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Abstract: Today’s data center networks such as Fat-tree and BCube, are over-provisioned for multi-path routing; and
they suffer from inefficient power usage when traffic is not heavy. Green routing technologies are effective ap-
proaches that can fix this problem. In this paper we present a new solution to implementing green routing: we
integrated energy-aware routing capabilities in OpenNaaS to make a centralized routing decision of schedul-
ing traffic, which leverage SDN technologies to decouple data forwarding from routing decision. This method
is efficient due to managing the network as a whole rather than as a number of individual devices. Based on
measured power information, energy-aware OpenNaaS can calculate a green routing path and configure the
forwarding rules for the path. In the end, we present a practical use case to demonstrate its functionality and
evaluate its effect on power saving by simulation.

1 INTRODUCTION

Network architectures in data centers such as Fat-tree
(Al-Fares et al., 2008) and BCube (Guo et al., 2009)
are over-provisioned, with full-connected topologies
and multi-path routing to guarantee large network ca-
pacity and high robustness. A large number of net-
work resources are used to meet the performance re-
quirement at peak time. However, these resources are
usually underused and rarely work at the peak perfor-
mance. Unfortunately, networks in a data center at
the low load still consume more than 90% of power
used at the busy-hour load (Heller and Mahadevan,
2010), and effectively suffer from inefficient power
usage when traffic is not heavy.

Green routing technologies are effective ap-
proaches that can fix this problem. They are in
essence strategies which focus on the energy state of
network, e.g. energy consumption or CO2 emission
rate. They make a routing decision to aggregate traf-
fic over a subset of links and devices in over-provision
networks and switch off unused network components.
There are two ways to implement green routing. One

is in IP networks. For instance, a Green OSPF proto-
col has been proposed (Cianfrani et al., 2010) and its
implementation of energy-aware routing is based on
the exclusive use of the topological information ex-
changed among routers via the OSPF protocol.

The other modality is to focus on Software De-
fined Networks (SDNs), in particular OpenFlow net-
works. In the OpenFlow protocol, the control plane
(routing decision) decoupled from data plane (data
forwarding) is moved to a centralized controller. This
controller provides a centralized view of the entire
network state such as traffic and topology. Green
routing techniques do rely on the precise traffic and
topology information, so green routing is easily im-
plemented in the controllers of OpenFlow networks.
However, the current implementation of the Open-
Flow controllers are usually limited to obtain these
information e.g. NOX (NOX, 2014) can only dis-
cover network topology, and most of the controllers
can’t obtain topology or traffic statistics. We decided
to concentrate on an existing framework, OpenNaaS.

OpenNaaS (OPENNAAS, 2014) is the outcome of
the European Community Mantychore FP7 project.

34



The main contributors include Juniper, HEAnet,
i2CAT etc. OpenNaaS is proposed as a common net-
work management and service orchestration platform,
capable of providing and managing network in a flex-
ible and efficient way. OpenNaaS can take advantage
of SDN technologies.

In this paper, our contribution is that the utilization
of the OpenNaaS features to provide green routing ca-
pabilities. We integrated an energy-aware bundle in
OpenNaaS for monitoring energy and making routing
decision. Energy-aware OpenNaaS provides green
routing services in a centralized way, as a conse-
quence of effectively decoupling the forwarding and
control planes. With our energy-aware OpenNaaS,
network users and providers can understand energy
usage information of the networks. To be more im-
portant, network providers could easily achieve net-
work routing in terms of power consumption, elec-
tricity cost and CO2 emission metrics.

The structure of this paper is as follows: Sec. 2
presents related work on green routing technologies
and software management platforms. Sec. 3 describes
the framework of OpenNaaS and Sec. 4 introduces the
design of energy-aware OpenNaaS. Sec. 5 and Sec. 6
provides the practical of energy-aware OpenNaaS and
the evaluation of its effect on power saving respec-
tively. Finally, Sec. 7 discusses our conclusions.

