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The transformation of biomass-derived molecules into platform

chemicals that can directly be employed by the chemical

industry is one of the challenges in catalysis in this century.

While some processes are cost-effective and industrially avail-

able, the molecular insight has been advancing at a slow pace

when compared to other areas (like energy conversion). In the

present review we describe the main challenges imposed on

the theoretical simulations for the study of these complex

molecules and how the most crucial issues are typically

addressed. In particular, we focus on technical aspects like the

need for London dispersion and solvation contributions. We

also deal with the complexity of reaction networks, which

requires new approaches and ways to compile the results in the

form of databases. This allows the study of large reaction

networks for the decomposition of C2 alcohols, or the plethora

of functional groups of cyclic molecules such as lignin and

sugars. Finally, we put forward a few applications that show the

potential of atomistic simulations in the field.

Introduction

The non-edible fraction of biomass is the most abundant and

environmentally-friendly raw material.[1] It can be transformed

into platform chemicals by heterogeneous catalysts, which are

key processes for the sustainability of the chemical industry.[2] In

2004, the US Department of Energy (DOE) identified twelve

target compounds that can be directly obtained from biomass

and upgraded into high-value chemicals.[3] This fostered

experimental screening for new catalysts and processes. The list

was expanded in 2010.[4] Yet, due to the complexity of the

systems, the insights about these catalytic routes at a molecular

level were lacking. The atomistic simulation of biomass-derived

processes has mainly three sources of complexity: the size of

the molecules, the non-negligible effects of London dispersion

and solvation; and the behavior of the system under operation

conditions. These hurdles have been partially addressed in the

last years, and the field has reached enough maturity to ensure

that reactions can be described accurately for medium sized

molecules.

Firstly, even small molecules exhibit an increasing number

of conformations. For short-chain C1�C2 alcohols this effect is

minor, but for larger compounds (>C3) the number of possible

rotations increases exponentially, having an important effect in

their binding to oxide or metal surfaces. At this point, the

chirality and rigidity of the molecules are crucial to understand

the catalytic path.[5] Besides, the reaction network that connects

reactants and products becomes intricate, as the number of

intermediates and transition states increases exponentially,[6]

thus limiting the use of the available techniques. For instance,

glycerol decomposition on metals consists of 250 intermediates

connected by roughly 2000 transition states, while for a typical

C6 the total number is more than two orders of magnitude

larger.[6] For such large molecules, the product distribution

typically shows poor selectivity and this is one of the challenges

of biomass conversion.[7] Moreover, the identification of key

transition states is not straightforward as many of them may

have a similar degree of rate control for the overall product

distribution.[8] For these structures, small energy differences

may lead to different product distributions to a large extent[9–10]

and therefore, they should be computed accurately. Fundamen-

tal electronic structure questions arise from the previous points.

London dispersion contributions are key to address the

adsorption of large molecules on catalytic surfaces accurately.

The seminal theoretical studies on the reactivity of small

alcohols neglected these contributions as they were lacking in

the computational codes.[11–14] Nowadays, we know that these

contributions are important to describe the adsorption energy

of large molecules, especially when a carbon tail is present.[15,16]

They may change the configuration of the target compounds

as well.[17–19] In addition, biomass-derived molecules are rich in

oxygenated functional groups, which interact with the ubiq-

uitous water molecules.[20] This interaction is crucial to under-

stand the reactivity, thus the solvation effects need to be

included either explicitly,[21] at a very high computational cost,

or implicitly.[18] However, the solvation models, which were

widely used for homogeneous catalysis, were seldom applied

to heterogeneous studies, and thus had to be implemented

considering periodic boundary conditions.[22–24] The addition of

water implies additional challenges to the simulations as some

of the active molecules are acids and new equilibria are

established between the catalyst and the surface. Finally, the

effect of the reaction conditions should be considered so as to

develop suitable models directly comparable to experiments.

