Creating Cavities at Palladium—Phosphine Interfaces for Enhanced Selectivity in Heterogeneous Biomass Conversion

Manuel A. Ortúñov and Núria Lópezv

Institute of Chemical Research of Catalonia, ICIQ, and the Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain

Supporting Information

ABSTRACT: Selective conversion of biomass-derived substrates in heterogeneous catalysis can be achieved through the functionalization of nanoparticles with surface modifiers (ligands). However, full understanding of reaction mechanisms at the atomic level of detail is still limited. Herein we rely on computational approaches to address this challenge. We employ Density Functional Theory to understand the role of phosphine-decorated palladium nanoparticles in the decarbonylation of fatty acids to produce linear α-olefins. While self-assembled monolayers of monodentate ligands completely passivate the metal surface, the flexibility of bidentate counterparts allows the creation of transient cavities that: (i) enhance selectivity and (ii) prevent catalyst deactivation. Such detailed insight provided by theory can pave the way for a rational design of metal—ligand interfaces in biomass upgrading.

KEYWORDS: biomass, decarbonylation, density functional theory, metal—ligand interfaces, palladium, phosphine, selectivity

INTRODUCTION

Industrial processes are mainly dominated by heterogeneous catalysis. Nevertheless, the excellent activity and recyclability of these systems are sometimes tainted by poor selectivity. As a result, current efforts are heavily focused on the chemistry at the interface between metal nanoparticles and surface modifiers. The resulting ligand-decorated systems combine the advantages of heterogeneous systems with the selectivity of homogeneous counterparts. The most successful example is the selective semihydrogenation of alkenes using the Lindlar catalyst, consisting of Pd/CaCO₃, lead, and quinoline. More recently, the functionalization of metals with NanoSelect is producing highly active and selective nanostructured catalysts for a wide variety of applications. Selective modifiers can potentially: (i) block the catalytic site on the surface area thus controlling the catalytic ensemble, (ii) alter the properties of the metal—ligand boundaries, such as acidity, and (iii) impose steric and electronic effects on reactants and products.

Due to their potential recyclability and selectivity, ligand-decorated nanoparticles find a straightforward application on biomass upgrading, where selective deoxygenation is the key step. With readily available sources of vegetable oils and animal fats, we focus on the decarbonylation of fatty acids to yield linear α-olefins (LAOs), which are valuable materials in a myriad of applications, such as comonomers in polymerizations and precursors of surfactants and lubricants, among others. LAOs are usually prepared via ethylene oligomerization or Fischer–Tropsch processes, but the use of fatty acids allows direct access to odd numbered derivatives, which would be more expensive and less trivial to prepare otherwise.

One big challenge of such a process is selectivity, in particular, precluding isomerization of the terminal alkene to the thermodynamically favored internal one (Scheme 1). Most homogeneously catalyzed systems are based on Pd–phosphine complexes and proceed through ester or anhydride intermediates. In some cases, isomerization could be prevented by fine-tuning of ligands, but CO inhibition might also become an issue.

Despite this early success, homogeneous catalysts lack recyclability, so the design of heterogeneous counterparts becomes quite appealing for industrial applications. Initial studies employed H₂ as coreactant, but that leads to product hydrogenation. Less attention has been drawn to H₂-free heterogeneous deoxygenation systems, where anhydrides have also been invoked as key intermediates. Recent reports on decarbonylation processes are promising but still present low selectivity toward LAOs.
Inspired by homogeneous systems, Chatterjee and Jensen designed Pd/C catalysts functionalized with phosphine ligands. Interestingly, while the clean and monodentate–phosphine catalysts were inactive, the addition of bidentate phosphines completely changed the picture. At 250 °C, they obtained reasonable yields, LAO selectivities up to 98%, and no reactivity coming from leached species. Indeed, pioneer works by Fujihara and co-workers already reported Pd nanoparticles functionalized with bidentate phosphines for catalytic applications. In light on these experiments, we designed a computational study to address the Pd–phosphine interface at atomic level of detail to provide insight on activity and selectivity. Mechanistic studies have been reported for molecular catalysts and Heyden and co-workers have extensively studied the decarbonylation of propanoic acid and methyl propionate derivatives to olefins (i.e., a low coverage situation). Just a few reactivity studies can be found for P-functionalized Au-based systems.

