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Summary

Given the current expansion of cloud computing, the expected advent of the Internet of Things (IoT) and the

requirements of future 5G network infrastructures, significantly larger pools of computational and storage resources

will soon be required. This emphasises the need for more scalable data centres, capable of providing such an

amount of resources in a cost-effective way. A quick look into today’s commercial data centres shows that they tend

to rely on variations of well-defined leaf-spine/Clos Data Centre Network (DCN) topologies, offering low latency,

ultra-high bisectional bandwidth and enhanced reliability against concurrent failures. However, DCNs are typically

restricted by the use of the TCP/IP protocol suite, suffering limited routing scalability. In this work, we study the

benefits that replacing TCP/IP with the Recursive InterNetwork Architecture (RINA) can bring into commercial

DCNs, focusing on forwarding and routing scalability. We quantitatively evaluate the benefits that RINA solutions

can yield against those based on TCP/IP and highlight how, by deploying RINA, topological routing solutions can

improve even more the efficiency of the network. To this goal, we propose a rule-and-exception forwarding policy

tailored to the characteristics of several DCN variants, enabling fast forwarding decisions with merely neighbours’

information. Upon failures, few exceptions are necessary, whose computation can also profit from the known

topology. Extensive numerical results show that the proposed policy requirements depends mainly on the number
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of neighbours and concurrent failures in the DCN rather than its size, dramatically reducing the amount of

forwarding and routing information stored at DCN nodes.

Keywords: Data centre network, RINA, topological routing, scalability

1 Introduction

Seeking the highest efficiency, uptime and scalability, nowadays’ commercial Data Centres (DCs) tend to rely on small

variations of well-defined leaf-spine Data Centre Network (DCN) topologies. These topologies offer low latency and

ultra-high bandwidth for server-to-server and server-to-edge communication. In addition, the high connectivity of

these networks also yield enhanced reliability against multiple concurrent link and node failures across the DCN. The

reported Google’s and Facebook’s DCN topologies, available in references 1 and 2 respectively, are good examples of

this tendency. With the increasing usage of cloud computing and moving towards the future Internet of Things (IoT)

3 and 5G network scenarios 4, a plethora of emerging new cloud services are expected to proliferate. To properly face

them DCs will be required to grow up even larger in terms of computing and storage resources. Fortunately, leaf-spine

and Clos DCN topologies deployed in many DCs to date can be scaled to accommodate these requirements. However,

routing and forwarding solutions in DCNs, typically based on the TCP/IP protocol suite, do not scale well. That

is, large and unmanageable forwarding tables (at least in the order of several tens of thousands of entries in highly-

optimized configurations 5) should have to be properly handled at DCN nodes. Moreover, IP routing protocols incur

in a high communication cost (information exchanged to populate routing tables and re-converge upon changes in

the DCN topology). Such limitations of the TCP/IP protocol suite for efficient routing inside DCs have been known

for long time, being not originally designed for well-defined (e.g., leaf-spine) DCNs, while being very inflexible to

improvements 6. In contrast to the rigidness of the TCP/IP protocol suite, the clean-slate Recursive InterNetwork

Architecture (RINA)7,8 enables a programmable environment where the network administrator can freely configure

Quality of Service (QoS), forwarding, routing or security policies. This opens the path to the deployment of policies

tailored to the specific characteristics and needs of any network environment. For example, in a RINA-enabled DCN,

forwarding and routing policies can be programmed for superior scalability in leaf-spine topologies, outperforming

solutions based on TCP/IP, whose protocols were designed to deliver traffic over any arbitrary topology in a best-effort

manner.

In this work, we aim at quantifying the benefits that RINA can bring in large-scale DCs thanks to its programmable

behaviour, giving the possibility to deploy customized forwarding and routing policies. In particular, we propose a

rule-and-exception forwarding policy that leverages DCN topology knowledge to forward packets to any (or to a

subset) of the neighbour devices closest to their destination based on programmable rules. In the non-failure scenario,
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this approach requires a minimal amount of information to be stored at any forwarding device as only adjacent

neighbour reachability is necessary. This represents a large improvement versus traditional forwarding tables as in

IP networks, which can even contain more than one entry per network node (e.g., nodes with a private DC address

plus multiple public addresses to allow access to virtual machines running there). When failures occur in the DCN

some forwarding rules may fail to successfully deliver packets to destination. In these cases, few exceptions overriding

those rules need to be stored at forwarding devices. This is only the time when additional forwarding information is

required.

Besides the huge forwarding table size reduction, we also illustrate that knowing the DCN topology characteristics,

which can be summarized by merely a few parameters in the case of leaf-spine ones, can substantially reduce the

routing communication cost and the path computation burden. Indeed, when all nodes know the DCN topology

characteristics, network changes due to failures and repair actions are the only information that must be disseminated.

Taking this into account, we propose routing policies that reduce the amount of information shared between nodes.

In fact, in our rule-and-exception policy, routing information is only needed for the computation of new exceptions

instead of the full forwarding table (or to remove them when a failure has been repaired). This allows bounding the

computation of exceptions to only destination nodes in the neighbourhood of failures, which results in a computational

cost dependent on the number of concurrent failures in the DCN, rather than its size.

This work extends our previous work in 9, by contemplating additional leaf-spine DCN variations and quantifying

the benefits of our forwarding and routing policies in a significantly broader way. Instead of the highly tailored

forwarding policies presented in 9, a generalized rule-and-exception forwarding policy is proposed here. This opens its

implementation in generic hardware, enabling its deployment in any network that could benefit from the approach

proposed here. Finally, in addition to the extended distributed routing approach, a centralized approach to exceptions

computation is also introduced in this work.

The remainder of this paper continues as follows. Routing solutions for DCNs available in the literature are reviewed

in section 2. Next, in section 3 we introduce the RINA model and its key benefits against the TCP/IP protocol

suite. In section 4, we introduce the assumed RINA-enabled DCN scenarios and their characteristics. The proposed

forwarding and routing policies are introduced for each of them in sections 5 and 6, respectively. In section 7, we

provide numerical results to compare the performance our forwarding and routing policies against current solutions

based on TCP/IP in the contemplated DCN scenarios. Finally, section 8 summarises the key achievements of this

work.
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2 Related work

DCN topologies have been always designed to ensure the maximum cost-efficiency. Even so, common routing and

forwarding techniques cannot take profit from their specific topological characteristics. To address these issues,

deterministic routing 10 was the scheme initially deployed in many DCs. In such a scheme, nodes are assigned addresses

based on their specific topological properties, so that the route between any pair of nodes is known beforehand and

does not change over time. These routes are usually encoded in the same packets, in the form of a bit-stream or

coordinates (e.g., see 11). While highly scalable, this rigid scheme has two major drawbacks: the lack of automation

in defining addresses, and thus the setup of routes, and the inability to leverage multiple paths (given the identity

relationship address=path), preventing any possible recovery actions upon DCN failures.

In fact, any node in a DCN typically communicates with only a small sub-set of neighbours. This may become

a favourable scenario for using solutions based on source routing. These solutions can alleviate both routing and

forwarding requirements, as only paths to this small sub-set of neighbours have to be computed. Within this family,

the valiant routing scheme 12 was proposed as a solution to overcome the shortcomings of deterministic routing,

bringing multipath support and load balancing, while still being highly scalable. In this scheme, for a communication

between any pair of nodes, a random intermediate address A is firstly selected, and the path is composed by routing

packets from source to A and then from A to the destination. This multipath approach provides an easy and direct

solution for avoiding non-valid routes in failure scenarios, simply replacing the intermediate node when either the

source-to-A or A-to-destination sub-paths became invalid. However, this is achieved at expenses of longer paths,

while still lacking an automation process for addressing and having load balancing restricted to the selection of the

intermediate node A.

While the valiant routing scheme does not take full profit from the high connectivity of DCNs, alternative source

routing solutions also exist to this end. For instance, the Line Speed Publish/Subscribe Inter-Networking (LIPSIN)

13 provides a more robust solution for DCNs with support for multipath, once the flow has been allocated. Unlike

in the valiant routing scheme, LIPSIN assigns unique names to the different links in the network (as directed links).