2 RELATED WORK

Green routing is an effective solution to save energy
and CO2 by aggregating the traffic over a subset of
network links or network devices in over-provisioned
networks. (Xu et al., 2013) discussed an algorithm
for reducing power consumption of high-density data
center networks from the routing perspective while
meeting the total throughput requirement. (Chabarek
et al., 2008) studied how to save energy of aggregate
traffic through optimal route selection and configu-
ration in wide-area networks. This work is imple-
mented in traditional (e.g. IP) networks, while our
green routing solution focuses on SDNs in data cen-
ters. (Heller and Mahadevan, 2010) presented Elas-
ticTree for adapting the energy usage in a Fat Tree
data center with OpenFlow switches. ElasticTree uses
NOX that is an original OpenFlow controller to pull
traffic data and push computed flow routes to each
switch; it employs an optimizer to compute energy-
minimization routes which meet current traffic condi-
tion. But ElasticTree can’t discover the topology and
monitor the power consumption of switches, so it as-
sumes that the topology and power are always invari-
able once they are input. Our solution has wide appli-

cable range as it is based on OpenNaaS that can dy-
namically obtain these information and support mul-
tiple types of SDN controllers.

Some cloud/network management platforms are
supporting SDN technologies, which have efficient
network management mechanisms. OpenNebula and
OpenStack are both open-source cloud computing
platforms for public and private clouds. Cloud admin-
istrator can control computing, storage and network
resource in clouds through APIs of them. Their net-
work capabilities are limited at IP, vLANs and SDN
currently. OpenNaaS has richer network capabilities
e.g. Bandwidth on Demand (BoD), topology discov-
ery than OpenNebula and OpenStack. We can im-
plement more energy-aware capabilities like energy-
aware BoD by combining energy monitoring or man-
agement with existing network capabilities in Open-
NaaS. Besides, OpenNaaS has a well-organized struc-
ture to enable the abstraction of underlying network
technologies and resources, easily extended to imple-
ment new network technologies.

RouteFlow (Nascimento et al., 2011) provides re-
mote IP routing services based on a set of open-source
software. RouteFlow doesn’t make a routing deci-
sion, which depends on an virtualized IP routing en-
gines – Quagga that provides implements of routing
protocols e.g. OSPF, BGP, etc. (Nascimento et al.,
2010). RouteFlow only focuses on routing services
and its structure is not easily extensible for new net-
work functionality.

3 OpenNaaS FRAMEWORK

OpenNaaS is a management platform that enables the
abstraction of underlying network technologies and
offers NaaS-based services. It provides the capabil-
ities to configure and deploy novel network services,
enabling administrators to manage any part of the in-
frastructure or to deploy any type of application on
top of it.

OpenNaaS abstracts the physical resources en-
abling to decouple physical topology and vendor-
specific details from their control and management
features to be offered to the tenants. The fundamental
unit that OpenNaaS uses to accomplish this is the Re-
source. A Resource models a device and represents a
manageable unit inside the NaaS concept e.g., switch,
a router, a link, a logical router, a network. Capabili-
ties shape resource functionality and provide an inter-
face to given resource functionality, e.g. for a router:
OSPF, IPv6, create/manage logical routers, etc. Fig.
1 shows this OpenNaaS vision in which physical de-
vices are abstracted into resources and capabilities
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Figure 1: OpenNaaS abstraction view: resources and capa-
bilities.

whose management can be delegated to upper appli-
cation layers. The implementation of OpenNaaS con-
sists of two distinctive parts: the core and the exten-
sions. The core can be understood as a provider of
basic functionality, e.g. resource management, which
can then be used by extensions. Extensions provide
functionality for a specific aspect of networking, e.g.
configuration of routers by defining capabilities the
resources have. The structure of OpenNaaS allows
developers easily implement more functionality by
creating capabilities in a new extension bundle. We
exploited this feature to create an energy-aware bun-
dle (see section 4.2).

