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Microkinetics of alcohol reforming for H2
production from a FAIR density functional theory
database
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The large-scale production of hydrogen from biomass under industrial conditions is funda-

mental for a sustainable future. Here we present a multiscale study of the available reforming

technologies based on a density functional theory open database that allows the formulation

of linear scaling relationships and microkinetics. The database fulfills the FAIR criteria:

findability, accessibility, interoperability and reusability. Moreover, it contains more than

1000 transition states for the decomposition of C2 alcohols on close-packed Cu, Ru, Pd, and

Pt surfaces. The microkinetic results for activity, selectivity toward H2, and stability can be

directly mapped to experiments, and the catalytic performance is controlled by various types

of poisoning. Linear scaling relationships provide valid quantitative results that allow the

extrapolation to larger compounds like glycerol. Our database presents a robust roadmap to

investigate the complexity of biomass transformations through the use of small fragments as

surrogates when investigated under different reaction conditions.
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The conversion of biomass to provide chemicals and energy
vectors is a fundamental challenge for a sustainable che-
mical industry based on renewable sources1,2. Particularly,

to extract hydrogen from biomass, three reforming methodolo-
gies as well as direct decomposition (DD) have been put forward
(Fig. 1 and Supplementary Table 1). In the steam reforming (SR)
process, ethanol, sugars, and other oxygenated compounds react
on metals and oxides with steam at temperatures around
400–1100 K to produce H2, CO, CO2, and CH4

3. Autothermal
reforming (ATR) constitutes an improvement over this process as
small amounts of oxygen are added along with steam to produce
raw syngas. ATR has been tested for ethanol4 and glycerol5 on
noble metals. However, the high temperatures reached impose
limitations to the catalyst thermal stability. Compared with the
former, aqueous phase reforming (APR)6–8, has the advantage of
working at temperatures below 650 K, although the process is
slow on clean metal surfaces. Only very recently, high turn-over
frequencies have been achieved on single-atom Pt/α-MoC9, but
long-term stability of this catalyst might be an issue.

A large number of potential catalysts have been experimentally
screened for these reactions (Supplementary Table 2). However,
large-scale H2 production is still costly. A better understanding of
the reaction mechanisms is needed when searching for a high
performance catalyst. Theoretical simulations based on density
functional theory (DFT) and microkinetic modeling (MK) hold
the key for a rational design10. However, the most complete
kinetic model on alcohol decomposition analyzed only 50 species
for ethanol on Pt and about 100 reactions in a correlative global
sensitivity analysis3. There, the errors inherent to DFT were
found to be correlated due to the similar nature of the oxygenated
fragments on the metal surface, thus keeping the predictive value
of MK based on DFT data. However, the complexity of the
compounds derived from biomass has prevented an extensive
study of full reaction mechanisms (C6 sugar alcohol decomposi-
tion encompasses 105 reactions)11.

As full mechanistic studies by DFT are non-viable for large
alcohols, divide-and-conquer strategies have been put forward,
although their representativity has not been fully assessed. The
decomposition of small alcohols including methanol, ethanol,
ethylene glycol, glycerol, and other oxygenates has been

extensively studied. Thermodynamics for the adsorption of
intermediates can be obtained from multivariable scaling based
on group additivity rules12–14 and inferred from surrogates. The
rate coefficients are then extracted from kinetic-thermodynamic
relationships15–21 derived from key (calculated) decomposition
steps either on a single metal, or a small group of alcohols.

However, the computed data is scarce, as only partial networks
have been considered and it has been generated with differences
in the computational setups (Supplementary Table 3). In con-
sequence, the FAIR22 (findability, accessibility, interoperability
and reusability) nature of the data is not ensured. This prevents
the use of large analysis tools to systematize the available infor-
mation. To diminish the errors, sparsity, and asymmetries in the
computational data, here we show a full open database that
contains all the decomposition steps of C1–C2 alcohols: methanol,
ethanol, ethylene glycol, together with the complementary steps
from the water–gas shift reaction (WGSR) and oxygen adsorp-
tion. Initially, the database contains the results for the close-
packed surfaces, as they are most exposed in the catalytic pre-
parations23, but can be extended to include lateral interactions,
side reactions, other metals, alloys, undercoordinated sites and
supports12,24,25. In that case, the linear scaling relationships (LSR)
previously reported in the literature can also be incorpo-
rated12,24,25. The database has then been interrogated through
microkinetic models to unravel whether the same reaction set is
able to reproduce the different experimental behavior on the
generation of hydrogen under different reaction conditions, and
to predict the best conditions in the reforming of glycerol for one
of the metals.