Herein we simulate the decarbonylation of fatty acid derivatives to olefins on clean and phosphine-decorated Pd surfaces to unravel the role of ligands on activity and selectivity (Figure 1). We use pentanoic acid as model substrate to mimic long aliphatic chains. The product, 1-butene, is large enough to study the isomerization reaction side. As for ligands, we use DPEPhos based on the best performing bidentate DPEPhos, and PPhMe for the inactive monodentate PPh3, as experimentally reported.

**RESULTS AND DISCUSSION**

We first present mechanistic studies using clean Pd(111) surfaces at low reactant coverage, A, and high reactant coverage, B. We then characterize phosphine-decorated Pd(111) surfaces, C, and evaluate them as potential active species during the catalytic cycle.

**Reactivity on Clean Pd(111).** Initially, we assume the in situ formation of acetic pentanoic anhydride through the reaction of pentanoic acid with acetic anhydride. Similar to previous literature, we compute the decarbonylation mechanism of one acetic pentanoic anhydride molecule on a clean Pd(111) surface A that minimizes close contacts between neighbors (i.e., a low coverage situation). The energy profile is presented in Figure 2. Initial adsorption of the anhydride is exothermic by 0.81 eV, where the aliphatic chain is interacting with the surface. The C–O bond breaking process has a barrier of 0.47 eV via TS-A1 and gives rise to the acyl intermediate A2 and adsorbed acetate (−1.49 eV).

![Figure 1. Heterogeneous Pd-catalyzed decarbonylation reaction under study.](image1)

![Figure 2. Decarbonylation (solid black line) and isomerization (dashed black line) mechanisms on clean Pd(111) A surfaces. Asterisks represent adsorbed species.](image2)
subsequent C−C bond breaking entails 1.03 eV via TS-A2 and produces the alkyl intermediate A3 and CO (−2.23 eV). An alternative mechanism involving π-carbon dehydrogenation can be consulted in Figure S1 of the Supporting Information (SI). Then, A3 quickly undergoes dehydrogenation via TS-A3 with a barrier of 0.41 eV. Alkene release from A4 to A5 takes 1.03 eV, but terminal (A4) to internal (A7) alkene isomerization appears as a competitive process with a barrier of 0.62 eV via TS-A4.

The energy profile estimates an overall energy barrier of 1.03 eV and predicts a rather facile alkene isomerization involving 0.62 eV. At 250 °C, the reaction temperature, such barriers should be easy to overcome. However, catalytic runs using clean Pd/C (i.e., in the absence of phosphine ligands) report no reaction with recovery of starting materials.

According to experiments, Pd is added in 1% mol and the resulting nanoparticles are very large (~20 nm diameter). Therefore, we would expect a large ratio between reactants and accessible (first surface layer) Pd atoms; in other words, a high coverage scenario. We then assume that acid molecules first cover the Pd surface, as acetic anhydride is added in a later step. We design a p(4 × 4) Pd(111) slab B (Figure 3) with four pentanoic acid molecules B1 to model a self-assembled monolayer (SAM). The adsorption of reactants is highly exothermic at −2.99 eV. The adsorption energy per acid molecule, −0.75 eV, is similar to that of a single anhydride molecule in A1, −0.81 eV. The acidic hydrogen of the OH group dissociates to form B2 at −3.10 eV. These values suggest that the initial full coverage of Pd by acid molecules might prevent further reaction with the acetic anhydride coreactant. Moreover, the C−O bond breaking step to access the key acyl intermediate, B3, is significantly endothermic, demanding 2.46 eV above B2. According to these results, the excess of acid prevents the decarbonylation step from a thermodynamic point of view, thus no alkene product should be observed.