OpenNaaS has a complete view of the entire
network and interacts directly with the data plane
through its SDN capabilities. OpenNaaS interworks
several SDN platforms (OpenDaylight (OPENDAY-
LIGHT, 2014), RYU (RYU, 2014) and Floodlight
(FLOODLIGHT, 2014) controllers) to orchestrate
network services on top of SDN-based infrastruc-
tures and to enable new SDN applications to differ-
ent stakeholders. OpenNaaS defines an OpenFlow re-
source model for OpenFlow switches and create ca-
pabilities for OpenFlow resources in the OpenFlow
bundle. The OpenFlow bundle works as an OpenFlow
driver, which accesses REST APIs of OpenFlow con-
trollers for port statistics and flow forwarding (create,
remove and get forwarding rules).

4 DESIGN OF ENERGY-AWARE
OpenNaaS

We integrated an energy-aware bundle in OpenNaaS
to allow energy monitoring and green routing capa-
bilities for OpenFlow networks.

4.1 Architecture

Fig. 2 shows the architecture of energy-aware Open-
NaaS we developed. The OpenNaaS server runs

Programmable 
Switches

OpenFlow Controller 
(OFC)

OpenNaaSEnergy-aware bundle

OpenFlow bundle

Database

Static Routing 
Module

Route 
Table

Port 1
Port 2
Port n

REST APIs

REST APIs

Scripting, GUI

OpenFlow 
Protocol

Monitoring

Routing

Description

Event detection 
Module

Figure 2: Energy-aware OpenNaaS architecture.

on top of an OpenFlow controller (OFC), and the
OpenFlow-enabled switches are connected with the
OFC. There are two methods to invoke green routing
functionality in OpenNaaS: 1) A network provider or
user directly sends a green routing request through
scripts or GUI to OpenNaaS; 2) The OFC detects a
packet-in event in a switch and then sends a routing
request to the OpenNaaS server. The energy-aware
bundle in OpenNaaS receives and handles the request.
This bundle is capable of calculating a green route and
making a routing decision. The energy-aware bundle,
which communicates with the OFC through the Open-
Flow bundle calls the defined REST APIs in the OFC
to add static flow rules for the route. The static rout-
ing module in the OFC adds flow rules by inserting
flow entries in flow tables of the switches.

4.2 Energy-aware Bundle

The Energy-aware bundle at the core of our de-
sign implements energy-aware description, monitor-
ing and routing capabilities for OpenFlow resources.
Energy description and monitoring are essential in
energy management for networks. Energy manage-
ment mechanisms usually depend on topology infor-
mation, traffic information and energy usage informa-
tion to determine the configuration of network when
scheduling of traffic. OpenNaaS can already provide
the first two information given that it maintains an ab-
stract overview of whole network.

We implemented both energy monitoring capabil-
ities and energy description capabilities:

Energy monitoring capabilities obtain and pro-
vide energy usage information from power meters in
the observed metrics: (power, energy, CO2 emission
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rate, electricity price) and from data statistics in the
calculated metrics: (total Electricity, CO2 emission,
energy efficiency). The measurement data is saved in
a database of OpenNaaS, as shown in Fig. 2. The
capabilities are responsible for the communication
with power meters. We have created the power meter
drivers for the Simple Network Management Proto-
col (SNMP) access to different power meter vendors
e.g. Rackitivity and APC Power Distribution Units
(PDUs). Only numeric Object Identifiers (OIDs) in
the drivers are different for different PDUs. Each OID
identifies a variable that can be read or set via SNMP.
The capabilities not only measure the power usage of
a single device, but also monitor the power usage of a
network route.

Energy description capabilities describe and cre-
ate meta information about energy source, power me-
ters, green metric, power state etc. in OpenNaaS. We
employ Energy Description Language (EDL) ontol-
ogy (Zhu et al., 2014), which reuses Infrastructure
and Network Description Language (INDL) ontology
to describe the resources and network infrastructure
that connects these resources. INDL can describe a
set of network elements such as topology, ports, links,
paths and so on. EDL itself focuses on the knowl-
edge representation in the domain of energy moni-
toring. With EDL, OpenNaaS instantiates energy in-
formation using a common vocabulary and makes in-
formation understandable between software compo-
nents. An important information that EDL can de-
scribe is the relationship of power meters and remote
network devices, so that we know that the measured
energy usage information from a port of a power me-
ter belongs to which remote device.