Results
Generation of the reaction network. We have generated a
database that can be retrieved from ioChem-BD26, where we have
uploaded the computed 55 reaction intermediates and 215 reac-
tions for the C2 species on each metal (see Data availability sec-
tion for details). They correspond to 100 dehydrogenations, 55
C–C, and 60 C–O bond cleavages, related to 10, 24, and 21
intermediates in the ethane, ethanol, and ethylene glycol
decomposition networks, respectively. Besides, we included 13
reactions to account for the water–gas shift, the O2 decomposi-
tion, oxygen-assisted and hydroxyl-assisted dehydrogenation of
methanol, ethanol, and ethylene glycol and our previous results
on methanol27. The procedure to generate the full decomposition
network of a given species is presented in Fig. 2. The species can
undergo C–C, C–H, O–H, and C–O bond breakings, and each of
these reaction products can further experience these four bond
cleavages until the formation of the simplest decomposition
products: C*, H*, and O* (Supplementary Methods and Supple-
mentary Figs. 14–16). The ground states for all reaction inter-
mediates are described in the Supplementary Discussions. Then,
all the adsorption, reaction, and activation energies were com-
puted (Supplementary Tables 4–7). For APR, solvation was
included for the adsorption of several molecules (Supplementary
Table 5).

Based on the reaction database (Supplementary Table 7), we
tested the predictive power of three types of LSR:
Brønsted–Evans–Polanyi (BEP), initial state and final state
scalings (ISS, FSS). The reactions were classified according to
the type of bond breaking, as O–H, C–H, C–C, C–O, and C–OH.
For the O–H bond breaking, the BEP slopes, α, are between 0.18
and 0.39 (Supplementary Table 8). This indicates that the
transition states should resemble the initial states19. Indeed, the
ISS has lower mean absolute errors (mae) and higher coefficients
of determination (R2) than the BEP or FSS relationships. For
C–H, C–C, C–O, and C–OH bond breakings, the BEP slopes, α,
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Fig. 1 Working conditions of reforming processes for hydrogen production.
Shaded areas correspond to direct decomposition (DD), steam (SR),
autothermal (ATR), and aqueous phase (APR) reforming. The points
correspond to the conditions employed in the microkinetic simulations
(Supplementary Table 1)
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are > 0.50, and the FSS are more suitable for the prediction of the
transition states energies. The best LSR are presented in Fig. 3. In
the ISS or FSS relationships the slope, α, was forced to be one
(Supplementary Table 9). This leads to a simpler yet representa-
tive form for the equations, as it avoids overfitting by eliminating
the α regression term. Besides, the LSR equations are independent
of the energy reference used (Supplementary Note 1). Both
conditions are fundamental to ensure the predictive power of LSR
for the activation energies of larger poly-alcohols. Cu follows a

different behavior than Ru, Pd, and Pt, and therefore it was treated
independently in Fig. 3. Further details on the linear scalings
relationships and the most relevant outliers are provided in
the Supplementary Discussions and Supplementary Tables 10–13.

Pseudo-stationary states in microkinetic modeling. The com-
plexity of the reaction network can only be described by com-
bining the energy profile with a microkinetic analysis. In Fig. 4a
the decomposition of ethanol on Pd is taken as example. To
generate this energy profile the transition state with lowest barrier
is selected for each intermediate. The rest are only plotted in the
figure if their barriers are up to 0.30 eV higher than this reference
state. However, in the microkinetic modeling all 252 steps are
considered. The interpretation of such a complex profile is not
straightforward.