When allocating a flow, the forwarding tree from source to destination is computed. Given this tree, a Bloom filter

14 is computed, containing the links in the tree. This is added to the header of the packet, and each node in the

path selects the next hop from one of the links within the encoded bloom-filter. To avoid false-positives produced by

bloom-filters, when allocating a flow, special entries are added to the nodes in the tree that could generate invalid

paths. LIPSIN solves some of the shortcomings of the valiant routing scheme regarding to load balancing. However,

it also introduces additional complexity, like the requirement of adding extra entries at intermediate nodes to avoid

false-positives.
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Currently, given the low-cost of IP-based commodity servers and existing forwarding devices, many large scale DCs

have adopted more generic solutions based on the TCP/IP protocol suite. To mitigate the inherent limitations of IP

routing solutions, initially designed for an Internet with arbitrary topology, modifications to link-state and path-vector

routing have been introduced in order to better accommodate to more specific scenarios. For example, Facebook

uses BGP-4 to disseminate routing information in its DCNs 15, which was initially designed for Internet backbone

networks. In this way, the need for an address per interface (as commonly required in IP) is avoided by assigning an

Autonomous System Number (ASN) per node, while routing on the one node instead of the interface 16. Nonetheless,

designed for more dynamic and heterogeneous networks, BGP-4 suffers from many limitations when facing highly

regular DCN topologies with high nodal degrees (e.g., path exploration upon failures, manual configuration of timers,

the need to setup TCP connections between any pair of connected ASNs, and so on) Eventually, these schemes imply

a high communication cost and require many entries in the routing and forwarding tables to take optimal routing

decisions and allow for route recovery upon failures.

Moreover, Software Defined Networking (SDN) 17 is an approach that has been spreading lately, especially in tightly

managed networks. SDN builds upon the separation of transport and control planes, enabling programmable networks

and flexible management, which allows administrators to better adapt to their particular network requirements. With

SDN, most forwarding decisions are centralized, requiring only a few nodes to know the state of the full network.

Given the large number of nodes in DCNs, this centralized approach has been lately considered as a substitute of

more traditional distributed approaches. For example, Google DCs use a SDN-based approach to control packet

forwarding within the DCN 1. Although this strategy allows taking efficient decisions at low communication cost, it

also has multiple drawbacks, like a: full dependency on centralized management to perform any forwarding decision

for new flows, or; potential scalability issues since the computational cost of computing centralized decisions increases

with the network size or introducing single points of failure.

Among these approaches for DCN routing, we found that each solution has its pros and cons. Source routing

solutions, like valiant routing or LIPSIN, provide forwarding decisions that do not require almost any forwarding

information to be stored in the network nodes (except some exceptions), but increase the complexity of flow allocation

and path recovery. In addition, they require considerably longer packet headers to encode the path information,

which has an impact on the resource usage. In contrast, IP-based solutions rely on the use of forwarding tables and

generic routing solutions (e.g., BGP-4), resulting in solutions that do not take profit from the network topology.

These generic approaches can benefit from cheap commodity hardware, but result in costly routing operations and

large forwarding tables. Finally, SDN-like solutions take a more centralized approach where only few powerful nodes

manage the entire network. This allows for a more precise management of the network and removes most of the
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information required at intermediate nodes. However, they also show potential scalability issues, since everything is

managed by the central authorities.

In contrast to the reviewed routing solutions, in this work we propose a different approach. We assume that we

can know the entire DCN topology and configure addressing schemes that easily gives us the location of nodes in

that topology, which can easily be achieved in RINA as will be discussed in the following section. Taking some

knowledge as granted, the amount of information stored at nodes becomes minimal, only requiring to store exceptions

to the primary forwarding rules when the DCN topology changes for any reason (e.g., a link or node failure). In

order to compute these exceptions, either distributed or centralized routing solutions can be used. These solutions

can also take profit from the static knowledge of the network, resulting in fewer and smaller routing updates (lower

communication cost) and simpler computations.

3 Recursive InterNetwork Architecture

The Recursive InterNetwork Architecture (RINA) is a clean-slate architecture for computer networking based on the

idea that networking is distributed inter-process communication (IPC) and only IPC 18. As shown in Figure 1, RINA

presents a single type of layer, called Distributed IPC Facility (DIF), which repeats as many times and levels as

needed by the network designer. This contrasts with the TCP/IP model, in which different layers perform different

functions (end-to-end transport, packet forwarding, link management, etc.), offering a different set of services and

application programming interfaces (APIs), sometimes repeated at more than one layer. As opposed to TCP/IP,

RINA defines its DIF as a programmable layer capable of performing any of the functions needed to provide IPC

services to applications or higher level DIFs, offering at each level a common API. All RINA layers use the same two

protocols: a data transfer protocol called EFCP (Error and Flow Control Protocol) and an object-oriented application

protocol called CDAP (Common Distributed Application Protocol) that carries all the information exchanged by

layer management tasks (usually known as control plane in TCP/IP terms). Both protocols are adapted to the

different requirements of each layer via policies 19. Policies are a set of variable behaviours that can customise the

different mechanisms available in the two protocols. For example, acknowledgements are a mechanism built into

the data transfer protocol (EFCP), but when to acknowledge is a policy. Different forwarding functions can also be

plugged into EFCP. CDAP allows all layer management functions (enrolment, routing, namespace management, flow

allocation, security management, resource allocation, etc.) to specify its data model as objects, providing a naming

scheme and a set of callbacks that are executed in layer management tasks when a particular action on an object

is invoked remotely. This programmability allows network administrators to properly configure each DIF with the

policies that better adapt to its scope, operating environment and offered levels of service.
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Figure 1: RINA architecture overview.

A DIF is a distributed application, formed by a collection of Application Processes (APs) that collaborate to provide

distributed IPC services over a certain scope. The APs that are members of the DIF are called IPC Processes (IPCPs).

Addressing within DIFs is based on Jerry Saltzer’s idea 20 that a good addressing scheme clearly distinguishes between

naming (who), addressing (where) and routing (how), so that a node name does not imply its address or the way to

reach it. Therefore, all application processes have names, which uniquely distinguish them in a certain application

namespace. These names are location-independent, so that APs can move without losing their identity. Since IPCPs

are APs they have an application name, but they also have synonyms that are only unique within a layer (a DIF)

and are structured to facilitate routing and forwarding. These synonyms (called addresses) are location dependent

but route independent: they encode the information of where the IPCP is located with respect to an abstraction of

the connectivity graph of the layer, without impairing how to get there. Our work extensively builds on this property

to minimize the size of forwarding tables and routing overhead. This naming and addressing approach avoids the

use of default ports or the need to tie addresses to forwarding interfaces, providing a higher degree of scalability and

facilitating multi-homing and mobility of IPCP 21. Moreover, security is improved, as now flows between nodes in

an N-level DIF must be requested to, and allocated via, N-1 DIFs to know the N-1 address and port, which also

facilitates the monitoring of flows 22.

While all DIFs provide the same kind of service to upper processes, the characteristics of the offered service may

vary between DIFs, as mentioned above. In RINA, each DIF defines a set of supported QoS Cubes, namely QoS

classes, for flows, providing statistical bounds on metrics like data rate, latency, losses, and so on. With these QoS
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Figure 2: RINA-enabled DC scenario providing IP services.

Cubes, applications are able to request specific bounds in the experienced end-to-end QoS of their flows, for which

the DIF will automatically assign the QoS cube that suits them best. In addition, given the recursiveness of DIFs,

upper IPC processes are also capable of requesting specific QoS levels for flows to their lower level DIF, making it

easier for them to ensure their own QoS Cubes.

The creation and management of DIFs is performed by the Network Management System (NMS), a distributed

application composed of one or more Manager(s), together with the Management Agents (MA) located at each

RINA device. The NMS is responsible for creating RINA IPCPs in the devices, configuring them according to the

requirements of each DIF, triggering neighbour discovery and enrolment, monitoring their status, etc. With the

recursive layering of DIFs and the full control of the NMS, most changes in the connectivity between IPCPs in one

layer can be completely hidden to upper layers or at least their negative effects mitigated. The commonality across

DIFs and the use of a common protocol for management (i.e., the CDAP) greatly simplifies the management of RINA

networks compared to legacy architectures 23.