Phosphine Self-Assembled Monolayers on Pd(111). Due to the large excess of reactant and ligand molecules compared to accessible metal atoms, we would expect a full coverage of Pd surfaces. The characterization of SAMs is quite important as such high coverage situations decide the fate of the active sites of the catalyst. As seen below, the adsorption of phosphines is preferred over acid molecules, thus we design a model to reproduce phosphine SAMs over Pd.

We first calculate the interaction of different phosphines (PMe₃, PPhMe₂, PPh₃, and DPEPhosMe) with p(5 × 5) Pd(111) to evaluate the contributions of ligands to the adsorption energy. PMe₃ binds to the surface through the P atom with an energy of −2.33 eV, and PPhMe₂ does the same through the P atom and the phenyl group with an energy of −3.54 eV. These data indicate that the major contribution is coming from the formation of Pd···P interactions, although phenyl adsorption is also significant. Interestingly, differences in hydrogenation activity for aryl- and alkyl-derived phosphines have been noted in Ru-decorated nanoparticles. The adsorption energy of PPh₃ (−3.73 eV) is quite similar to that of PPhMe₂ (−3.54 eV). Lastly, the bidentate DPEPhosMe binds to the surface through two P atoms and one phenyl group, and thus an expected larger adsorption energy of −4.77 eV is found.

To properly design a model for a high coverage scenario, we now adsorb up to two DPEPhosMe ligands on different Pd(111) slab sizes. Adsorption of one ligand on p(4 × 4), p(5 × 5), and p(6 × 6) takes −3.56, −4.77, and −4.83 eV, respectively. Looking at adsorption energies per area, we obtain −0.033, −0.029, and −0.020 eV Å⁻², respectively. We then add an additional ligand molecule to these slab models. While the second phosphine does not fit on p(4 × 4), it does on p(5 × 5) and p(6 × 6) with overall adsorption energies of −8.80 and −9.30 eV, respectively, and overall adsorption energies per area of −0.053 and −0.039 eV Å⁻², respectively. The adsorption energies of two bidentate phosphines are less than twice that of one, so we expect no cooperative effect between ligands. According to energetics, the p(5 × 5) slab with two phosphine ligands arises as the most stable structure at high coverage, and we therefore use this model for our following studies.

Figure 4 depicts the Pd(111) surface with two DPEPhosMe ligands, namely C. Interestingly, these phosphines completely cover the metal surface and block access to reactants molecules. At this stage, we propose a partial decoordination onto one of the phosphine arms to create a cavity, or binding pocket, on the surface. The proposed structure, C1 in Figure 4, was found at 1.24 eV above C and should be accessible under experimental conditions (250 °C). Indeed, the hemilabile behavior of these ligands has been reported in homogeneous systems. In the gas phase, the relaxed conformation of the phosphine coming from C1 is only 0.20 eV less stable than that coming from C. It is clear than the energy toll essentially emerges from the loss of Pd···P and Pd···C interactions after partial decoordination. Additionally, starting from the DPEPhosMe model, we included two Ph groups in the P atom that detaches from the surface to better mimic the complete DPEPhos ligand. The energy difference between these species, D and D1, is now 0.85 eV.
This value is somehow lower than that of DPEPPhMe species C and C1 (1.24 eV). This result might be related to: (i) the slightly more electron-donor character of alkyl phosphine (C) compared to aryl ones (D) and (ii) the liberation of bulkier Ph groups (cf. Me).

An interesting feature of experiments is that systems containing monodentate phosphines, such as PPhMe, do not perform well. Thus, we also modeled a SAM of PPhMe as model for PPh. Using the same p(5 × 5) as before, we adsorb three ligands to obtain a fully covered surface, E. In contrast to C, which only requires partial decodourization to expose surface atoms in C1 via 2.61 eV, E requests the full desorption of one PPhMe2 ligand via 2.61 eV to form E1. Even though the latter process should be entropically favored, it is still quite demanding compared to that involving the bidentate ligand.