Microkinetics on the DFT results show that a complex reaction
network, as the one shown in Fig. 4a, may exhibit several pseudo-
stationary states28, Fig. 4b, c (Supplementary Note 3 and
Supplementary Figs. 2 and 3). These pseudo-stationary states
were identified to obtain the coverages and hydrogen production
reported as crosses in Fig. 5a, b, d, e. Following with the example,
in the early stages (t< 100 s) of ethanol decomposition, Pd
dehydrogenates the alcohol moiety, building up a layer of CO*
and CH* poisons, Fig. 4b. From t = 101–104 s, C–O breaking
starts to be kinetically relevant, leaving CCH3* coverages of 30%
while the rest is CO* (66%). Meanwhile, most of the CH* is
consumed. The concentration of CO* also increases and reaches a
maximum at t = 104 s (roughly 3 h), while the desorption rate of
H2 stabilizes in a plateau value around 1.4 × 10−6 s−1. The surface
behavior for t = 104–106 s would be the most representative
pseudo-stationary state. After 5 × 106 s, the desorption rate of
hydrogen is still significant (30% the initial plateau value) and
CCH2* and CCH3* cover most of the surface. The final steady
state is reached at t = 6 × 107 s, roughly two years, and the H2
desorption rate becomes 1% of the previous plateau value. The
observed times are only qualitatively meaningful as they have
been obtained in a model with no lateral interactions. When those
are included, the pseudo-stationary states are the same, both in
terms of main products and poisons, but they shifted to shorter
reaction times (Supplementary Note 4 and Supplementary Fig. 4).
The expandable nature of our database would allow the
incorporation of this type of effects, although this discussion is
beyond the scope of the present work. Indeed, long equilibration
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stoichiometry. The two central boxes are red (O) and black (C) while the first and last boxes indicate the number of hydrogen atoms attached to them,
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Final state scalings for b C–H, c C–C, and d C–O/C–OH bond breakings. The
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considered (Supplementary Note 2 and Supplementary Fig. 1)
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times (in the order of hours) have experimentally been reported
for APR of ethylene glycol on Pt8. The analysis can then be
extended to all metals under all the technical conditions of the
reforming. The H2 production can be found in Fig. 5a, b marked
with crosses, along the main surface species (d–e). The analysis is
based on the relevant stationary state reached before 3 h. The
main adsorbed species and desorption products are listed on
Supplementary Tables 14 and 15. Supplementary Discussions
provide an analysis purely based on the reaction profiles, which
are shown in Supplementary Figs. 6–13.

Microkinetics of direct decomposition and reforming. The
decomposition of ethanol and ethylene glycol on Cu leaves CCO*
as the most abundant intermediate, which covers 99 and 93% of
the surface and leaves a small fraction of empty sites, 0.4 and

0.6%. For the ATR and APR of ethanol, the surface coverage of
O* and OH* is very high, adding more than 99.9%, thus lowering
the productivity of the surface toward H2. Special care should be
taken as suboxides might appear for oxygen coverages higher
than 0.75ML29, thus compromising the representability of the
metal-only model. Acetaldehyde is the main product of ethanol
decomposition and reforming, while ethylene glycol yields a
mixture of CH2O, CO, and glyoxal. During ATR, the produced
hydrogen reacts with O*, which is in high coverages. This shifts
the selectivity toward water and, therefore, no H2 is produced.

In the ethanol direct decomposition on Ru, the main on-
surface species are CCH* (67%), CO* (16%), and CCO* (7%).
The main desorption products are CO and H2, close to the
stoichiometric ratio of 2:3. For ethylene glycol, C–C bonds can
easily break and the surface is strongly poisoned by CO* (98%)
and CCO* (2%). The ATR of ethanol on Ru is a very inefficient
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process, and has the lowest hydrogen production rate: less than
10−15 s−1, as the high O* coverage consumes all hydrogen.
However, if the oxygen pressure is reduced below 0.09 atm, O*
will efficiently remove CO* and the carbonaceous species without
poisoning the surface, increasing the H2 production rate to 102 s
−1 (Supplementary Note 5 and Supplementary Fig. 5). In the
steam reforming of ethanol, the main products are CO and
CH3CHO, and the whole process occurs at a high rate. In
contrast, CO is the most abundant product for the decomposition
and reforming of ethylene glycol, along with traces of CO2. On
Ru, the highest activities are found for the SR of ethanol and the
ATR of ethylene glycol.

The direct decomposition of ethanol and ethylene glycol on Pd
is a slow process, as the surface is strongly poisoned by CO* and
CCH3*, while producing CO, CH3CHO/HOCH2CHO, and other
oxygenates. However, part of the poison can be efficiently
removed for the SR and, specially, ATR processes, increasing the
yield by 3–8 orders of magnitude. The main products from the
ATR of ethanol are CO, CO2, and CH3CHO, while ethylene
glycol produces CO, CO2, and glycolaldehyde. In the SR of
ethanol and ethylene glycol, the main product is CO, with small
traces of C2H2 and CH3CHO. On the ethanol steam reforming,
three stable carbonaceous species are formed as poisons: CCH3*
(27%), CCH2* (31%), and CCH* (27%), while for ethylene glycol,
CO* is the most abundant reaction intermediate. In APR, the
main on-surface species are CO* (65%) and CCH3* (27%) for
ethanol and CO* (>99.9%) for ethylene glycol. The carbonaceous
fragments tend to accumulate rather than desorb.

