
comment

The role of computational results databases in 
accelerating the discovery of catalysts
Databases of computational results hold high promise for accelerating catalysis research. Still, many challenges 
remain and consensus on facets such as metadata, reliability and curation is crucial to transform the hype into an 
attractive technology.
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Science has the power to generate 
great volumes of data. Over the years, 
numerous collective efforts, including 

those made by the Manhattan Project, 
CERN, the Genomics Consortium and  
large research facilities in astronomy and 
climate, have had to collect, label, store and 
curate scientific digital outputs. Chemistry 
and materials science are different. Highly 
standardized thermodynamic data have 
been curated by organizations such as 
the National Institute of Standards and 
Technology (NIST) through Chemistry 
Handbooks1, but probably the most 
successful stories in chemistry-related 
data archiving are the neat curation of a 
protein database2 and the maintenance of 
crystallographic records for molecules3  
and materials4. In addition, private efforts 
made by chemical companies ensure that 
they can trace experiments performed  
more than half a century ago.

Computational techniques employed 
in the study of the atomistic processes 
occurring at the sub-nanometre scale 
in chemistry, biochemistry, physics and 
materials science have been based on solving 
the Schrödinger equation in different 
ways. It has been calculated that about 
30% of the total use of supercomputers at 
the European level are devoted to various 
kinds of density functional theory (DFT) 
approximations. Now, the robustness of the 
implementations in the different quantum 
chemistry codes ensures that the data 
obtained are of the same quality irrespective 
of the computational codes, provided that 
high standards are used5. Multipurpose, 
Dropbox-like initiatives such as Zenodo, 
Figshare and Dryad allow the allocation  
of space for storage of scientific data. 
However, the massive simulations generate 
high volumes of data that are neither 
tagged nor syndicated, thus the efforts of 
computation are partially in vain.

Several initiatives have been developed 
to systematically collect information from 
calculations and build databases that can be 

easily mined and can serve as the first step 
in artificial intelligence models. One of the 
earliest examples is the Quantum Chemistry 
Literature Database, which collected data 
from published manuscripts6. This evolved 
into a website7, but updates seem to have 
been discontinued in 2013. Some reference 
databases such as the Computational 
Chemistry Comparison and Benchmark 
Database by NIST8, the Benchmark Energy 
and Geometry Database9 or the Minnesota 
Databases10 boosted the development of 
new DFT functionals, solvation models 
and empirical dispersion corrections. 
Others focus on specific issues, such as the 
Alexandria Library, dedicated to force field 
development11 and the PubChemQC project, 
which took data encoded in the PubChem 
database and calculated the first 10 excited 
states for over 2 million molecules12. The 
software generates different kinds of inputs 
for molecular codes using Open Babel13. 
For instance, it can search for molecules 
where the HOMO–LUMO gap is smaller 
than a certain value (for example, 1.0 eV). 
Regarding structured data, the pioneering 
definition of the Chemical Markup 
Language14 was followed by The Quixote 
Project15, which put forward an ambitious 
programme for collaborative and open 
quantum chemistry data management.  
In turn, CatApp16 was among the first 
attempts to recycle computational data in 
the field of heterogeneous catalysis.

Nowadays, stand-alone data extractors, 
such as ExcelAutomat17, EsiGen18 and the 
cclib library19 are available. They search 
in output files for patterns, which are 
then parsed, summarized, uploaded to 
spreadsheets and/or assigned to variables 
for molecular codes. In addition, data 
repositories and specialized software 
platforms are currently under development. 
But it is in materials science where the 
developments have arguably been the 
most exciting. For instance the US-driven 
Materials Genome Initiative20 has a 
specific Materials Project21, which aims at 