To sum up, the lack of flexibility of monodentate phosphines explains the poor catalytic performance of these systems, since the metal surface is essentially poisoned by these ligands. However, the chelating features of bidentate phosphines allow the creation of transient cavities at the metal—ligand interface. In the next section, we will evaluate whether such surface sites, as those found in C1, are active and kinetically relevant during the catalytic cycle.

Reactivity on Phosphine-Decorated Pd(111). Similarly to clean Pd(111) (Figure 2), we compute the decarbonylation mechanism of acetic pantonic anhydride to 1-butene on a phosphine-decorated Pd(111) surface. Since the adsorption energy of the phosphine is significantly larger than that of the acid, the metal surface is first covered by phosphine ligands, allowing fatty acids to react with acetic anhydride to form mixed anhydride intermediates.57 The energy profile is shown in Figure 5, where we consider the previously discussed C1 structure as starting point. Adsorption of pentanoic anhydride forms C2 at −0.62 eV. Due to the constrained pocket, the aliphatic chain does not interact with the metal surface but the organic groups from the nearby ligands. The C–O bond breaking of the anhydride (and concomitant formation of acetate) via TS-C2 involves 0.85 eV. The resulting acyl intermediate C3 goes through a C–C bond breaking process via TS-C3 (Figure 6 left) with a barrier of 1.19 eV58 to produce

\[
\text{TS-C3} \\
C - C = 2.377 \text{Å}
\]

C4 and CO.85 The alkyl intermediate should then undergo dehydrogenation to form the corresponding olefin product. However, hydrogen transfer from the alkyl group to the metal surface appears to be challenging86 as most of Pd atoms are already interacting with adsorbed species (phosphines, acetate, or CO). Instead, the acetate bound to the surface acts as an internal base87 and deprotonates the alkyl group via TS-C4 (Figure 6 right) with a barrier of 0.95 eV. Quite remarkably, the resulting alkene product C5 does not bind in a parallel fashion as in the clean surface (A4 and A7, Figure 2). Due to the steric hindrance imposed by the phosphine cavity, the π-system is found perpendicular to the surface, and the alkene desorption via C6 becomes essentially barrierless (0.22 eV above C5). Alkene isomerization would entail the transient formation of a secondary alkyl intermediate (anologue to A6). Such structure, C9, is found at 1.04 eV above C5, which further rules out the isomerization process.

Discussion. We find three major differences between the energy profiles of clean A (Figure 2) and phosphine-decorated C (Figure 5) systems. First, the C–C bond scission via TS-A2 demands 1.03 eV, while the same process via TS-C3 takes 1.19 eV. The larger energy barrier for system C is in line with the presence of ligands on the surface; in other words, the metal atoms on the surface are more coordinated and, therefore, less reactive. This is nicely reflected on the higher Pd d-band center87,88 of clean A, −1.77 eV, compared to that of phosphine-decorated C1, −1.84 eV. In the same line, the dehydrogenation via TS-A3 (0.41 eV) is significantly less demanding than the acetate-assisted hydrogen transfer via TS-C4 (0.95 eV). This is yet another feature of the highly functionalized surface, where little room is left for hydrogen adsorption on the decorated surface. Finally, we observe an opposite trend for the alkene desorption step. Clean A releases 1-butene via 1.03 eV and isomerizes it to 2-butene via 0.62 eV, while phosphine-decorated C1 desorbs the alkene in a barrierless step. The steric hindrance of the metal–phosphine interface pushes away the product and plays a beneficial role driving the reaction toward the linear α-olefin.

