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A B S T R A C T

Archaeological pedestrian survey is one of the most popular techniques available for primary detection of ar-
chaeological sites and description of past landscape use. As such it is an essential tool not just for the under-
standing of past human distribution, economy, demography and so on but also for cultural heritage management
and protection. The most common type of pedestrian surface survey consists of fieldwalking relatively large
tracts of land, recording the dispersion of items of material culture, predominantly pottery fragments, by teams
of archaeologists and students. This paper presents the first proof of concept for the automated recording of
material culture dispersion across large areas using high resolution drone imagery, photogrammetry and a
combination of machine learning and geospatial analysis that can be run using the Google Earth Engine geos-
patial cloud computing platform. The results show the potential of this technique, under appropriate field cir-
cumstances, to produce accurate distribution maps of individual potsherds opening a new horizon for the ap-
plication of archaeological survey. The paper also discusses current limitations and future developments of this
method.

1. Introduction

Pedestrian survey is one of the most important and fundamental
data collection techniques in the archaeologist's toolbox. Together with
remote sensing and geophysics, is one of the most popular and reliable
approaches for the detection and characterisation of archaeological
sites and, with different intensity and methodological approaches, it has
been conducted from the beginning of the discipline in the 19th cen-
tury. Archaeological survey is one of the few methods we possess to
quantitatively evaluate human past occupation and dispersion at a large
scale and, therefore, the relevance of the data it provides goes well-
beyond archaeology. Today, “fieldwalking” usually involves systematic
walking by teams of archaeologists to record surface-visible material
culture, usually pottery fragments (“sherds”), and analysing the dis-
persion of these datable relics of human presence provide insights into
changing landscape use and settlement intensity. Archaeological survey
developed as a discipline since the 1950–60s and rapidly increased its
application in important archaeological areas, such as Israel with 394
surveys from the period between 1989-98 (Kletter and De-Groot, 2001)
and Greece with almost a hundred from 1975 to 1999 (Alcock and
Cherry, 2004). Fish (1999), writing in 1997, documents a ten-fold in-
crease in the percentage of articles related to settlement patterns

published in leading journals since the 1960s. Alcock and Cherry
(2004) estimate that millions of hectares of the Mediterranean alone
had been surveyed by the beginning of the 21st century with a marked
increase in survey activity since then.

By the late 1970s intensive archaeological field survey had become
a systematic and quantitative technique and the number and density of
potsherds started to be recorded in detail (e.g. Cherry et al., 1978;
Crowther, 1983; Shennan, 1985). GIS is nowadays routinely employed
to plan the survey but also to represent and analyse the resulting data
(e.g. Lock et al., 1999; Gillings and Sbonias, 1999; Bevan and Conolly,
2004). Obtaining well-distributed quantitative potsherd distribution
data over a landscape usually requires large teams of surveyors or long
periods of time. They usually walk following parallel lines or a grid to
record and collect all or a selection of sherds from the field, which is a
ploughsoil under ideal circumstances but it can include many types of
surfaces and vegetation. All areas or a sample of them (usually in the
form of transects) presenting good ground visibility are surveyed to
offer an estimation of the past human occupation of the study area.
Archaeological field survey, just as archaeological excavation, implies a
strong investment as many people (who require accommodation and
sustenance) are needed during several field seasons to cover a relatively
large area. The need to store large quantities of pottery sherds (large
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surveys can collect several millions of these) can also be expensive and
require the use of large facilities for as many years as required for their
study (Schiffer et al., 1978: 15, Alcock, 2000). Post-processing and
study of the collected material and generation of ceramic dispersion
maps also requires a strong investment in time and effort as the analysis
and classification of such large quantities of pottery sherds can last for
years.

Archaeological survey forms an important part of all commercial,
public and research-based archaeology. In many countries it is a re-
quirement for development projects to survey the affected area in order
to identify the presence of possible archaeological sites and other cul-
tural elements that might be in danger of being destroyed during the
construction process (Schiffer et al., 1978). The pressures of salvage
survey and the need for a speedy and accurate recording are strikingly
described by Wendorf (1962: 54): “The archaeological teams follow as
closely behind the surveyors and as far ahead of the right-of-way
clearing machinery as possible. Even under ideal conditions the timing
will still be close, and there may not be more than three to four weeks
between the survey and dozer clearing the right-of way.”