The contributions can come from pressure, concentration,

temperature, pH, and electric potential effects,[25] which may

have non-trivial consequences like inducing changes in the

state of the catalyst surface.[26]

In the present review, we aim to describe the challenges in

the theoretical study of biomass conversion into platform

chemicals as well as in the technological challenges that we

and others have faced. In particular, we focus on the

fundamental issues that were preventing the routine use of

computational techniques based on Density Functional Theory

to upgrade biomass-derived compounds. As the molecular size

increases, so does the difficulty to implement refined techni-

ques such as microkinetics or DFT characterization over the full

reaction network, Scheme 1. To foster scientific discussions, all

our DFT results are stored and can be retrieved from the

ioChem-BD repository,[27] an open database that fulfils the FAIR

principles[28] of findability, accessibility, interoperability, and

reusability.
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Fundamental Challenges

London Dispersion

Density Functional Theory (DFT) techniques have been very

successful in addressing the reactivity of small molecules on

heterogeneous catalysts. And yet, when the Bio2Chem-d

project started in 2010, several hurdles were still preventing the

consideration of large molecules as those from biomass.[29] The

earliest studies on metal catalysts did not include van der Waals

interactions.[11,13] Although this is not a problem for small

molecules containing one or two carbon atoms,[30] the vdW

contribution of each additional methyl group is exothermic by

�0.1 eV,[15,31] so this term becomes significant for C3 or larger

molecules. Traditional density functionals did not introduce

London dispersion contributions and thus alternatives were

sought to mitigate this problem. The first semi-empirical

contributions were included in the activation of methane on

Ir.[32] Later on, extensive developments in self-consistent func-

tionals, like that of Lunqvist,[33,34] included the non-locality of

the London dispersion contributions. However, these func-

tionals were too property-dependent and thus their use was

limited. A simpler approach was suggested by Grimme[35,36]

employing the C6 coefficients already used in molecular

mechanics. However, when the D2 set of parameters was

applied to estimate the adsorption on metals, the results were

discouraging as they led to severe overbinding. Simultaneously

to our work, Tkatchenko and coworkers derived the C6

coefficients for atoms and metallic surfaces; however the latter
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Scheme 1. Summary of the work performed in the Bio2Chem-d project. The
studies are divided by the catalyst type (black) and by the molecular size
(blue). The analysis performed for each molecular size and catalyst is shown
in red. Rx stands for reaction and MK for microkinetics. The arrows on the
right side indicate the growth in complexity.
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required some measurements making it difficult to extend.[37,38]

In our approach, we simplified the search for the coefficients in

the following manner: the C6 terms are related to the polar-

izability of the surface, thus different electric fields were used to

obtain them.[39] These models can then be employed with

enough robustness together with the values for the atoms

derived in Grimme’s D2. Since then, more advanced schemes

have been reported: (i) the D3 extension by Grimme,[40] (ii) the

non-local correlation functional vdW-DF[33] that can be com-

bined with several functionals as BEEF-vdW,[41] and (iii) Tkatch-

enko’s full set of DFT-TS,[42] DFT-TS/HI,[43,44] TS + SCS[45] and

MBD@rsSCS.[46] All these terms lead to different adsorption

energies.[47,48] Besides, in some cases the orientation of the

molecule on the surface may change depending on the density

functional chosen, thus resulting in different chemical behav-

iors.[49] An in-depth assessment of these methods can be found

in a recent review[50] by Grimme et al.

Increasing the molecular complexity has another side effect:

flexible molecules can have multiple conformations and some-

times the most stable gas-phase configuration does not

correspond to the adsorbate ground state. This problem has

seldom been addressed in the literature. Among our first steps,

we develop some rules depending on the relative strengths on

intramolecular and metal-adsorbate interactions.[15] We found

that the conformational changes can have big impacts on the

adsorption of molecules and in their reactivity. For instance,

when glucose adsorbs on Ru, a proton is transferred from a

hydroxyl to a carbonyl group, which favors the breaking of a

C�H bond vicinal to the donating group.[51] The presence of

vicinal methanol molecules also affects the preferred reaction

path during their decomposition on metals.[21] Thus, the metal

reactivity can only be studied provided that the right config-

urations are identified.