The third set of capabilities we developed is the
Green routing capabilities, needed to calculate the
green routing path. Three green metric options are
available for routing: power consumption, electricity
cost and CO2 emission, as these metrics are provided
by the monitoring capabilities. We adopt a greedy
routing algorithm in the initial prototype. Once a
OpenNaaS user selects the green metric to optimize
upon, the algorithm traverses all the possible network
routes between the original host and destination host
of the flow and it chooses the route with the lowest
value of the metric. The calculated route is converted
to a list of the OpenFlow flows in the Json format
according to specific OFCs, and then the OpenFlow
bundle sends the list to the OFCs for creating flow
forwarding rules.

OpenNaaS extends the INDL model for the de-
scription of OpenFlow route table and network route,
which are used by green routing capabilities. The
switch ports are identified by numbers, and the

route table is defined by: IP source, IP destination,
Source switch identifier, also named Datapath identi-
fier (DPID), Input port of the switch and Output port
of the switch. The output port identifies which switch
the traffic is sent to next hop. A route or a routing path
is a list of route tables.

Similar to route tables in OpenNaaS, OpenFlow
flows also include the identifier of switches and the
output ports of the switches. OpenNaaS has the
knowledge of network topology that also depicts the
connection between OFCs and switches. So even if
there are multiple OFCs in a network, the OpenFlow
bundle knows which switch the flow belongs to and
which OFC controls the switch. OpenNaaS can add
the flow rules in the correct OFC.

4.3 OpenFlow Controllers

In our design, OFCs insert flow forwarding rules in a
proactive way. The static routing module pushes all
the flow entries to the switches before traffic arrives,
to save the time of processing routing requests from
all the switches. We didn’t change the static routing
module and its REST APIs in OFCs. The OpenFlow
bundle in the OpenNaaS server calls different APIs
according to the type of OFCs: Static Flow Pusher
APIs in Floodlight and Static Routing APIs in Open-
Daylight.

To support the second mode of invocation, we cre-
ated the event detection module in the controllers to
forward routing requests from switches to OpenNaaS.
The module detects a packet-in event, and then sends
a REST routing request to the energy-aware bundle.
The message contains the source and destination IP
of the packet, the DPID of the switch and the input
port where the packet enters the switch.

5 PROTOTYPE

We developed a prototype to show the functionality of
energy-aware OpenNaaS. The source codes are avail-
able online1. The prototype includes a web client
GUI, which communicates with the capabilities of
OpenNaaS through REST APIs.

We emulated a Mininet network with a topology
of 6 OpenFlow switches and 5 hosts, shown in Fig.
3. The switches had the same network capacity and
were divided into two groups, controlled by Flood-
light and OpenDaylight controllers respectively. To
have different CO2 emission rates, we assumed the

1https://bitbucket.org/uva-sne/greennet-demo
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!Figure 3: The screen shot of the topology and the configured route in emulated network environment.
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Figure 4: The flowchart of a general usecase of energy-
aware OpenNaaS (Step 1 to Step 7).

two groups consumed solar and thermal energy re-
spectively. We ran the OpenNaaS server in the same
machine.

Fig. 4 presents the flowchart of usecase in our em-
ulated environment. A provider creates a set of ab-
stract OpenFlow resources and loads the OpenFlow
capabilities and energy-aware capabilities for the re-
sources using OpenNaaS (Step 1).

After creating the resources, the provider sets the
energy source information for the network, as well as
the connections between switches and the outlets of
power meters (Step 2). For our prototype, we inter-
faced OpenNaaS with an actual power meter to pro-
vide the power readings of emulated resources. At

this point the provider sends the monitoring request
with the specific metric (Step 3). OpenNaaS trans-
lates this request and forwards an SNMP request to
the power meter (Step 3.1) and reads the measure-
ment data out (Step 3.2). The data is instantiated by
EDL, and data is saved in a database or returned to
the provider (Step 4).