Despite the clear differences between RINA and the TCP/IP model, both are compatible enough to allow for a

progressive migration between them at little expense. Indeed, the migration towards RINA does not require turning

off the entire Internet overnight to be deployed. Conversely, it can start either by replacing lower layers with RINA,

while keeping IP services on top, or by using any existing network protocol (IP, Ethernet, UDP, WDN, etc.) as a

bearer for RINA. The use of RINA over existing technologies is done through the introduction of "wrapper" DIFs,

referred as shim-DIFs. Shim-DIFs are a special kind of DIF, with limited functionality, which uses IPCPs designed to

provide a RINA API for a specific non-RINA technology 24. Figure 2 shows a simplified example of how RINA could

be introduced as a networking model within a DC connected to the current TCP/IP Internet. In this example, a

RINA-enabled DC is set and an additional DIF provided to its tenants, offering connectivity between their nodes and

some edge routers. Over some of those tenant IPC processes, the IP connectivity between servers and edge routers

(gateway) is established, providing IP access from the public Internet, independently from the internal structure of

the DCN or where the servers are located.
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Figure 3: Example of recursive DIF layering in a typical DCN.

4 Scenarios under study

While having the same two protocols and mechanisms at each layer (i.e., DIF), it is possible to configure each DIF

instance with policies specifically tailored to its scope (operating environment). This enables an easy and cheap

deployment of scenario-optimized solutions, outperforming any generic solution. In this work, we investigate the

benefits of a RINA deployment inside a DC, following the DIF setup depicted in Figure 3. Such a RINA-enabled DC

is partitioned into three main types of DIFs, covering three different scopes:

1. One DC-Fabric DIF, acting as a large distributed switch that connects all ToR switches and edge routers.

2. One DC DIF, connecting all servers in the DC as a single pool of computation and storage resources.

3. Multiple tenant DIFs, isolated and customized as per each tenant requirements.

Note in the figure that underlying point-to-point links are abstracted as shim (or v-shim) DIFs. This allows

abstracting any legacy technology or physical media (e.g., Ethernet, hypervisor VM communication 25, etc.).

In DC and Tenant DIFs, there is only one "eligible" path between any pair of IPCPs. This makes forwarding

decisions straightforward and routing unnecessary (e.g., to go from server A to server B in a distinct rack in the DC

DIF, traffic must be forwarded to its ToR switch, next to the ToR switch of the rack where server B is located, so as to

finally deliver it to server B). In contrast, DC-Fabric DIFs are specifically designed in a way that there exist multiple

redundant paths between any pair of nodes, in order to ensure resiliency upon multiple concurrent failures, as well as

effective load balancing. Therefore, DC-Fabric DIFs tend to follow well-designed topologies with certain properties,

not exploited by generic forwarding and routing solutions as the ones employed in the TCP/IP protocol stack.

Specifically, many large-scale data centres currently built their DCNs relaying on leaf-spine and Clos topologies,

with good scalability properties in terms of hardware, reliability and load balancing. In view of this, we focus in this

work on quantifying the benefits that forwarding and routing policies specifically tailored to the DCN topological

characteristics can bring into DC-Fabric DIFs in a RINA-enabled DC. To this end, we contemplate five different
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Figure 4: Generic leaf-spine (GLS) DCN topology.

DC-Fabric DIFs, mimicking the topological characteristics of a nowadays’ widely accepted generic DCN design (Clos

and leaf-spine) besides specific DCN design solutions made publicly available by large corporations, as Google and

Facebook, and also a variation of one of them (referred as modified Clos DCN topology).

4.1 Generic leaf-spine (GLS) DCN

The leaf-spine topology (Figure 4) is one of the simplest and more straightforward DCN topology available nowadays.

In this topology, we have pods forming a full bipartite graph, with ToR switches at one side and fabric switches at

the other. Then, another bipartite graph connects all fabric switches with the spine switches, acting as edge routers

at the same time. Interestingly, DCNs following this topology can be fully described by only 4 parameters:

• p : Number of pods in the DCN

• t : Number of ToR switches per pod

• f : Number of fabric switches (aggregators) per pod

• s : Number of spines switches (edge routers) in the DCN

Hence, we propose to use the following possible addressing scheme in a DC-Fabric DIF following this topology, where

addresses encode the type of node, as well as its location:

• Spine switch : 0 . spineid

• Fabric switch : (1 + podid) . fabricid

• ToR switch : (1 + podid) . (f + torid)

With this addressing scheme, for example, the address of ToR switch 5 in pod 3, when having 4 fabric switches per

pod, would be <4.9>. It has to be noted that, in all DCN scenarios, we consider all identifiers (for pods, ToRs, etc.)

starting at 0. This is the reason why pod 3 takes addresses 4.* instead of 3.*, as it is really the 4th pod in the DC.
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Figure 5: Google’s (GO) DCN topology.

We could have used any other topological addressing scheme showing a simple relation between address and

location. Even so, we decided on this one, not only given its simplicity, but also that addresses can be encoded with

only log2(1 + p) + log2(f + t) bits. With this in mind, we get that, even for DCNs with twice the number of pods

and ToR switches per pod as the largest DCN to date, we would only require merely 2 bytes for addressing within

the DCN, an important reduction compared to the 4 and 16 byte-length addresses of IPv4 and IPv6, respectively. In

addition, these 2-byte addresses perfectly match one byte per address coordinate, allowing for improved performance.

When an upgrade on the number of fabric switches per pod is planned in the near future, the expected f parameter

value should be considered. This will allow a graceful upgrade, without requiring full node renaming in the DC-Fabric

DIF, although that could still be easily managed in RINA.

While this topology is widely spread, it is hardly scalable to nowadays’ DCN sizes. Since the number of edge routers

(spine switches) rises as the network grows up, this requires increasing the node degree of fabric switches dramatically.

4.2 Google’s (GO) DCN

As reported in 1, Google decided to deploy a modified version of the generic leaf-spine topology in its DCNs (Figure

5). With the same connectivity between ToR, fabric and spine switches as in the generic leaf-spine DCN topology,

Google moves edge routers to their own pod-like sets, instead of locating them at spine switches. This modification

entails some benefits and drawbacks against traditional leaf-spine DCNs. It solves the scalability problems of the

leaf-spine topology by moving edge routers out of spine switches. In addition, it fosters load balancing and relieves

the responsibility of ensuring reliability from the high loaded spine switches. However, this comes at the cost of

slightly increasing the path length of such flows to/from the outside of the DC premises. Note that the parameters

describing this topology are the same as for the generic leaf-spine DCN. Moreover, the addressing scheme proposed

before also fits this DCN topology.



12 Sergio Leon et al

Figure 6: Facebook’s Clos based (FB1) DCN topology.

4.3 Facebook’s Clos based (FB1) DCN

In contrast to Google, Facebook 2 deploys a Clos DCN topology inside its DCs (Figure 6). In this case, pods follow the

same bipartite graph as generic leaf-spine DCNs. However, instead of a unique plane of spine switches connecting all

fabric switches, multiple spine planes are deployed, one per fabric switch in the pods (each fabric switch is connected

to one and only one spine plane). Compared to the generic leaf-spine topology, Clos DCNs foster better scalability,

allowing to increase the number of fabric switches per pod without requiring an important upgrade in terms of ports

at spine switches. DCNs following this topology can be described by 4 parameters, similarly as the generic leaf-spine

DCN:

• p : Number of pods in the DCN

• t : Number of ToR switches per pod

• f : Number of spine planes = fabric switches per pod

• s : Number of spine switches (edge routers) per spine plane

Given this parametrization, we propose to use the following addressing scheme in the DCN (also similar to that

previously proposed for leaf-spine topologies). As before, these addresses encode both the type of node and its location:

• Spine switch : spine_planeid . spineid

• Fabric switch : (f + podid) . fabricid

• ToR switch : (f + podid) . (f + torid)

With this addressing scheme, for example the address of ToR switch 5 in pod 3, when having 4 fabric switches per

pod/spine set, would be <7.9>. Remember that pod, ToR, etc. identifiers start at 0, hence being pod 3 the 4th one

and ToR 5 the 6th one in the pod.
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Figure 7: Previous Facebook (FB2) DCN topology.

Note that these addresses can be encoded with only log2(f + p) + log2(f + t) bits. If an upgrade to increase the

number of spine planes is already planned in the near future, the f value should also be set as expected in order to

avoid a full DCN renaming process in the DCN (i.e., as also suggested for the GLS DCN).