This paper aims to provide a proof of concept for a method to detect
multi-period surface ceramic distributions, that augments traditional
data-collection strategies and provides new ways to approach some of
the shortcomings of walker-based recording. The proposed method is
able to record individual potsherds across large survey areas using a
semi-automated workflow. It is important to note here that this method
does not aim to substitute archaeological fieldwalking but complement
much of the non-specialist work conducted by groups of people for long
periods of time in conductive environments so there is more time and
resources available to dedicate to specialised work. The results of the
test described here have the potential to revolutionise one of the most
basic archaeological techniques when applied in favourable settings. In
this way, it could reduce primary data collection costs while sub-
stantially increasing the survey intensity and the reliability of the re-
sults and provide important information to facilitate material collection
and analysis.

The workflow relies on the combination of a series of recent in-
dependent technological developments:

1. In the first place drones or Unmanned Aerial Vehicles have become
significantly cheaper while their technical capacities have increased
considerably, in particular, flight time, remote control reach, flight
planning, stability, image quality, sensor-based location and ob-
stacle avoidance. These now allow enough flight time to record
larger areas flying at very low altitude following a planned route
while taking continuous overlapping pictures of enough resolution
to clearly provide very high-resolution imagery of archaeological
features (Stek, 2016; Orengo and Knappett, 2018).

2. Digital photogrammetry software has become much easier to use
and accessible with the implementation of semi-automated co-re-
gistration, point cloud, surface and texture generation workflows
and the widespread distribution of low-cost and open source pho-
togrammetry software. It has also become increasingly powerful
with the adoption of new techniques, such a structure-from-motion.
In consequence its use has been incorporated to a large number of
archaeological workflows (Grün et al., 2004; Verhoeven et al., 2012;
Orengo, 2013; Orengo et al., 2015).

3. Machine learning is a branch of artificial intelligence that automates
analytical model building and can learn from classified data im-
proving its analytical capabilities with minimal human intervention.
Machine Learning applications have also had an important devel-
opment during the last years becoming a common option for data
mining and analysis, pattern identification and decision making.
Although, its application to archaeology is still limited (but see
Menze and Ur 2012, Oonk and Spijker, 2015, Liss et al., 2017,
Orengo et al., 2019 (submitted)) its potential has long been re-
cognised (van der Maaten et al., 2007).

4. The last years have also seen an important development of widely-
accessible cloud computing services including Amazon AWS and
Google Cloud Platform. These offer the possibility to use parallel
and distributed computing, large storage space and incorporate
processing services, such as data analytics and machine learning.
These allow the extremely intensive computation power necessary
for the development of large scale and intensive analyses and are
rapidly being integrated into archaeological research (e.g. Agapiou,
2017, Orengo and Petrie, 2017, 2018, Rayne et al., 2017, Garcia
et al., 2019).

2. Case study

We selected two fields, plot 36 and plot 591 (Fig. 1), from the on-
going survey developed by the Archaeological Project at Abdera and
Xanthi (APAX) in which the authors are currently involved (Georgiadis
et al. in preparation). APAX is a project directed by the Ephoria (ar-
chaeological service) of Xanthi (Thrace, north-eastern Greece) in col-
laboration with researchers of the National and Kapodistrian University
of Athens, the Aristotle University of Thessaloniki and the Catalan In-
stitute of Classical Archaeology. APAX aims to study the changing oc-
cupation patterns of the Archaic and Classical city of Abdera (ca. 7th to
3rd C BC) while achieving a good knowledge of the distribution of ar-
chaeological sites around it in order to: a) provide a better under-
standing of long-term settlement patterns and historical change, and b)
facilitate the protection and promotion of Xanthi's heritage. Intensive
survey was considered as the most adequate technique to achieve these
objectives and, consequently, it was conducted during the summers of

Fig. 1. Location of APAX survey area and plots 36 and 591 within it.
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the years 2016–18 for a duration of five weeks each. The survey is still
under development but these three fieldwork seasons have resulted in
the recording of around 580,000 fragments of pottery of which 41.000
have been collected and classified. Survey is conducted during summer
months, which is the only period in which researchers and students,
who participate in the survey campaign as part of their training in ar-
chaeology, can dedicate enough time for the development of fieldwork.
This forced timetable is problematic because the highest visible for
archaeological material is after plots have been ploughed, which in this
area is variable according to cultivation type.

The plots selected for the pilot study were done so on the basis of
being representative of field conditions during a typical fieldwork
season at Abdera. These are ploughsoils that are cultivated periodically
and correspond well to the common survey choice in Mediterranean
field survey. Rather than plots with good ground visibility and ideal soil
conditions for ceramic detection we selected those in which visibility
was relatively low and the survey conditions were not the best avail-
able. The selected fields had not been recently ploughed (which would
have increased the visibility of potsherds), show a high presence of
vegetation, stones and shadows (all elements that result in a reduction
of the efficacy of the detection) and the sediment present hues similar to
those of ceramics. This selection intended to evaluate the success of the
technique by testing it under less than perfect circumstances to ensure
its application to the widest possible range of ploughsoil conditions.