In the direct decomposition of ethanol on Pt(111), CO is the
main desorption product and it is also present on the surface
(13%) along CH* (43%), CCH2* (6%), and CCH3* (36%). CO* is
the only poison for ethylene glycol, and it is produced along
HOCH2CHO close to a 2:1 proportion. The highest H2
productivity is attained for ATR, as the CO* poisoning is
efficiently removed by oxidation. The H2:alcohol ratios are 2.5
and 2.6, respectively. For ethanol ATR, the main surface species
are all carbonaceous: C* (8%), CH* (62%), CCH2* (11%), and
CCH3* (15%), while CO* still blocks most of the sites (98.7%)
during for ethylene glycol ATR. In the SR of ethanol, the main
desorption products are CO and traces of C2H4 and C2H2, while
ethylene glycol yields CO and glyoxal. For ethanol, most of the
on-surface species are carbonaceous: CCH2* (80%), CCH3*
(11%), CH* (3%), and C* (3%), while for ethylene glycol, CO*
is the main poison. Without CO oxidation, the H2 production is
up to 8 orders of magnitude slower for SR and APR than for
ATR. Nonetheless, a small fraction of water undergoes the WGSR
and reduces the CO* poisoning. The H2 productivity is lower for
the APR than for SR of ethanol. For the APR of ethanol, CO is the
main desorption product, and it is present on the surface along
with CH* in roughly 1:1 amounts. Finally, during the APR of
ethylene glycol, HOCH2CHO is produced along CO in a 1:5 ratio,
but CO is still the main surface intermediate.

Validation of the microkinetic model. To assess the robustness of
the LSR in reproducing the full MK-DFT data, we built two different
microkinetic models, which differ in the methodology followed to
obtain the energies: In the first one, MK-LSR, the intermediates
energies were taken from DFT, while the activation energies were
obtained from the optimum LSR. In the second model, MK-L1O,
the activation energies were obtained from LSR but employing a
Leave-One-Out procedure for the Ru, Pd and Pt triad. These results
are shown as bars and dots in Fig. 5a–c, respectively. The agree-
ment between the simplified methodologies and the full DFT
results is thus remarkable, particularly as the relative ordering
between the different metals is kept and semi-quantitative values

can be retrieved. The deviations are within two orders of mag-
nitude, within the reliability limits identified by Vlachos3. The
outliers are the DD of ethanol on Cu, and the SR of ethylene
glycol on Cu and Ru. Significant higher activities in the MK-LSR
model are found only for ethylene glycol steam reforming on Cu.
The production rate of hydrogen is also reasonably obtained with
the MK-L1O methodology, showing differences lower than two
orders of magnitude with respect to the MK-DFT results. The
steam reforming of ethylene glycol on Ru is the only process
where MK-L1O deviates by 4 orders of magnitude. The origin of
this behavior is that the average activation energies for C–C
breakings on Pd and Pt are 0.43 eV higher than the ones from Ru
(Supplementary Table 9), so the MK-L1O procedure represents a
Ru surface that is much less active than for MK-DFT and MK-
LSR. This discrepancy does not appear when taking Pt and Ru,
or Pd and Ru, as basic data for the models.

The microkinetic data can be then compared to experimental
trends. For instance, the activity for APR of ethylene glycol on
silica-supported metal catalyst follows the order Ru>Pt>Pd8.
This order is well reproduced for MK-LSR, while the MK-DFT
and MK-L1O reports Pt>Ru>Pd, being the activity of Pt and Ru
almost equal within a 30%. This shows that the rules obtained
through LSR might avoid accurate convergence issues in
transition state searching, thus providing a slightly more robust
framework. Still, intrisic DFT errors would require the improve-
ment of the functionals. On the other hand, the production rate
of CO2 follows the order Pt>Ru>Pd8. This order is obtained from
all three microkinetic models considering together the desorption
rates of CO and CO2.