Then the provider decides on a green optimization
metric (Step 5) and submits a request to OpenNaaS
for a path between a source and a destination (Step
6). OpenNaaS obtains the energy information of all
the possible network routes between the end points;
if the information is not available in the database, it
will send a monitoring request immediately to obtain
real-time energy information (Step 6.1). OpenNaaS
selects a route with the least value and it interacts
with the OFCs to create flow forwarding rules in the
switches (Step 6.2). In the end, the formatted route
information returns to the provider if the flow rules
are successfully created (Step 6.3). According to the
result route, OpenNaaS sends power on/off command
to the power meter via SNMP and then the power me-
ter changes the state of switches and links (Step 6.4).
Fig 3 shows the output of our prototype when three
routes are configured: id0, id1 and id2. For each one
of the routes, our prototype provides the value of the
total power, cost and CO2 emission metrics.

6 EVALUATION

We explore how much power to consume for data
transmission with different routing algorithms. In the
beginning, we employ the shortest routing algorithm
and keep all the switches and links always awake. We
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Figure 5: Network power saving against the network uti-
lization in the BCube network.

define the network power consumption at this mo-
ment as the original power. Then we evaluate green
routing algorithms that enable idle switches and links
to go to sleep. We compare the power consumption
and average flow delay time of network when using
power-greedy, the shortest and random routing algo-
rithms. Power-greedy that is used in our prototype
finds a routing path for current flow, which increases
the least power consumption for the overall network.

In our prototype, the OpenFlow resources are em-
ulated but their power consumption is from an actual
power meter for real devices. So we can’t obtain the
actual relation between network traffic and network
power consumption. We perform our study of the
routing algorithms by simulation. In our simulation
we use BCube(2,3) data center topology. There are
8 8-port switches in total. The capacity of each link
in the simulated topology is 1Gbps; each link has 1
millisecond (ms) delay. We take the maximum of the
total number of flows on all servers as 100% network
load and vary the percentage of the number of flows in
the topology to simulate different network utilization.
The source and destination of each flow are randomly
chosen from leaf switches. The speed of each flow is
uniform distribution, but it has to guarantee that the
largest link throughput in the network is less 1 Gbps.

Fig. 5 shows the power saving of three green rout-
ing algorithms against the network utilization in the
BCube network. The y-axis here depicts the power
consumption of the algorithms is how much ratio of
the original power consumption. We can find that the
power saving becomes less when lower network uti-
lization. As the less networking components are idle
when the traffic becomes more intensive. When net-
work utilization grows from 20% to 80%, the power-
greedy routing only uses less that 40% of the original
power. And it can save at most 20% power than the
shortest routing.

Figure 6: Mean flow delay time against the network utiliza-
tion in the BCube network.

Fig. 6 shows mean flow delay time of three green
routing algorithms against the network utilization in
the BCube network. We can find the mean flow delay
of greedy routing increases from 4 ms to 5.6 ms while
that of shortest routing is nearly stable at 4 ms. It
tells us that greedy routing finds power efficient paths
although that have more hops.

Our evaluation results show that the greedy rout-
ing algorithm is effective at saving power, in partic-
ular when traffic is not heavy. It can be used at non-
peak time or in scenarios with tolerant performance
requirement. In future, we expect to study the trade-
off between power consumption and performance of
networks for routing algorithms.

7 CONCLUSIONS

OpenNaaS is an efficient network management plat-
form for infrastructure providers. OpenNaaS includes
SDN support and it interworks several SDN platforms
to orchestrate network services; this makes it a suit-
able management platform for adoption in data cen-
ters moving to SDN. The energy-aware OpenNaaS
we developed builds on the consolidated OpenNaaS
framework, and it’s the first implementation of this
kind. Our system can measure the energy, cost and
sustainability information of networks for providers
or users. It can calculate and create a green-greedy
routing path based on these information for them.
Our experiments show that our prototype with power-
greedy routing algorithm can effectively save power.

The scalability of energy-aware OpenNaaS for
large-scale network depends on two factors: one is the
scalability of calculating routing paths in green rout-
ing algorithms; another is the scalability of flow con-
figuration in the SDN control plane. The later prob-
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lem that extends SDN to large-scale networks is still
challenging (McCauley et al., 2013) (Fu et al., 2014).
We will discuss the scalability of energy-aware Open-
NaaS in future.
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