4.4 Previous Facebook (FB2) DCN

The DCN topology used at previous Facebook’s DCs 26 follows the same Clos topology as for the current ones

(Figure 7), but with an added extra layer of protection against failures. In this variation of the Clos topology, all

fabric switches within a pod are connected describing a ring topology, and the same is done for spine switches at

spine planes. These extra links should not be used in non-failure scenarios. Conversely, they enable short secondary

paths between ToR and spine switches when the link that connects the spine switch with the fabric switch of their

pod fails, which would otherwise require rerouting the traffic across other pods. These links increase the reliability of

the network and avoid using resources of other pods upon failures. Nevertheless, they are protection resources that

remain unused most of the time. Having this DCN topology almost the same structure as FB1, it can be described

with the same parameters and the same addressing scheme can be used.

4.5 Modified Clos (MC) DCN

This modified Clos DCN topology (Figure 8) follows the idea of Google to move edge routers at the same level as

ToR switches, while taking advantage of the enhanced scalability (upgradability) that the Clos topology provides.

However, it also carries some of their drawbacks. For instance, it solves one of the Clos topology main problems,

namely, the loss of a direct route between a spine switch (that also acts as edge router) and all ToR switches of a

pod, when the link between the spine switch and the connected fabric switch of the pod fails. In addition, it yields

enhanced load balancing for outgoing flows. As a drawback, the path length of these flows is slightly increased. This
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Figure 8: Modified Clos (MC) DCN topology.

DCN topology can be described by the same parameters as the FB1 DCN. Moreover, the same addressing scheme

proposed for that DCN topology can be used.

In addition to the benefits of moving edge routers at the ToR level, given that RINA allows for a clean separation

between DIFs, addresses in the DC-Fabric DIF are not related to those used in the upper DC DIF. This removes

the need for grouping edge routers (to be able to aggregate public IP addresses), thus making possible to place some

edge routers directly at pods, thus enabling the possibility of maintaining most outgoing flows within the same pod.

5 Rule-and-exception forwarding policy

A key requirement of any forwarding policy is the ability to quickly decide on the neighbouring node (or nodes)

to which a packet has to be forwarded in order to reach its destination. Traditional forwarding tables, allow the

aggregation of destination addresses per entry with address masks. However, they do not scale well as the network

size grows up. In DCNs deploying the TCP/IP protocol suite, this is even more problematic, as the relation between

nodes and addresses requires a whole bunch of public addresses for both tenants with their own IPs and for enabling

the mobility of servers and VMs.

RINA inherently removes the need of extra addresses, as no public address is required (IPCP addresses can be

independent, i.e., private within each DIF). Nevertheless, the use of conventional forwarding tables in IPCPs with

a flat addressing scheme (per DIF) would not solve the scalability problem of regular DCN topologies as the ones

reviewed in previous section. Luckily, programmable forwarding policies in RINA are not restricted to traditional

forwarding tables. Instead, any forwarding function capable of quickly performing accurate forwarding decisions can

be used. To this avail, we leverage on the topological characteristics of typical DCN topologies to design a minimalistic

forwarding function that can take profit of them, and be used as a generic substitute to (or upgrade of) generic

forwarding tables.
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Being aware of a specific leaf-spine or Clos DCN topology like the ones presented before, and the location of the

node (encoded in its address), merely storing forwarding information to neighbouring nodes is enough to forward

any packet to its destination with simple forwarding rules. When failures occur across the DCN, some routes may

become invalid. In these cases, exceptions to primary rules may be required, being the only moment when additional

information is needed. Even so, the number of exceptions should be considerably smaller than the number of entries

in a traditional forwarding table, as many communications across the DCN remain unaffected by specific link or

node failures. Therefore, only storing exceptions to primary rules upon failures can yield a large reduction in terms

of memory usage and computational cost compared to a traditional forwarding table. The full Rule-And-Exception

(R&E) forwarding policy can be described by the pseudo-code in Algorithm 1.

Algorithm 1 Full Rule-and-exception policy pseudo-code

1 ∗Forward(addr)∗

2 if Connected_Neighbour (addr)

3 Forward_to (addr);

4 else

5 Exception e = Search_Exception (addr);

6 if e != null

7 Use Exception (e);

8 else

9 Use Rule (addr);

In order to do a lookup for the next hops, the policy firstly checks if the destination is a directly connected

neighbour. If not, it searches if an exception is present; if so, the exception is executed to forward the packet; if not,

the default rule is applied. This pseudo-code seems more complex than a simple lookup of an entry in a forwarding

table. Nonetheless, its primary benefit comes from the fact that searches are only among neighbours plus a small

number of exceptions (if any), while rules only consist in a few instructions, as will be detailed later on.

5.1 Groups

In order to reduce the complexity of R&E, our policy uses groups of nodes in order to perform an abstraction of

neighbour node addresses and ports. These groups can be seen as named arrays of neighbour pointers (references to

connected neighbour nodes) that can be used by R&E to easily define the set of valid ports to reach a destination,

independently of the physical interfaces, connected nodes, etc. Moreover, they do not require large lists of valid ports

at exception entries, which would be hard to update and would occupy excessive size in memory. The definition of

groups is performed by the same policy that populates exceptions, and could be modified as desired depending on
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Table 1: Definition of groups for leaf-spine DCN topologies (GLS and GO)

At ToR switches A: Fabric switches valid to reach nodes in the same pod.
B: Fabric switches valid to reach nodes in other pods.

At fabric switches A: ToR switches.
B: Spine switches.

At spine switches A: Fabric switches ordered by podid followed by fabricid

position = fabricid + f ∗ podid − 1

Table 2: Definition of groups for Clos DCN topologies (FB1, FB2 and MC)

At ToR switches A: Fabric switches valid to reach nodes in the same pod.
B: Fabric switches valid to reach nodes in other pods, ordered by fabricid

position = fabricid

At fabric switches A: ToR switches.
B: Spine switches.

At spine switches A: Fabric switches ordered by podid

position = podid − f

the current network status and stored exceptions. Tables 1 and 2 depict possible definitions of groups in the DCN

scenarios presented in previous section (used to define the forwarding rules presented hereafter).

Apart from these groups, an extra neighbour group is introduced when defining exceptions, where each neighbour

is given a fixed index in the array (for spine switches, group A is a synonym of neighbour group). It has to be noted

that, while in some cases the order within a group does not matter, in others it can be really important, like in the

case of the neighbours group where a neighbour pointer must always be in the same position in the array. In any

case, it is possible to have null positions within a group. In these cases, null positions will be simply skipped when

executing rules or exceptions.

5.2 Rules

The key elements of the proposed R&E forwarding policy are the forwarding rules. They are simple rules that, given

the expected topology of the network, current location and destination address, provide a list of valid neighbours

to where a packet can be forwarded. Rules are designed for the non-failure DCN topology. Thus they are neither

affected by changes in the network, nor can route around failures by themselves outside the same node (except if the

defined groups are changed). Nonetheless, for destinations where primary rules are valid, they provide fast forwarding

decisions with minimal information. Tables 3 and 4 show the rules used in the considered DCN topologies to forward

packets toward a destination address "a.b", returning in each case the list of valid neighbours either, as a whole group

(GROUP X), a range within a group (RANGE X[min, max]) or a unique node in a group (NODE A[index]).
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Table 3: Definition of rules for leaf-spine DCN topologies (GLS and GO)

At ToR switches if a = podid : return GROUP A

else : return GROUP B

At fabric switches if a = podid : return GROUP A

else : return GROUP B

At spine switches if a = 0 : return GROUP A

else : return RANGE A[(a− 1) ∗ f, a ∗ f − 1]

Table 4: Definition of rules for Clos DCN topologies (FB1, FB2 and MC)

At ToR switches if a = podid : return GROUP A

else if a < f : return NODE A[a]
else : return GROUP B

At fabric switches if a = fabricid : return GROUP B

else if a = podid or a < f : return GROUP A
else : return GROUP B

At spine switches if a < f : return GROUP A

else : return NODE A[a− f ]

As can be seen, forwarding rules are really simple, requiring only a few lines to define how to route packets across

the whole DCN. In addition, given their simplicity, they are quite simple to generate as programmable instructions,

or even as rule entries for their use in a specialized forwarding hardware. Forwarding rules make full use of the

previously defined groups in Table 1 to decide the list of valid neighbours to reach a destination. Specifically, we can

obtain two kinds of decisions from them: either to use any node from a group, or a range of nodes from a group (a

specific neighbour if the range has a length equal to 1). In fact, rules do not know the content of groups. This has no

effect on their usage, though, as unreachable neighbours are removed from groups (leaving a null position in its place

if the order is important or redefining the group otherwise). Recall that any null position in a group is not considered

when the rule is executed. This has some really great advantages, as a large number of routes that become invalid

upon failures can be avoided with only small changes in the group definitions.