To find the most stable configuration for adsorption is even

more complicated on metal oxides due to their multiple

adsorption sites with different acid-base and redox character.[52]

The difficulty increases if different metal coordinations or

vacancies appear on the surface. The adsorption of alcohols

and polyalcohols was also studied by us on TiO2 in which

different behaviors were observed for different compounds:

primary and secondary alcohols prefer the adsorption on

vacancy positions, whereas tertiary or poly-alcohols prefer the

Ticus channels.[53]

Molecular Complexity

An additional side effect of larger molecules is that their

associated reaction networks grow exponentially by size and

complexity.[6] Therefore, the study of the reactivity for biomass-

derived molecules is very computationally demanding. Two

main directions have been taken to reduce this burden: (i) to

use small surrogates, for which the full reaction network can be

sampled; (ii) to search for the preferred reaction path (and

maybe one major parasite reaction). Both approaches have

significant drawbacks. Small molecules might not properly

represent the activity of larger ones since. For instance, they

lack intramolecular hydrogen bonds that stabilize certain

conformations. They also are unable to represent the stiffness

of large aromatic groups that provide rigidity and anchor them

to the catalytic surface, like in lignin. Therefore, surrogates

should be used with caution. Simplifying reaction networks has

a higher risk as the complexity of molecules derived from

biomass cannot be avoided since, in many cases, they contain

multiple functional groups in different positions of the mole-

cule, and the desired transformation would encompass both

chemo and regioselectivities. Sampling one reaction path does

not ensure that the critical selectivity points of the reaction

network are considered. In this sense, the modular approaches

employed to obtain the contributions from the different units

that compose the desired molecule might be effective. Such

additive schemes have been used to describe the gas-phase

thermochemistry with impressive accuracy.[54] For adsorbates,

the existing rules normally span short-sized molecules;[55]

although semiempirical equations for the adsorption of large

molecules have been put forward.[56,57]

In the foreseeable future, the combined use of databases

and statistical learning algorithms will allow generating robust

thermochemical models for large molecules.[58] These databases

should fulfill the FAIR principles, which require that data is

findable, accessible, interoperable, and reusable.[28] In this

context, we have created the ioChem-BD repository,[27] in use

since 2015, to store all calculations coming from our DFT-based

projects.

Microkinetics

Even when the reaction networks are fully characterized in

terms of their thermodynamic and kinetic parameters at the

DFT level, their predictability is limited. As we have explained

above, many functional groups are present in different parts of

the molecule. In many cases, we have found that the barriers of

several parallel paths are comparable, thus they might be active

simultaneously.[77] This means that a successful analysis of the

reaction network requires the use of microkinetic models so

that the molecular insight obtained for all elementary steps can

be mapped to experimental data like reaction orders, activation

barriers, activity of catalyst, and product selectivity.[59] Many

reactivity descriptors and volcano plots are based on micro-

kinetics.[60,61] Still, due to its simplicity, the molecular interpreta-

tion based on energy profiles is more common, at least for

simple reaction networks.

Microkinetic models can have different levels of simplifica-

tion. For instance, many differential equations can be grouped

to represent a single-rate determining step,[62] as the energies

of intermediates and transition states are highly correlated.[9]

This reduction is very convenient to optimize reaction con-

ditions. However, this approach cannot be used to screen

catalytic systems, as the potential catalysts might prefer differ-

ent reaction paths, e. g., the reforming of ethanol on Pd and

Pt.[77] Another approach is to consider flow reactors to be in

quasi-equilibrium. Despite removing the dependence on time,

this simplification may yield unphysical results as flow reactors
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may operate in a pseudostationary state.[63,77] Several simplifica-

tions are common during the obtention of the free energies;

therefore, the accuracy can be increased with a correct

description of the entropy terms.[64] Finally, it is common to

assume a constant adsorption energy for each intermediate, by

neglecting coverage effects and lateral interactions. For some

intermediates, like water or carbon monoxide, this simplifica-

tion may lead to large deviations. For water, cooperative effects

mediated by hydrogen bonds appear at medium concentra-

tions, which in turn vary the relative binding energies of the

different substrates to the active sites. For carbon monoxide,

the repulsion is very high, so the binding energies should be

lower at large coverages. Repulsive effects may be included as

a linear function from the coverage, such as in Ref. [65], at least

for the common poisons CO, C, and O. As these contributions

are repulsive, a refinement of the technique is to include lateral

interactions above a threshold surface concentration, i. e. 1/3

for hexagonal surfaces.[66] Below this value, the adsorbates do

not “feel” each other. In any case, the repulsive interactions

mediated by metal surfaces are inversely proportional to the

cube of the distance,[67] thus next-neighbor interactions are

seldom included.[68] Finally, the full set of lateral interactions can

be considered altogether through Kinetic Monte Carlo (KMC)

