (Scheme 3).25  
 

 

Scheme 3. Stoichiometric and catalytic reactions. a19F NMR analysis using 
fluorobenzene as internal standard. 

In summary, this work presents the potential of discrete “AgCF3”, 
including a unique (Cs)[Ag(CF3)2] salt, as CF3 shuttle to PdII 
systems. Our results, not only provide the first reported example 
of stoichiometric and catalytic one-pot formation of Ph–CF3 
starting from PhI, but also confirm the crucial role of the 
nucleophile in the transmetalation step, which can be decisive, 
enabling or preventing the product formation. Further work 
towards unravelling the potential of silver nucleophiles as 
transmetalating agents is currently ongoing in our laboratory. 
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