Note that the parametrizations presented in the previous section assume the same number of ToR and fabric

switches at each pod, and the same number of spine switches at each spine planes (if there is more than one). In

other cases, while the proposed solutions would still be valid, possible modifications of rules might be required to

accommodate such changes. For example, at spine switches in leaf-spine DCNs, with a varying number of fabric

switches per pod, we could define f as the maximum number of fabric switches among all pods, filling the unused

positions with null pointers (remaining then valid the current rules). Alternatively, if the hardware allows it, it would

be simpler to define a group per pod and replace the rule as "Any fabric switch of group podid". Also, note that, as

rules contemplate non-failure scenarios, they are not affected by failures that do not affect primary paths.
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5.3 Exceptions

Upon failures across the DCN, some of the primary rules may become invalid to reach a specific destination (or range

of destinations). Sometimes, a simple redefinition of a group should be enough to avoid failed paths, but this may

not always be possible. In such cases, we need to record a specific exception for this destination (or destinations, e.g.,

a pod).

These exceptions, while being similar to traditional forwarding entries, are only required upon certain failure

scenarios. Its number is considerably smaller than the number of entries that a traditional forwarding table would

require, since most communications across the DCN remain unaffected by specific link or node failures. In addition,

we can also reduce the amount of required exceptions even more if we consider that end-to-end flows across the DC

fabric DIF are only between ToR switches or ToR switches and Edge routers.

Only storing exceptions to primary rules upon failures can yield a large reduction in terms of memory usage and

computational cost, compared to a traditional forwarding table. Additionally, taking profit from the defined groups

and taking into consideration the high number of valid ports for some exceptions, we consider 7 possible types of

exceptions in order to minimize the space required to encode them:

• UNREACHABLE: The destination cannot be reached.

• ANY: Any of the neighbours group.

• COMMON: List of valid positions from the neighbours group.

• REVERSE: List of invalid positions from the neighbours group.

• GROUP ANY: Any of the specified group.

• GROUP COMMON: List of valid positions from the specified group.

• GROUP REVERSE: List of invalid positions from the specified group.

The most important variation compared to a traditional forwarding table probably is the use of reverse entries

(i.e., REVERSE, GROUP REVERSE). These entries have a large effect in reducing the size of exceptions in nodes

where most available neighbours are still valid to reach a destination, allowing the generation of exceptions such as

"To reach X use any of G except Y". In addition, while all types of exceptions could be expressed as "COMMON" or

"GROUP REVERSE", we have intentionally considered all of them to clearly show all possible variations.

5.4 Example

Now let us see a small example to see how the R&E forwarding policy works. To this goal, let us consider the small

network in Figure 9, that is, a reduced example of a MC DCN with few failures in it.
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Figure 9: Modified Clos DCN topology with failures.

Firstly, let us see how failures affect to the definition of the neighbour groups in some nodes. In this case, no node

of pod 0 (2.*) and spine plane 0 (0.*) is affected, as they are far from the failure points. On the other hand, all nodes

with link failures (1.1, 3.0, 3.1 and 3.4) get some of their groups modified, removing the disconnected neighbour from

them (e.g. node 3.4 redefines groups A and B as 3.1).

Regarding the exceptions, we see that ToR switches in both pods require exceptions to ToR 3.4 (except for itself).

As for ToRs in pod 0 (2.2, 2.3 and 2.4), they need to forward the traffic to 2.1, and for ToRs in the same pod, to fabric

switch 3.1. At fabric switches, we get a more varied scenario. In this case, node 2.0 may either get an unreachable

exception for destination 3.4 or one using any ToR neighbour to reach it (Group A), as ToR 3.4 is disconnected

from its fabric switch in that spine plane. On the other hand, at 2.1, the failure between 3.0 and 3.4 does not affect,

but, as the fabric switch 3.1 is disconnected from the spine switch 1.1, it requires an exception to the whole pod 1

(3.*) directing to 1.0. In contrast, fabric switches in pod 1 (3.0 and 3.1) do not require any exception thanks to their

modified groups of neighbours. Finally, spine switches do not store any exception.

Considering the state of the forwarding policy in this scenario, let us see how forwarding would be done between

ToR nodes in the same or different pods.

From 2.2 to 2.3:

• At 2.2 (ToR). Destination in same pod, use any of group A {2.0, 2.1}.

• At 2.0 or 2.1 (Fabric). Destination is a connected neighbour, forward.

From 3.2 to 3.4:

• At 3.2 (ToR). There is an exception to node 3.4, forward to 3.1.

• At 3.1 (Fabric). Destination is a connected neighbour, forward.

From 2.2 to 3.2:

• At 2.2 (ToR). Destination in another pod, use any of group B {2.0, 2.1}.

• If chosen 2.0

– At 2.0 (Fabric). Destination in another pod, use any of group B {0.0, 0.1}.
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– At 0.0 or 0.1 (Spine). Forward to Fabric switch of destination pod {3.0}.

– At 3.0 (Fabric). Destination is a connected neighbour, forward.

• If chosen 2.1

– At 2.1 (Fabric). There is an exception to pod 3.∗, forward to 1.0.

– At 1.0 (Spine). Forward to Fabric switch of destination pod {3.1}.

– At 3.1 (Fabric). Destination is a connected neighbour, forward.

From 2.2 to 3.4:

• At 2.2 (ToR). There is an exception to node 3.4, forward to 2.1.

• At 2.1 (Fabric). There is an exception to pod 3.∗, forward to 1.0.

• At 1.0 (Spine). Forward to Fabric switch of destination pod {3.1}.

• At 3.1 (Fabric). Destination is a connected neighbour, forward.

5.5 Extending the policy

So far, we have presented the complete forwarding policy, with some exemplary configurations for the defined scenar-

ios. However, most implementation decisions are left open, allowing the policy to be extended in multiple ways. For

example, given the fast computation requirements of forwarding policies, they could easily be implemented in hard-

ware. A benefit of our approach is that, while taking advantage of the DCN topology knowledge, it is generic enough

to allow using the same hardware, independently of the scenario (even as a replacement of a traditional forward-

ing table) and only relying on exceptions. This makes the presented policy an interesting substitute of traditional

forwarding tables for future RINA-based hardware.

When it comes to a potential implementation, there are multiple extensions that can be considered, either to

enhance its behaviour or to extend the range of supported scenarios. An example can be load balancing decisions

between all available neighbours. It may be important for a flow to always follow the same path if possible. To this

end, two options can be considered, either storing the results in a small cache to follow always the same paths, or

taking load balancing decisions based on a hash value of the flow identifier. Another extension that can be considered

is the addition of QoS metrics into rules and exceptions. While this does not affect the current scenarios, as we only

consider reachability, it is something to consider in other cases where a generic implementation can be used (e.g.,

routing urgent QoS classes with stationary latency as metric and the rest based on the number of end-to-end hops

of the routes).
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6 Routing policies. Computation of exceptions

The forwarding policy described in previous section requires knowledge about the affected routes to destinations

upon failures and how to alternatively reach them. Routing policies are responsible for providing enough information

to populate the exceptions to primary forwarding rules. This does not substantially differ from what would be done

with a traditional forwarding table. In order to compute exceptions, we could use a generic link-state or distance-

vector routing protocol, and simply compare the resulting entries with those that forwarding rules would provide.

Even so, in the same way as how rules allow us to reduce the amount of information required for forwarding, we could

also enhance routing by exploiting the complete knowledge about the DCN topology that all nodes have. Indeed,

there is no need for all nodes to propagate the state of operational resources across the network or to compute

routes to all nodes, but only propagate and compute failure information. To this end, we propose distributed and

centralized routing policies that take advantage of the topology of the DCN and failure information to reduce both

computational and communication costs required to compute the exceptions to primary rules.