simulations. KMC boosts the accuracy of kinetic measurements,

but it is considerably more expensive than microkinetic

modeling. As other groups,[69–73] we have also been active in

reporting KMC codes and applications.[74] Refinements in the

accuracy of DFT and the way lateral interactions are treated will

be the object of future research, where again statistical learning

techniques can improve our models.

For biomass conversion, microkinetics has been typically

applied on the full reaction network of small alcohols, such as

methanol,[75] ethanol,[9] or ethylene glycol.[76] Particularly in our

group we computed the full set of reactions encompassing the

decomposition of all these species on four different metals (Cu,

Ru, Pd, and Pt), comprising 75 intermediates and 250 transition

states for each metal. This allowed us to unveil the activity of

these materials for hydrogen production under four reaction

conditions.[21,77] We focused on the direct decomposition to

compare our results with surface science data, as well as three

emerging technologies: autothermal reforming, steam reform-

ing, and aqueous phase reforming. For such a complex reaction

network, a genomic notation was implemented to allow the

systematic identification of intermediates, as described below.

The 1000 transition states of our reaction database are openly

available. They can be easily extended to include larger

molecules or lateral paths like oxidation reactions via the linear

scaling methods based on Brønsted-Evans-Polanyi (BEP)[78–80]

and Transition State Scalings (TSS).[81–83] In our study, the TSS

were used to estimate the 1697 C3 related transition states of

glycerol decomposition on a Ru surface which are used in the

microkinetic study to predict the most suitable technology for

H2 production. By combining the linear scalings for the

intermediates and the BEP relationships for the transition states,

Greeley et al. investigated the thermochemistry and kinetics in

the free energy diagram of glycerol decomposition on: (i)

Pt(111),[84] (ii) a series close packed transition metal surfaces,[85]

and (iii) on a Pt�Mo alloy.[86] The O�H, C�H, C�O and C�C

competition in different dehydrogenation stages has been well

described. For oxides, we also computed the reaction network

for glycerol hydrodeoxygenation (HDO) to propylene catalyzed

by MoO3
[87,88] and analyzed it through a microkinetic model. The

main reaction path, the apparent activation energy, and the

reaction order of H2 were obtained from the microkinetic

analysis.[89]

Solvation

Another important particularity of biomass is the need to

include the effects of water in the simulations. Water is

ubiquitous in raw biomass. It is also generated from bond-

breaking reactions that eliminate oxygen in the form of water

from sugars and other biomass compounds. Metal-water

interactions have been extensively investigated in the contexts

of heterogeneous catalysis and electrochemistry, both by

experimental and computational techniques. Detailed reviews

on the state-of-the-art of this extensive topic are available in

Ref. [90] and [91]. The main results concern the wetting/non-

wetting character of the layers;[92,93] the stability of different

water arrangements on the surface,[91,93] as distinctive patterns

appear at sub-monolayer coverages depending on the metal;

and the possibility of fitting new potentials that could be used

in electrochemical simulations.[94] There are two ways of

including the effect of solvation on theoretical simulations,

either by explicit water molecules, or by replacing the vacuum

region with an implicit solvation, Scheme 2.

Most of the studies with explicit water molecules were

based on low water coverages (1 bilayer)[14,95] or in small cells

where lateral interactions were non-negligible.[13] Extended

dynamics on metal systems have been possible just recently.[96]

Neural network potentials based on DFT may further expand

the complexity of the systems that can be studied at a

reasonable computational cost.[97] Our early simulations on the

dynamics of the metal-water interface identified that, depend-

ing on the nature of the metal (reactive or unreactive), the

Scheme 2. (a) Explicit solvation model, where the liquid water molecules are
placed in the simulation box.[96] (b) In the implicit model, the vacuum is
replaced by a continuum with electric permittivity e delimited by a smooth
frontier.[19]
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metal-water interfaces differ. For instance, the wetting layer of