employing supercomputers and the most 
advanced electronic structure analyses to 
provide an open web-based access to all 
the structures already computed (including 
those not yet synthetized), and the resources 
needed for the design of novel materials22. 
Important efforts have also been made at 
the European level through the European 
Materials Modelling Council23 to achieve 
transferability of data and codes through the 
Modelling Data conceptual frameworks24. 
Although the core of the work has been 
related to transferability in multiscale 
modelling (data inheritance between scales), 
some excellent work on ontologies has 
been developed. In Europe, two initiatives 
have been working in parallel as centres 
of excellence (2014–2017), namely the 
Novel Materials Discovery (NoMaD) 
repository25 and the Automated Interactive 
Infrastructure and Database (AiiDA)26,27. 
NoMaD creates, collects, stores and cleanses 
computational materials science data, and 
develops tools for data mining to find 
structures, correlations and novel results 
that do not appear within smaller datasets. 
The system is decentralized and can 
incorporate results from different sources. 
Particular areas of interest are heat-transport 
tensors for many materials, catalytic 
activation of CO2 and thin coating films to 
protect novel hybrid perovskite solar cells 
from degradation in moist environments 
through high-throughput screening of 
potential transparent oxide semiconductors. 
In turn, AiiDA is a flexible and scalable 
infrastructure that allows the management, 
preservation and dissemination of 
computational results, but also works on the 
data ensuring its searchability and providing 
workflows. The core of their set-up is driven 
by automation, data, environment and 
sharing, adopting concepts and tools from 
computer science. Particularly, the Materials 
Cloud28 has been developed to improve the 
viability of industrially adapted databases. 
However, the changes in the European 
policies with the new Virtual Materials 
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Market Place strategy might affect these 
initiatives. The Computational Materials 
Repository29 is structured in different 
projects — for instance two-dimensional 
materials — and extracts the data through 
the combined use of the Atomic Simulation 
Environment (ASE) and Python scripts. In 
turn, ioChem-BD (Input/Output Chemistry  
Big Data)30,31 focuses on the chemical 
properties and links data generation and 
open-access publication. In addition to 
providing tools for data curation and 
post-processing, ioChem-BD builds up 
a distributed network of independent 
nodes around a central server where 
data and metadata are indexed. In any 
of these databases, the transferability of 
the information between the molecular 
and periodic approaches is a challenge, 
particularly when it comes to addressing 
chemical and catalytic problems where the 
recognition of the structural and electronic 
patterns that build the active site is a 
major goal. Merging the best properties of 
homogeneous and heterogeneous catalysts, 
for instance in the area of single-atom 
catalysis32, requires this pattern recognition. 
However, the representation of crystalline 
materials in a format that allows the 
comparison to their molecular counterparts 
is a major hurdle33.

While the path is well traced, efforts are 
still needed to give the proper semantics 
to data34 in order to allow transferability 
between the different fields where first-
principles results can be relevant. Among 
the challenges ahead, it is mandatory to 
transform data available in plain websites 
into structured data, accompanied by 
valuable metadata, which follows the 
findable, accessible, interoperable, recyclable 
(FAIR) principles. Code interoperability 
and standard data formats are motivating 
international research actions35,36, such as 
the Molecular Sciences Software Institute37 
in the US and the European Materials 
Modelling Consortium24, but much effort 
worldwide is still needed. This will allow 
the integration in multiscale methodologies 
that can go from the atomistic perspective 
to the device level. The integration with 

experimental results is yet another long-
term challenge. Finally, the combination of 
databases with machine learning is having 
a big impact on the field by allowing an 
increasing number of applications33,38–42 and 
is seen as a major opportunity in industry43. 
However, this blooming computational field 
also demands massive curated data and 
robust algorithm benchmarks44, as there is a 
risk of the hype masking the real advantages 
of these powerful tools45,46.

All of these advances will ensure that 
artificial intelligence technologies based on 
computational or mixed computational/
experimental databases will accelerate the 
discovery of active, selective and stable 
catalysts that, for instance, are able to break 
the standard linear scaling relationships, 
follow the principles of green chemistry and 
provide the tools for a circular economy 
in the areas of chemistry, catalysis and 
materials science. ❐
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