6.1 Distributed routing

Generic link-state algorithms assume no knowledge about the network graph and even from the expected connectivity

at the current node. Therefore, nodes need to share all their connectivity information in order to compute how

packets should be forwarded. When considering a network where the non-failure network graph is known beforehand

by all nodes, then these restrictions disappear, becoming only necessary to disseminate network changes. In order to

propagate failure information, we propose a variation of link-state routing, based on the propagation of failed links

informations solely.

In this routing policy, we assign to each link a unique name (e.g., link name = src.dst). In order to sort updates,

each link has an update-sequence-Id, synchronized between link endpoints, incremented each time the link status

changes from ON-OFF and vice versa. When a link status change occurs, both endpoints propagate the new status

to all their neighbours that, not knowing the new status already, continue propagating it until all nodes are aware

of the change. Therefore, there is no big difference with any generic link-state routing. The policy propagates link

instead of node status, halving the amount of updates in the best case (i.e., the status of one link instead of two

nodes is propagated). The bigger improvement comes from the fact that we only need to propagate and store failure-

related information. Hence, the network can run without specific routing, provided that (single- and multi-) failure

situations are not too common over time.

Nevertheless, there exist some requirements for the proposed routing policy. The first one is that, the bootstrapping

of the routing policy has to be slightly delayed from the initialization of the network. This has to be done in order
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to avoid all nodes sending updates of disconnected neighbours for those not yet connected links. This should not be

a problem, but something to be taken into account.

Another issue is to decide at what moment an old update can be discarded. This is the case when a failure is

repaired and an ON update is propagated in the network to notify the change in the topology; as the network is

back to the non-failure state, this information can be discarded. In order to allow all nodes to get this ON update,

this information is stored during a limited period of time. Nonetheless, it could happen during a failure that a node

or a group of nodes remains disconnected from the rest of the network, which causes that an previously discarded

update never reaches them. In this case, there are two possible solutions: nodes with one or more failures may not

drop old updates, avoiding ON updates to be lost before reaching the entire network; or a reactive approach can be

taken, in which a new update is propagated when an old update arrives at its source.

With the expected knowledge of the network graph and shared knowledge about link failures, computing either

the forwarding table or, in this case, the exceptions, may be something as trivial as using the Dijkstra algorithm to

compute the shortest path to each destination. However, we are only interested in computing those exceptions for

currently unreachable destinations. Instead of re-computing the entire forwarding table using Dijkstra we propose

algorithms that take advantage from the DCN topology knowledge, focusing the search on such problematic DCN

regions (where unreachable destinations are), while allowing to add some routing restrictions if desired.

Algorithm 2 Exception computation pseudo-code at a ToR switch in the MC topology (distributed routing)

1 Clean old exceptions (e.g., all from pod if has new changes)

2 Parse and sort new link failures:

3 Pod -> {ToR switch -> Fabrics switch, Fabric switch -> ToR switch, Fabric switch -> Spine switch}

4 Fabric switch -> {Pod -> Spine switch, Spine switch -> Pod}

5 Initialise groupA and groupB as a list of alive neighbours.

6 Check in-pod failures (if changes in pod):

7 Remove from groupA all fabric switches of the same pod with problems reaching all other ToR
switches or edge routers.

8 For Each other ToR switch or edge router with problems in the same pod, create exception if cannot
be reached through all groupA.

9 Check out-pod failures (for changes in pods):

10 For each alive neighbour:

11 If disconnected from all spine switches, remove from groupB and check next.

12 Check pods with problems at the same fabric switch and mark as unreachable through the current
neighbour if there are no shared spine switches available or the destination fabric switch
is not connected to any ToR switch or edge router.

13 Create pod exceptions to pods unreachable by all fabric switches in groupB.

14 For each pod with problems at Tor switches or edge routers:

15 Initialize valids as groupB or the list of valids if it has an exception.

16 For each ToR switch and edge router with problems in the pod:

17 Generate an exception if cannot be reach from all valids for pod.

18 Update groups A and B in forwarding policy as groupA and group B respectively.

19 Encode exceptions and replace update the forwarding policy.
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In Algorithm 2, we find a simple example of how exceptions could be computed at ToR switches and edge routers

in a DCN describing the MC topology (with similar algorithms being possible for other nodes and scenarios). In

order to compute exceptions, we first do a fast pass cleaning the previous state, clearing old exceptions (e.g. towards

pod new failure/recovery) and restarting neighbour groups, as well as parsing the known failures. Then, we search

for reachability problems within our same pod (if any failure), removing from group A those neighbours disconnected

from the rest of the pod and creating exceptions to ToRs with failures. Then, if there are failures outside our pod,

first we check if our neighbours are connected to the other pods (removing them from group B if not). Now, for

each pod with failures, we search for problems reaching either the whole pod or specific ToRs in it. Finally, with the

groups and exceptions recomputed, we update the forwarding policy with the new information.

In this example, we can see that, while algorithms required in these cases are more complex than general solutions

and are completely dependent on the topology as well, they significantly reduce the computational cost of computing

exceptions. Another benefit of the algorithms used to compute exceptions is that they can be designed with some

routing rules in mind. For example, considering that only flows to ToR switches and edge routers will be established

(apart from the point-to-point ones), we may contemplate only exceptions toward entire pods and specific ToR

switches and edge routers. In this way, we can skip exceptions to fabric and spine switches, avoiding at the same

time paths through fabric switches not connected to any ToR switch or edge router.

In order to compute exceptions in a fast way, those algorithms do not consider finding the best path under

any possible failure scenario. Instead, they limit the resulting paths to only those close to the optimal ones. Such

constraints may be restrictive in some cases (e.g., the pseudo-code in Algorithm 2 considers only optimal paths,

while it could have also considered sub-optimal paths within the same pod). However, they still do not represent a

true reduction of the forwarding capabilities of the DCN, given the high available connectivity. In contrast, these

constraints allow us to define what we consider as invalid paths, namely, paths for which their performance would be

under our expectations, introducing unacceptably large latency and extra bandwidth consumption. In those really

infrequent cases where two nodes become unreachable, it would certainly be more cost-effective to move a virtual

machine to an alternative reachable node.

6.2 Centralised routing

As previously discussed, the SDN paradigm 17 fosters centralisation of network control to relieve the computational

requirements of the forwarding devices. Following on this approach, we also propose a variation of the previous routing

policy that takes advantage from the computational resources available in the DC to centralize the computation of

exceptions. In Figure 10, we can see a small example of this solution that could be deployed in a DCN describing

the MC topology.
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Figure 10: Location of managers for centralised routing in a DCN describing the MC topology.

In this solution, we have two or more servers per pod acting as primary (P) or secondary (S) routing managers.

These managers are the ones in charge of configuring groups and exceptions for all ToR switches, edge routers and

fabric switches in the pod. In contrast, the rest of nodes only setup their forwarding policies and perform quick

modifications to groups (e.g., when a link goes down, before advertising the event to the managers).

Managers are assigned addresses in the form of "podid.managerid", similar to ToR switches, so that forwarding

toward them can be done by forwarding rules. In addition, an anycast address "podid.MAX" may also be used as

an alias to the primary manager (or the next reachable secondary one), so that the destination of routing updates

does not depend on the specific addresses of the managers. As nodes within the pod cannot rely on the managers

to compute the paths toward them, a limited distance-vector routing algorithm is used to compute the paths to all

managers in the pod, and specific exceptions are added if needed.

When a node in the pod detects a failure or recovery event, it informs the pod primary manager about the change.

Once the manager gets the update, it synchronizes its knowledge with the rest of managers in the same pod. Then,

it computes a baked update with information about how to reach ToR switches and edge routers, whose reachability

is affected, and sends it to the primary managers of other pods. Finally, it computes and propagates the exceptions

for all the nodes in the pod. Figure 11 depicts a simplified version of the message propagation between nodes and

managers in case of a failure.

When a failure situation is detected at spine switches, they inform the managers of all connected pods, but no

exception is computed for them. This is a small simplification, based on the fact that there are no end-to-end flows

directed to any spine switch (apart from possible ACKs to routing updates). Given that, any possible exception at a

spine switch would only be used for a small period of time before a new stable state avoiding its usage is established.