Previous DFT studies in homogeneous Pd catalysts89 suggested dehydrogenations as rate-determining TSs, while the present work on Pd(111) surfaces points toward the C–C bond breaking process (TS-C3). Interestingly, the relative activation energies for dehydrogenation (from the prior alkyl intermediate to the corresponding TS) are quite similar for
both systems, i.e., 1.05 eV in ref 44 and 0.95 eV from C4 to TS-C4. The main difference thus comes from the ability of metal surfaces to stabilize alkyl intermediates. While the formation of alkyl intermediates is systematically endothermic in molecular catalysts (+0.33 eV in ref 44), this process is exothermic on Pd(111) surfaces (−0.74 eV from A2 to A3 and −0.40 eV from C3 to C4). In other words, the highest point of homogeneous energy profiles usually corresponds to the dehydrogenation step due to the energy penalty required to form unstable alkyl intermediates.

We then consider the role of the ligand in catalyst deactivation.97 The major byproduct of the reaction is CO, which is known to bind strongly to Pd. As expected, direct CO release from A4 requires 2.29 eV. This poison effect is indeed similar to that for PPhMe2 release (2.61 eV) but still significantly larger than that for DPEPhos64 partial decoordination (1.24 eV). For phosphine-decorated surfaces, we also considered CO release in an earlier stage of the reaction, that is, after the formation of the alkyl intermediate C4. However, this desorption energy was still large, 2.00 eV (Figure 7, left). Thus, in the presence of bidentate ligands, we propose a displacement of CO by the dangling phosphine arm. The CO-by-P exchange in the phosphine-decorated system only takes 1.25 eV (Figure 7, right), in line with the experimental detection of CO under reaction conditions.41

These general concepts on decorated surfaces can impact other biomass-related processes.98–92 Looking into the related furfural decarbonylation (Figure 8), we predict a barrier of 0.59 eV for the C−C bond scission step at the Pd–phosphine interface in C1, which is comparable to previous data on clean Pd (0.68 eV90). In this scenario, we also expect an enhanced CO release promoted by bidentate phosphines (Figure 8, right), which might prevent deactivation channels via CO poisoning.

Overall, we identify two main roles of bidentate ligands: (i) creation of reactive pockets that avoid alkenne coordination and enhance selectivity, and (ii) displacement of CO, which attenuates surface CO poisoning and drives the reaction toward high conversions. On the basis of these results we enunciate some qualitative guiding rules to design metal–phosphine interfaces: (i) ligand adsorption should predominate over reactant adsorption on the metal surface to ensure that ligands are not released during operation93,95 (ii) a dynamic bidentate ligand is necessary to avoid complete passivation of the surface as found for monodentate derivatives; and (iii) sizable yet labile groups attached to phosphorus are recommended, so the freshly formed cavity is large enough to bind reactant molecules.

CONCLUSIONS

In this contribution, we have computationally elucidated the role of phosphine–decorated Pd(111) catalysts in biomass-derived decarbonylation transformations. Self-assembled monolayers of monodentate phosphines block the metal surface, in line with the poor activity experimentally observed. On the contrary, the inherent dynamics of bidentate ligands allows the creation of transient cavities that are kinetically relevant in the catalytic cycle. These highly crowded surface sites induce a rapid product release and preclude undesired side reactions. The flexibility of phosphine arms further promotes CO desorption, thus reducing surface poisoning. The unique nature of these systems holds promise for a rational design of metal–ligand interfaces and applications to other biomass-related processes.

ASSOCIATED CONTENT

Alternative mechanism on A, energies and coordinates (PDF)

AUTHOR INFORMATION

Corresponding Authors
*E-mail: mortuno@iciq.es (M.A.O.).
*E-mail: nlopez@iciq.es (N.L.).

ORCID
Manuel A. Ortuno: 0000-0002-6175-3941
Núria López: 0000-0001-9150-5941

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

M.A.O. and N.L. acknowledge MINECO (CTQ2015-68770) for financial support and BSC-RES for computational resources. M.A.O. also acknowledges the "Juan de la Cierva-Incorporación" postdoctoral program (IJCI-2016-29762).

REFERENCES