Pd and Pt is denser than the bulk liquid. Besides, the interface

shows low ordering as five- and seven-membered rings appear,

in good agreement with experiments done at lower cover-

ages.[98] On Ru, half of the water molecules dissociate, and form

a very rigid structure containing mostly hexagonal patters.[99,100]

However, there is no explicit pH variation at the interface as

protons and hydroxyls are trapped on the surface.[96] On oxide

surfaces the situation is more complex. Wetting and dewetting

behaviors have been found to correlate with the acid-base

properties of the surface, such as the presence of hydroxyl

groups,[101] and geometric factors. The acid strength promoted

the wettings of the surface, but the geometric match between

the oxygens of the ice structure and the adsorption sites on the

surface were shown to be the most important factor that

controls wettability.[102]

However, water-containing simulations are complex as the

dynamic and cooperative effects with solvent are very

important. In homogeneous catalysis, implicit water solvation

models[103] have been applied extensively. Typically, the best

schemes are the explicit consideration of one or two water

molecules surrounded by a continuum of constant polar-

izability. Including more than two explicit waters induces

additional problems related to the configurational entropy (that

is blocked) whereas not including them implies considering

very specific and directional bonds.[104] However, continuum

models are only recently being implemented in periodic

boundary conditions codes.[22–24] The solution to the Poisson

equation can be done in different ways, and in our particular

case we used a multigrid algorithm to solve the underlying

Poison equation,[23] an approach that was later used by other

groups.[24] Our tests demonstrated that solvation values are in

good agreement with the molecular implementations. Besides,

the same scheme can be used to investigate transition states.[19]

However, many developments are needed in this area so that

such approaches become the standard in the field.

Complex Electronic Structure

In parallel, the study of the reactivity of biomass on oxide

surfaces has many more fundamental problems arising from

the complexity of the electronic structure of these materials[105]

but also for the much wider variability in the types of

elementary steps that they allow. For instance, ceria and

molybdenum oxides have been described as active in the

transformation of methanol (a byproduct of several biomass

conversion processes)[106] into formaldehyde.[107–114] For CeO2,

the structure sensitivity drives the selectivity: the closed-packed

(111) and (110) surfaces produce formaldehyde, which on the

(100) surface is further oxidized to CO.[115] For molybdenum

oxides, the influence of Mo oxidation state and the degree of

surface reduction were analyzed. It was shown that only the

fully oxidized MoO3 is selective for formaldehyde production. In

addition, the role of Fe as dopant, which was experimentally

found to increase the catalytic activity,[116] was unraveled. Iron

atoms act as electron buffer in redox steps decreasing the

energy barriers thus accelerating the process.[117] On the other

hand, for many metal oxides, fundamental questions such as

the way hydrogen is activated on the surface were only partially

understood.[118,119] As several reactions involving biomass are

dedicated to reduce the oxygen content via hydrodeoxygena-

tion (HDO) processes,[120] which are carried out with the help of

hydrogen,[121–124] the question of how H2 interacts with the

surface remains crucial to assess the catalytic capabilities of the

surface. On CeO2(111) we observed that H2 is activated

heterolytically; thus, at the transition state, a proton and a

hydride are formed,[125] but due to the surface reducibility the

whole reaction ends up in the formation of two surface

hydroxyls and the reduction of two cations. The use of the

same surface in methanol conversion is the perfect example

that demonstrates the limitations of standard DFT when

investigating reducible oxides. The adsorption of hydrogen and

formation of a surface vacancy by water releasing was studied

for MoO3.[89] Acid-base reactions are easily described by

standard GGA methods. The main issue is that reactions that

reduce/oxidize the surface require the use of GGA + U ap-

proaches[126,127] where the U stands for a local fix of the electron

self-interaction that appears for strongly correlated materials.[128]

This problem has been reported in the literature for years but

there are further implications. The GGA + U approximation

works for static problems (i. e. electronic structure) but when

reduction (oxidation) processes take place, the best performing

U value for the total reaction energy is not the best performing

for the kinetic evaluation (transition state).[129] This is due to the

different electron localization and imposes severe constrains

when addressing the reactivity on oxides in complex reaction

networks. While acid-base reactions are stable against the U

term, the redox ones need to be benchmarked.[126–131] In

addition, we have observed that the electronic structure can be

very dynamic for reducible oxides. For oxides with more than

one consecutive oxidation state, defects like oxide vacancies

can provide two electronic structures that are dynamically

interconnected, and thus both can be active parts of the

catalytic cycle.[126] All these fundamental problems are also likely

to emerge in the context of energy production[132,133] and

storage[134,135] as many of them are based on small energy

differences between different oxidation and spin states that can

be easily masked by the inaccuracy and deficiencies that we

have described above.