This also avoids possible forwarding loops, until reaching that new stable state.

Apart from the benefits that moving most of the routing computation to a few servers entails in terms of requiring

less computational resources at forwarding devices (thus making them cheaper), this solution employs available
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Figure 11: Location of managers for centralised routing in a DCN describing the MC topology.

resources. Also, given that updates only need to be shared between managers, and that not all failure situations

require new exceptions, the total number of routing messages ends being significantly reduced compared to any

distributed solution, where any change could end being propagated through the entire network.

In Algorithm 3, there is a small example of the baked data shared with managers in other pods and how exceptions

and groups can be computed after changes in a DCN describing the MC topology (similar algorithms could be

used for the other topologies). In this example, each manager manages a unique pod and, therefore, shares failures

and computes exceptions for its nodes. To compute exceptions, it firstly computes default groups A and B for ToR

switches, given the connectivity of fabric switches, and specifies them for each ToR depending on their failures. Given

the already computed distance matrix, it searches for exceptions within the same pod. Then, for each other pod with

known failures, it searches for disconnected fabric switches in those pods. Next, it uses the distance between ToRs

and fabric switches in each side to compute exceptions to the other pods and their ToRs. Regarding the updates,

we share baked information about the connectivity of edge routers, ToR and fabric switches in the pod. Instead of

the raw list of failures, we precompute if there are unreachable fabric switches and how far ToR switches and edge

routers are from fabric switches. These baked exceptions per pod allows us to greatly reduce the computational cost

compared considering the entire network connectivity at the same time, computing exceptions to each pod once at

a time.

Unlike with distributed routing, we here relax the restrictions on valid paths. While we do not allow using inter-

mediate pods when forwarding, we allow the use of any secondary path within both source and destination pods.

Even so, as exceptions are extracted from already computed distance matrices of pods, the resulting complexity is

not higher than considering only optimal paths. In addition, as failures in a pod do not affect the way to reach other

pods, only exceptions to the affected pod have to be recalculated upon changes.
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Algorithm 3 Exception computation pseudo-code at a pod manager in a DCN describing the MC topology
(centralised routing)

1 --Baking updates--

2 From failures at fabric switches

3 List of fabric switches disconnected from all spine switches and or ToR switches and edge routers.

4 List of failures towards spine switches from connected fabric switches, if any.

5 Compute the distance matrix of nodes in the pod:

6 For ToR switches and edge routers without the same distance to all connected fabric switches,
share the distance towards all the pod fabric switches.

7
8 --Computing exceptions--

9 For each fabric switch:

10 Check connectivity with ToR switches and edge routers and compute group A.

11 If not disconnected, add to default A.

12 Check connectivity with spine switches and compute group B.

13 If not disconnected, add to default B.

14 For each ToR switch and edge router:

15 Compute groups A and B from the neighbours with minimum distance to any of default A and B
respectively.

16
17 =Compute in-pod exceptions=

18 Exceptions from the distance matrix comparing to groups.

19
20 =Compute out-pod exceptions for pods with failures=

21 For each pod with some failures:

22 Compute the list of fabric switches that reach a connected fabric switch at the destination pod.

23 If all disconnected, create an unreachable pod exception at all nodes and go to next problematic
pod.

24 For each ToR switch and edge router:

25 Check if neighbours of group B takes the same minimum distance to reach any of the fabric
switches connected to the destination pod, if not, create an exception.

26 For ToR switches and edge routers with failures at destination

27 Compute the distance from our fabric switch to the node from connectivity and shared distances.

28 Add unreachable exception at fabric switch if shared distance for it is INFINITE.

29 From each ToR switch and edge router:

30 Check if neighbours of group B take the same minimum distance to reach the node (distance to
fabric switch + from fabric switch to node), if not, create an exception.

Note that in this scenario we assumed ToR switches (and therefore servers) at each pod. If not, this solution would

be still possible by adding a manager server to those pods with only edge routers therein. This happens in DCNs

describing the GO topology.

Another solution could be to have manager servers connected directly to fabric switches and interconnected between

them, as can be seen in Figure 12, where few primary and backup managers can be used to manage the full network

in a scalable way. This solution does not use computational resources initially available in the DCN, but works well

with any of the considered topologies, reducing at the same time the cost of routing updates. In this case, the number

of managers can be reduced, as each manager can compute the exceptions of more than one pod. Moreover, only
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Figure 12: Alternative manager placement for centralized routing at a DCN describing the MC topology.

status updates from fabric switches are required to know whether a link or node is down (considering in this case

as down a fabric switch non-reachable through any manager). As a side note, since the management layer would

be something fully separated from the forwarding across the DCN, it is not required for managers to have its own

addresses within the DCN address space.

7 Numerical results

Current forwarding and routing policies based on TCP/IP impose multiple limitations that the use of the RINA

architecture already solves. For instance, in RINA we are not forced to use 4 or 16-byte addresses as imposed by

IPv4 and IPv6, respectively, but we can use scenario-specific addresses, resulting by itself in both smaller memory

usage and routing updates. In addition, as RINA uses a recursive layering and a naming scheme that differentiates

node location and address, servers and virtual machines addresses neither need to be known nor affect routing in the

Fabric DIF. This facilitates multi-homing and mobility, reducing the scope of routing within the DCN. Such benefits

of adopting RINA are enough to contemplate its usage inside DCs. Nevertheless, we also want to quantitatively

evaluate in this paper the scalability of the proposed forwarding and routing policies against that of currently available

solutions migrated "‘as-is"’ (i.e., without any change in their behaviour) into RINA.

In order to present the benefits of topological solutions in a DC scenario, we start comparing the requirements of

forwarding tables and the R&E forwarding policy in both non-failure and failure scenarios. To this goal, we firstly

compare the number of entries that would be required in a traditional forwarding table and their size, against those

required using our R&E solution. In order to perform this comparison, we consider all DCN topologies presented in

Table 5, all of them representing large DCs with 8192 ToR switches and 2048 edge routers. Note that a configuration

like this one is quite unrealistic in the GLS-based DCN, being impossible to scale that topology in terms of edge

routers without incrementing dramatically the size of fabric switches (number of ports). Even so, we keep this scenario

in the results, as it provides us an illustrative example, where fabric switches have many neighbours.
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Table 5: Assumed values for the parameters describing each of the considered DCN topologies

Scenario p t f s

Generic Leaf-Spine (GLS) 128 64 4 2048

Facebook old and new (FB1 and FB2) 128 64 8 256

Google (GO) 160 (128+32) 64 4 128

Modified Clos (MC) 160 (128+32) 64 4 64

Figure 13: Number of neighbours vs. required entries in the different DCN topologies without failures.

Figure 13 shows a comparison of the number of entries required in the non-failure scenarios for the different node

locations and forwarding policy in each of DCN topology. We considered 2 forwarding functions:

• Hierarchical forwarding table: Stores one entry per aggregated set of addresses (i.e., showing superior scalability

than a flat addressing scheme with an entry per address in the network).

• Rule-and-exception: The proposed policy, which stores one entry per neighbour and group.

In each case, we considered the entries required for neighbour nodes and those used for forwarding packets to

remote (not neighbour) nodes or groups of nodes (e.g., pods). As seen, almost no information has to be stored at ToR

switches when using our R&E policy, compared to the required entries with hierarchical forwarding tables. This is

really interesting, as they are the forwarding hardware most used in DCNs. For fabric and spine switches, reductions

in the number of stored entries are not so remarkable, due to the large number of neighbours that these nodes have

in some of the considered DCNs (e.g., in the GLS topology, fabric switches have more than 2000 neighbours each).

Even so, all nodes still experience reductions from hundreds to thousands of stored entries.

As shown in Figure 13, the proposed R&E forwarding policy lowers the number of entries to be stored at DCN

devices significantly. However, this evaluation does not show their real memory requirements. To illustrate this, Figure

14 compares the number of ports stored among all entries required in the non-failure DCN scenarios, independently
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Figure 14: Number of neighbours vs. required stored ports in entries in the different DCN topologies without failures.

of the entry encoding used. As can be seen, while it is true that the number of stored entries with hierarchical

forwarding tables and the proposed policy is more or less similar, memory requirements differ substantially. The

R&E forwarding policy requires storing only neighbouring node information (stored at most once per defined group).