A detailed comparison to the available literature regarding
kinetic parameters (rates, apparent activation energies, and
reaction orders) has been attempted. Unfortunately, experimen-
tal results are sparse and, to the best of our knowledge, none of
them compares similar particle sizes, supports, and external
conditions for the different materials. In addition, when the
catalytic tests are presented together with detailed kinetic
analysis, the characterization of the samples before and after
reaction is lacking. This is a major handicap when attempting to
formulate a robust framework for comparison. However, Table 1
shows a summary of the results in the literature. The
microkinetic model has been rerun to replicate experimental
conditions23,30–32. The systems have been equilibrated to the
pseudo-stationary point at t = 3 h, then a perturbation, either in
the temperature or the pressure, has been applied33. The results
show that the reaction orders and activation energies are
properly reproduced except for the materials containing CeO2,
when the support role can be anticipated. The activation barriers
show a larger deviation but are qualitative in the same range.

Microkinetics of glycerol decomposition and reforming.
Finally, the MK-LSR methodology was used to predict the reac-
tivity for glycerol on Ru as, experimentally, it has been a better
catalyst in steam reforming than Pd or Pt34. The full decom-
position network comprises 349 on-surface species and 1950
reaction steps. To this end, the energies for the C3 intermediates
were obtained by DFT. Then, the scalings from Fig. 3 were
applied to get the activation energies (Supplementary Table 16),
and employed in the microkinetic setup. The coverages and
hydrogen production can be seen in Fig. 5c, f. The results show
that the most suitable technology to produce hydrogen from
glycerol is ATR, followed by SR and APR. Experiments indicate
that, the longer the alcohol carbon chain (up to C6), the lower the
APR selectivity toward H2 and the higher toward hydrocarbons
and other compounds6,7,35. This is correctly reproduced by our
microkinetic model, as we found a H2 desorption rate four times
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higher for ethylene glycol than for glycerol. Besides, the selectivity
toward H2 was higher for ethylene glycol (84%) than for glycerol
(72%). The selectivity reduction of glycerol reforming and
decomposition is caused by a plethora of C3HyOz compounds
that populate the surface during all the processes.

Discussion
We would like to highlight the importance of our present results
in the design of new catalysts. First of all, a FAIR22 database was
set up and made accessible to other researchers, allowing its
extension to consider lateral interactions, low-coordinated sites,
other metals, and supports within the same computational fra-
mework. Secondly, the common nature of many elementary steps
allows them to be transferred, inherited, and expanded to
investigate many reactions on the same metals, thus reducing the
computational burden. Third, the completeness in the decom-
position path ensures that no intermediates or products are dis-
carded, as it has been done in the literature, where many times
only the selective path was identified. This would allow effective
machine-learning implementations as those in ref. 36. Finally, our
database can be used as a starting point for increasing our
knowledge on BEP and TSS relationships, as well as a training set
for machine-learning algorithms related to catalysis. We hope
that the standard set by the present approach is adopted by other
practitioners in the field to accelerate the comparison of the
catalytic properties of different materials and to provide robust
design guidelines from modular databases. As physical insights,
we would like to highlight that the catalysis phenomena are a
function of the reaction conditions, as they control poisoning and
thus the state of the catalyst. It is particularly important that as
the state of the catalysts defines which routes are more likely
within the reaction network. The kinetic data here presented can
be further employed in reactor design, to find new conditions for
which higher activities and selectivities can be found, as well as to
understand the nature of the surface poisons.

In summary, we have investigated the complex reaction net-
works that arise from the decomposition of ethanol and ethylene
glycol on Cu, Ru, Pd, and Pt, through a multiscale method that
encompasses microkinetic modeling on the energies obtained
through DFT. To this end an open database has been set up to
provide the most robust sets of LSR that allow the evaluation of
different catalysts. With this scheme, activity, selectivity toward
H2, and stability under a variety of technical reforming conditions
have been derived and compared to experiments. The present
work paves the way for an open, accessible, interoperable, and
reusable (FAIR) database for simulations of catalytic properties
that can speed up the identification of better performing catalysts
in the transformation of biomass compounds.