As electronic structure complexity increases the use of

simple energy descriptors (like the adsorption energies of key

species employed in metals) is no longer an option and more

chemically adapted terms can be more suitable. We developed

a new series of descriptors which are not based on adsorption

energies and can be directly mapped to experimental observa-

tions. They encompass geometric, redox and acid-base terms,

leaving out second order contributions such as phase coopera-

tion, multifunctionality of active sites, and site isolation.[136] Our

results show that elementary steps on different surfaces and in

doped materials can be traced back to these parameters,

particularly the redox terms, thus establishing a robust frame-

work for future studies.[137,138]
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Case Studies

In the following we present three case studies that have been

at the core of the research:

Decomposition of C1�C2 Alcohols on Metals

The decomposition of methanol, ethanol and ethylene glycol

was studied on different metals to analyze how the external

conditions affected the activity and selectivity of the catalysts.

Initially we searched for the most stable adsorption configu-

rations extracting a new set of rules for adsorption on the

pristine surfaces.[15] In parallel, the adsorption of water and its

interaction with coadsorbed alcohols was investigated.[17] In

both cases, the London dispersion contributions were found to

be necessary to reproduce experiments. Taking these structures,

we considered all the possible decomposition pathways arising

from C�H, O�H, C�C, and C�O breakings, as well as the water-

gas shift reaction. The resulting reaction network contains 75

intermediates and 250 transition states.[21,77] Due to its complex-

ity, a genomic notation was developed to label the intermedi-

ates and easily account for the different decomposition routes

of C1 and C2 alcohols on the metals under study. For example,

CH3OH!CH2OH!CH2O!CHO!CO was denoted as: 1411!
1312!1211!1111!1011. In each notation, from left to right,

the first three digits stand for the number of C, H, and O atoms

in the given species. The last one is used to label possible

structural isomers, which are typically 1–2 for C1, 1–5 for C2, and

1–9 for C3. These genomic strings are well suited for automation

procedures of C1�C3 molecules and were key to develop fast

robust Density Functional Theory inputs. However, for larger

molecules, other frameworks such as SMILES should be

considered.[139] Similarly, all the transformations between frag-

ments can be encoded. These provide a complete matrix of

reactivity that can be downloaded as a csv file from the

ioChem-BD database[27] to be further processed and then new

elementary steps can be added if required. Since they are

stored according to the FAIR[28] database principles, the data

can be employed by other researchers in the field of Catalysis

to reduce the computational and human burden of calculating

such large networks. Besides, the database is openly available

to be further analyzed by anyone through statistical-learning

algorithms.

The database was then interrogated by a microkinetic

model, to describe the catalyst behavior for H2 production from

alcohols under four different reaction conditions. These include

steam reforming along two emerging alternatives, namely the

aqueous-phase reforming and autothermal reforming.[77] In all

cases, the reaction network for the decomposition plus the

water-gas shift reaction are sufficient to describe the reactivity.

However, in some cases, a few additional reactions were

included to address particular issues such as CO elimination by

oxidation and water assisted processes. Then, we were able to

predict the activity of Ru for the reforming of glycerol by using

linear scaling relationships (LSR). We have also found that LSR

hold for solvent environments, as shown in Figure 1.[18,77] This

means that once solvation effects are considered for the

intermediates, their effect on the activation energies can be

predicted. Recently, a thermochemical model based on group

additivity quantified the solvation effects.[94] Moreover, the

scaling relationships drawn for surrogates can be transferred to

higher alcohols provided that a few rules are preserved. Firstly,

the adsorbates should not change their orientation due to large

anchoring effects. Secondly, the molecule should have enough

flexibility so that the reaction centers can interact with the

surface without hindrance. Conjugation and aromaticity within

the adsorbate molecule should be considered apart, vide infra.