In contrast, with forwarding tables, apart from neighbour information, we store not only one port per destination,

but also some of the neighbours that can be used to reach it. As the number of ports eligible to reach a destination

may be huge (e.g., any spine switch can be used to reach other pods from a fabric switch), we have imposed a limit

of 16 ports per entry, limiting the size of forwarding entries. Even limiting at most 16 ports per entry, which has a

negative impact on load balancing, the difference between forwarding tables and R&E becomes substantial..

When considering failure scenarios, our R&E forwarding policy uses either the modification of groups or exceptions

to avoid the existing failures. In Figure 15, we depict the relative number of entries, with respect to the number of

pods, for the MC-based DCN presented in Table 5 in different failure scenarios experiencing from 0 to 10 failures

each. While the specific distribution of these failures across the DCN (node or link failure, location, etc.) could have

a great effect on the resulting routes, we realized that it has little to no effect to our policy. With that in mind we

decided to uniformly distribute the failures between link failure and node failure (all links attached go down). The

results show, as expected, that at most one exception per failure is required by the R&E policy in all cases, resulting

in a negligible stored forwarding information increment. This is an interesting property provided by the topological

characteristics of the considered DCNs, which remains even in the worst case scenarios. In contrast, with hierarchical

forwarding tables, certain failures can prevent the aggregation of some groups of addresses, requiring now a larger

number of entries. As a result, we can identify some noticeable hierarchical forwarding tables size increments with

even few failures in the DCN.

In addition to the number of entries and table size, we are also interested in comparing the scalability of the

proposed R&E forwarding policy as the DCN grows up. Figure 16 shows the average number of entries and stored
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Figure 15: Comparison between the average number of entries per forwarding node in scenario MC with 1 to 10
concurrent failures.

Figure 16: Average number of entries and stored ports for different number of pods in GO and MC-based DCN.

ports in the GO and MC DCN scenarios (similar results are also obtained with the other leaf-spine and Clos variants).

In these scenarios, we considered the same parametrization as before, but varying the number of pods, each composed

of 4 fabric switches and 64 nodes between ToR switches and edge routers. We considered a non-failure scenario and,

for the scenarios using hierarchical forwarding tables, the same limit of at most 16 stored ports per forwarding entry,

typical of ECMP. In the figure, we can see how, while the aggregation of addresses implies a notable improvement

with respect a flat solution, the number of forwarding entries and their size grows steadily with the number of pods.

In contrast, as the R&E policy only requires the storage of adjacent neighbour’s information, it remains almost

constant as the size of the DCN grows up.

The R&E forwarding policy clearly shows some advantages with respect to forwarding tables using ECMP. However,

both of them select the next hop uniformly between the possible candidates. Other solutions like WMP 27 use extra

information on the valid neighbours to improve load balancing decisions. Even so, they encounter a trade-off between
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information and scalability that cannot be avoided. In these cases, the same approach as for ECMP is done, and the

number of possible choices is limited. In large-scale leaf-spine and Clos DCNs, a high number of parallel paths exist

between most pairs of destinations. Given that, the difference between the possible choices would not vary largely

even with multiple concurrent failures in the network. Hence, we find that the solution proposed by R&E adapts

better to the scenario, solving the trade-off towards scalability and enabling all possible options, instead of trying to

search for optimal solutions within limited options.

The benefits of our proposal against hierarchical forwarding tables (with or without aggregation of addresses)

are good enough to justify topology dependent policies. However, the computational and communication costs of

searching exceptions, given the specific number of failures, should be also considered. Regarding the latter, we have

a clear improvement in the sense that, as nodes know the DCN topological characteristics, they can take some

knowledge as granted. With this knowledge, we can avoid most of the initial propagation of routing information

flooding that any common link-state or distance-vector routing protocol needs for populating routing and forwarding

tables. In addition to this, TCP/IP solutions tend to require some type of refresh of routing information to ensure

that the knowledge is updated. In this regard, RINA DIFs can itself provide reliable communication between nodes

and our policies work based on link status (with has to be synchronized between both extremes). This make routing

refreshes unnecessary, both in distributed and centralized approaches. Given that, only upon failure and recovery

events routing updates should be propagated. In this regard, the distributed approach shares a similar cost as any

other link-state protocol, having to propagate the new update to the entire network. Even so, the number of messages

exchanged can be halved, since the same update is propagated from both failed link endpoints, instead of the link

state at both endpoints. In the centralized cases, it all depends of the approach used when locating manager servers.

A quick approximation would require a status update per manager plus an exception update for any node requiring a

re-population of exceptions. Anyway, the size of routing messages, both in the distributed and centralized approaches,

should not exceed one packet in most if not all cases.

Finally, in terms of computational cost, in order to validate our proposed approach to compute forwarding excep-

tions, it is important not to exceed the cost of traditional solutions based on the Dijkstra routing algorithm. We

take as an example the pseudo-code proposed for computing exceptions at ToR switch and edge routers in the MC

topology in the distributed approach (Algorithm 2) and the one for computing exceptions in the centralized case of

the same scenario (Algorithm 3). To simplify the results, we consider the same parametrization described in Table

5, scaling the DCN based on the number of pods (p). We also consider the number of failures (r) as a parameter to

describe the complexity of each approach.

With Dijkstra-based approaches, the complexity of computing exceptions would grow linearly with p, as the number

of nodes does the same. For the proposed approaches, centred on the failures in the network, there are two main
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scenarios possible: processing a failure in the same pod or in another one. If the failure is in the same pod (probability

1/p) we need to compute exceptions for all failures in the DCN, with a linear cost in the number of failures. If the

failure affects a different pod (probability 1 − 1/p), then we need to compute exceptions only to that specific pod,

being that a near constant function. Since the number of concurrent failures in these types of networks is small by

design, we found that those bounds carry a great improvement. Moreover, we should consider that the probability

of having to take the most complex route upon a failure when computing new exceptions reduces as the DCN grows

up. In addition, since these networks tend to operate in the non-failure scenario most of the time, this represents a

big performance improvement as we only require the constant cost of checking that there is no failure in the network.

8 Conclusions

In this paper, we have extended the rule-and-exception based topological forwarding and routing policies for RINA-

enabled large-scale DCNs proposed in 9. These policies take the knowledge of the DCN topologies in order to

provide a superior efficiency and scalability, achieving fast and successful forwarding decisions in non-failure scenarios,

merely requiring information about neighbouring nodes. Upon DCN link or node failures, forwarding exceptions are

computed and stored at forwarding nodes to override decisions of primary rules that have become temporally invalid.

To also minimize the size of stored exceptions, a varying encoding is also proposed, allowing to store only a list of

unreachable neighbours for forwarding, instead of the full list of valid ones. This yields a significant improvement

given the large number of redundant paths across such large-scale DCNs. In addition, this improves the range of

options for load balancing decisions, as we are not limited to storing only an arbitrary number of valid destinations

as in common ECMP implementations.

The proposed forwarding policy is fully dependent on the network topology in order to take its rule-based decisions.

Even so, the policy is generic enough with programmable rules to be used in any kind of topology where most routes

could be easily computed from addresses. Moreover, even if the network does not follow any topology that could take

complete advantage from forwarding rules, forwarding devices can still employ exceptions as traditional forwarding

entries. In that case, while benefits would be reduced, node grouping and exception encoding could be still used to

provide scalability improvements.

We also proposed complementary routing policies taking advantage from the known topologies, without having

to compute the full forwarding table in order to largely reduce the routing communication and computational cost.

These routing policies, instead of sharing all connectivity information, they disseminate only failed link information,

largely reducing the communication cost. The obtained results illustrate the scalability of our topological forwarding

and routing policies. The interested reader can experiment with the proposed policies in the online tutorial available

in 28.
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In addition to the considered leaf-spine and Clos DCNs, alternative scenarios could also profit from RINA and the

R&E policy. As a future work, we plan to investigate the usage of the proposed R&E forwarding policy in alternative

RINA network scenarios (not only intra-data centre but also large-scale network service provider ones), customizing

it as needed to achieve maximum scalability benefits. Moreover, we find of particular interest to also prototype and

test the proposed R&E policy in real RINA network test-bed scenarios, so as to also experimentally evaluate its

performance.
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