Methods
Computational details. The density functional theory calculations were performed
with the Vienna Ab-initio Simulation Package (VASP)37,38. The functional of
choice was PBE39 and the van der Waals (vdW) contributions were obtained
through the DFT-D2 method40,41, with our reparameterization of C6 coefficients
for metals42. This setup has been proven to predict the experimental adsorption
energies of several mono-alcohols and poly-alcohols accurately14. The inner elec-
trons were represented by projector-augmented wave pseudopotentials (PAW)43,44

and the monoelectronic states were expanded in plane waves with a kinetic energy
cutoff of 450 eV. Metal surfaces were modeled by a four-layers slab and at least p
(3 × 3) supercells, where the two uppermost layers were fully relaxed and the rest
fixed to the bulk distances. In the surface calculations, the Brillouin zone was
sampled by a Γ-centered k points mesh from the Monkhorst-Pack method45, and
the k point samplings were denser than 30 Å−1. The vacuum between the slabs was
at least 13 Å, and the adsorbates were placed only on one side of the slab and thus a
dipole correction was applied to remove spurious contributions arising from this
asymmetry46. The molecules were placed in a cubic box of 20 Å sides. Transition
states were located by a combination of the Nudged Elastic Band and the Improved
Dimer Method47–49. In all cases, the nature of the saddle points was assessed by the
diagonalization of the numerical Hessian generated by 0.02 Å displacements for
each coordinate. All TS structures have a single imaginary frequency. In all cases
the optimization thresholds were 10−5 eV and 0.02 eV Å−1 for electronic and ionic
relaxations, respectively. The decomposition reactions can be used to explore all the
experimental conditions including water and oxygen effects as: Water–gas shift-
related reactions are explicitly included in the reaction pool; Solvation effects50,51

were included for APR; O-assisted C–H breaking requires 0.60–1.00 eV higher
energies than the non-assisted counterparts; OH-assisted proton abstractions in
alcohols are roughly barrierless50; and O-assisted proton abstractions in alcohols
reduce the barriers to 1

2 the original value (Supplementary Table 7). In addition, the
formulations of the catalyst are typically supported on carriers with acid/base
characteristics8 thus, when comparing to experiments with active supports
(Table 1), these reactions have been considered to occur on the support and to be
barrierless.

Microkinetic modeling. The microkinetic model explores hydrogen production on
the close-packed surfaces of Cu, Ru, Pd, and Pt under four reaction conditions: DD
at constant temperature, ATR, SR, and APR, which are presented in Fig. 1 and
Supplementary Table 1. Close-packed surfaces: Cu, Pd, Pt(111), and Ru(0001),
were chosen as they are more represented in the equilibrium structure of active
metal nanoparticles. In addition, they are smaller than open surfaces and are easier
to compare to previous computational data. Moreover, most of the catalyst pre-
paration results in active nanoparticles larger than 5 nm in diameter23. Since our
database is expandable, it would be possible to add the results from low-
coordinated sites, alloys, lateral effects, and carriers24,25. The procedure, detailed in
the Supplementary Methods and Supplementary Figs. 17 and 18, can be sum-
marized as follows: A stream containing the alcohol, water, and oxygen in variable
proportions was fed into an isothermal differential reactor. The reactor operates in
transient state and the initial coverages correspond to a clean surface, while the
temperatures and pressures resemble typical experimental conditions. The
adsorption rates were obtained from the Knudsen equation33, the rate coefficients
from transition state theory33, and the activation energies from DFT calculations.
The mass balance for each species i comes from the sum of rates j in which i
participates. A site balance equation was also included. The system of ordinary
differential equations was solved in Maple 13. A reaction was considered to reach a
relevant stationary state when the surface concentrations and reaction rates varied
<0.01% s−1.

Data availability. The DFT data that support the findings of this study are
available in ioChem-BD26 with the identifier doi:10.19061/iochem-bd-1-37.
Instructions about data management are provided in Supplementary Methods. The
corresponding labels can be found in Supplementary Figs. 14–16 and Supple-
mentary Tables 7, 16 and 17.

Table 1 Comparison between theory and experiments for ethanol SR

Ref. Metal T Pa Pw nexpa na nexpw nw Eapp;expa Eappa

30 Ru/γ-Al2O3 923 0.042 0.420 1.0 1.0 0.0 0.0 0.99 0.66
23 Pd/γ-Al2O3 575 0.125 0.375 – 0.9 – 0.0 0.49 0.54
23 Pt/γ-Al2O3 575 0.125 0.375 – 1.1 – 0.0 0.59 0.71
31 Pt/γ-Al2O3 575 0.125 0.375 0.8 1.1 – 0.0 0.48 0.71
32 Pt/CeO2 575 0.005 0.015 0.5 1.0 0.0 0.0 0.19 0.69

Apparent activation energies, Eappa , in eV
Reaction orders with respect to ethanol and water, na and nw (dimensionless)
T: temperature (in K), Pa and Pw: partial pressures of ethanol and water (in atm)
The calculations are performed under the same conditions of experiments, labeled “exp”
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