Finally, the surface-mediated interaction between functional

groups should be mild. These conditions allow the formulation

of a compact model for large molecules.

Epimerization and NanoselectTM Ru

Biomass-derived molecules can also have a large impact on the

food industry, where molecules as polysaccharides can be

converted into high-value products like sweeteners and other

food additives.[140] Nature generates sugars that differ from

interesting precursors by the orientation of only one chiral

CHOH center. The reaction that inverts the stereochemistry of a

single stereocenter is called epimerization.[141] Mo-based cata-

lyst, either in molecular or solid forms, were reported to

catalyze the C2 epimerization of aldoses through a 1,2 C-

shift.[142–144] We investigated the reaction path and the ability of

different Mo-materials to carry out the reaction[145] and found

that the same computational scheme can be used for both

types of catalysts, linking their properties and showing that a

unified theory in catalysis could be developed irrespectively the

nature of the catalyst. The solvent contributions were obtained

for the key step by applying implicit VASP-MGCM[23] code and

by adding explicit molecules, thus helping into the formula-

tions. The most relevant catalytic properties are related to the

ability of Mo centers to cycle between different oxidation

states, which can be modulated by the lattice, or the scaffold in

molecular catalysts. Thus, reducibility, calculated as hydrogen

Figure 1. Initial and final states can be used to predict the energy of the
transition states of O–H and C–H breakings, respectively. The corresponding
scaling lines were deducted from data taken from Ref. [21] and [77]. Note
that, these scalings are preserved for the reactions taking place in solvated
environments, [19].
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addition energy (HAE),[146,147] was found as the single descriptor

of the activity, which shows a volcano-shape dependence on

reducibility, see Figure 2. Finally, a better catalyst able to

perform the reaction four times faster was identified.

The epimerized sugar feedstock can then be hydrogenated

to produce the desired sugar alcohols. In this case, we studied

the sugar (mannose and glucose) hydrogenations on the Ru

catalyst.[51] Each of them has different isomers with linear and

cyclic structures (a and b).[148] The concentration and adsorption

energies of these isomers in the solution and on the surface,

combined with the different rate-limiting steps (the water

assisted ring opening and C�H bond formation) in hydro-

genation network, determine the differential hydrogenation

rates. The kinetic model based on the Langmuir-Hinshelwood

mechanism[149] was used by considering the factors above. The

reaction order of mannose and glucose hydrogenations from

this model agrees well with experimental results.

Conversion of Acids and Lignin Derivatives

Increasing the complexity of the reactants leads to several

issues. For instance, levulinic acid (LA) and g-valerolactone

(GVL) were labeled in the target list by DOE. LA can be derived

from the Levulinic acid hydration process of 5-hydroxymethyl-

furan (HMF) from cellulose and hemicellulose.[150–152] And GVL

can be obtained from LA conversion. Several indications

pointed out to the need for a catalyst with acidic properties to

increase the rate of the catalysts. Experimentally, it was found

that a new class of materials based on surfactant-decorated

metals, in this case Ru, were able to perform the reaction with a

high activity and higher robustness. The reaction network

leading from LA to GVL is a complex one and encompasses

intramolecular ring esterification and hydrogenation steps. A

domino reaction was earlier proposed in which the full LA was

firstly protonated to R�C(OH)2
+ and then followed by the ring

formation and water elimination.[153] The final product, GVL,

would be produced from the hydrogenation of the unsaturated

ring intermediate. Our mechanistic investigation[154] described

that to achieve full conversions into the final products the

domino reactions are the C�O bond scissions from the COO� or

COOH group on Ru surface as shown in Figure 3. In addition,

our simulations showed how for the ligand-decorated Ru

nanoparticles the reaction could be promoted by the interface

high acidity, which can also be used for interpreting the similar

behavior of graphene when it is used as the support for metal

catalysts in LA conversions.[155,156] As we have mentioned before,

acidity promotes a route where the reaction is speeded up

about four times because it tips the balance in the starting

point for the reaction networks. The complexity of both the

catalyst and the reaction mechanism, as well as the of pH

effects in decorated nanoparticles discussion for the first time

present a new perspective that highlights the need to study

decorated nanoparticles by tailoring their interfaces rather that

the separated units (metal and ligand) independently. Recently,

we have been able to use a similar approach to investigate the

decarbonylation transformations of acids to alkenes on

phosphine-decorated Pd catalysts.[157] Monodentate phosphines

cover the surface and lead to the poor activity whereas

bidentate ligands would break the ice by creating the transient

cavities via their inherent dynamics, thus increasing the activity.

Besides, the presence of the ligands also prevents the surface

poisoning derived from the strong binding molecule, C, in a

similar behavior as that of the ligand that prevents Ru oxidation

by reducing oxygen adsorption.

The ultimate frontier in reactant complexity comes from

lignin.[158] Lignin is a widely available biomass resource account-

ing for 15–30 % of weight and up to 40 % of the energy of

lignocellulose.[159,160] Its rigidity and strength originate from the

variable composition of polymer structures formed via C�C and

aryl-ether linkages[161] and thus model systems need to be used

to address the most fundamental questions like bond breaking

mechanisms.[162] In particular, for theoretical research on the

most common linkage b-O-4, dissociation mechanisms have

been proposed by using simple surrogate models such as 2-

Figure 2. a) Schematic representation of the glucose C2 epimerization to
mannose though a C-shift. b) Normalized reaction rate as a function of the
hydrogen addition energy, HAE. Blue dots mark the rate calculated for the
experimental catalyst.

Figure 3. Mechanism of levulinic acid conversion to g-valerolactone from
DFT calculations.
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phenoxyethanol on Pt(111)[163] and 2-phenoxy-1-phenyletha-

nol[164] on Pd(111). We have studied the role of chirality,

conjugation and rigidity for dimers reacting on Ni and doped

Ni. We have found that the surrogate approximation that has

been so successfully applied for small molecules fails here due

to the sergeants and soldiers principle.[165] Besides, rigidity

inhibits the reactions on the C�C and C�H bond breakings.

Conjugation and chirality can be potentially used to design

catalysts for the b-O-4 bond selective breakings. In addition,

single-atom catalysis (in this case as dopants in metals) shows a

preeminent ability to selectively cleave and depolymerize such

complex compounds.

Conclusions

During the last years many research groups have been trying to

study by theoretical means the transformation of large

biomass-derived molecules, mainly alcohols and polyalcohols,

into molecules that can serve as chemical platforms. In this

context we have contributed to solve fundamental problems

by: (i) estimating new approximated parameters for the London

dispersion contributions, (ii) building an implicit solvation

model for periodic systems, (iii) identifying new linear scaling

relationships on metals, (iv) determining conformational con-

tributions for large molecules, and (v) automatizing the search

of transition states. Metals and oxides were among the

materials employed as catalysts. The largest challenges were

related to: (i) the complexity of the electronic structures, like

the dynamic oxidation states found for molybdenum oxides; (ii)

the appearance of alternative non-conventional reaction paths

such as the heterolytic cleavage of hydrogen on ceria; and (iii)

the need for descriptors that address both redox and acid-base

chemistry. In many cases, microkinetics was needed to under-

stand the behavior of large reaction networks, such the ones

arising from the decomposition of alcohols on metals. However,

the comprehensive treatment of lateral interactions is still

difficult and Kinetic Monte Carlo codes are not yet fit for this

purpose. Despite the advances made so far, there are plenty of

challenges and opportunities ahead. The intensive search for

novel materials that can serve as catalysts will require their

detailed electronic structure characterization. Biomass conver-

sion is an area where the emerging techniques of statistical

learning could reduce the computational burden and speed-up

the discovery of new materials. However, sufficiently large and

open data is needed to get reliable results from such

algorithms. Therefore, the openness of the work performed by

our group is one of the most encouraging aspects as newer

models can be derived from our data. We hope that our studies

may be helpful for the future modeling of catalytic systems

with higher complexity. These models, combined with exper-

imental data, shall provide valuable insights to keep building a

sustainable chemical industry.
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[43] T. Bučko, S. Leb	gue, J. Hafner, J. G. �ngy�n, J. Chem. Theory Comput.

2013, 9, 4293–4299.
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