The plots are located on each of the two areas in which the project is
divided. In the urban sector (plot 36) the specific objective of the in-
tensive survey was to map the relative density of pottery distribution
across the city, in order to analyse changing uses of the urban space.
Plot 591 is part of a transect located to the north of the ancient town.
This area contains remains of both the cemeteries and the rural set-
tlement linked to the town. Outside the urban area, the specific ob-
jectives were the detection of pottery concentrations, which could be
differentiated from the ceramic background noise present thorough the
area. The standard survey method adopted by APAX consisted in the
laying of parallel lines separated by a distance of 5 m inside the urban
area and 10 m outside. Surveyors walked these lines counting all visible
ceramic fragments and collecting only those particular sherds that can
provide chronological and typological information.

3. Methods

The pilot study presented here aimed to explore whether an auto-
mated pottery sherd recording methodology could be developed to
respond to the research questions that motivated the intensive quanti-
tative approach in a similar or more efficient manner (in terms of time
and accuracy) than the standard fieldwalking currently employed
within the project. To do so a workflow integrating drone high-re-
solution photography to record in detail the surveyed fields, photo-
grammetry to join all these photographs in a single orthophotomosaic,
machine learning and other geospatial analyses to identify and isolate
ceramic fragments in the photomosaic and cloud computing to effi-
ciently process these analysis was developed and tested. In the fol-
lowing paragraphs this workflow (Fig. 2) is presented in detail:

3.1. Drone-based image acquisition

We selected a DJI Phantom 4 Pro v.2.0 to conduct the drone-based
image acquisition of the fields under survey. The selection of this model
was based on the fact that it falls well within the budget of most ar-
chaeological projects ($1499) and its overall quality. Phantom 4 allows
for a flight time of 30 min (sufficient to cover a field of 70 m2 at the
required speed and height), is very stable thanks to its GPS and range of
sensors, which renders it capable to accurately follow a planned route
while avoiding obstacles, and its camera has good quality optics, me-
chanical shutter (which eliminates rolling shutter distortion of images
acquired from moving platforms) and a resolution of 20 MP.

Litchi drone-planning software was employed to set the flight path
over the areas of interest. After several tests a height of 3 m above
ground was selected, which was considered sufficient to clearly identify
ceramics on the field. In order to obtain enough overlap between
photographs, which is necessary for the photogrammetry software to
correlate them in a single orthomosaic, the parameters defined were: a)
a flight speed of 0,61 m/s, b) photographs were automatically taken
every 2 s, and c) the flight path was defined using waypoints that
formed parallel straight lines separated by a distance of 3 m following
the orientation of the fields.

3.2. Pedestrian survey for comparison purposes

Immediately after the flight the fields were intensively surveyed by
a team of 4 surveyors (a very experienced team leader and three stu-
dents with two weeks of field experience). The survey of the fields
followed the standard intensive procedure within APAX described
above for urban and rural areas: plot 36 was divided using 5 m-apart
parallel lines while in plot 591 used 10 m-apart lines.

Subsequently both fields were divided in a 5 × 5 m grid and all
pottery sherds in each grid were recorded. This type of total coverage
goes well-beyond standard practice given the amount of time that needs
to be invested and the little extra information that it could provide in
terms of ceramic distribution and concentration. APAX has only de-
veloped total coverage of a field (including the collection of materials)
in a few cases within small areas in order to check specific types of
pottery and their distribution and/or to respond to specific questions
related to the use of an area. In this case the objective was to compare
the best possible results achievable by traditional survey with those of
the automatic detection.

3.3. Photogrammetric processing of drone-acquired photographs

The photogrammetric process included all images obtained from the
plots from a single flight to produce an orthophotomosaic, that is, a
single image resulting from the merging of all drone-acquired photo-
graphs. Agisoft PhotoScan Professional v. 1.2.6 was employed to con-
duct the orthophotomosaic generation process, which consisted in the
alignment of the photographs and the creation of a sparse point cloud.
From the cloud point a mesh was generated and employed to produce
the orthomosaic joining all photographs, which was exported as an
uncompressed tiff file.

3.4. Computational processing of the images

The orthoimages resulting from the photogrammetric process were
then uploaded into Google Earth Engine (EE), a web-based geospatial
analysis platform with access to Google Cloud parallel computing re-
sources (Gorelick et al., 2017). Earth Engine was considered an ideal
environment to conduct the identification of pottery sherds in the or-
thophotomosaics as it implements machine learning algorithms that can
be combined with other geospatial analyses that are useful to increase
the reliability of the identification. More importantly it provides access
to Google Could computing services which distribute the analysis be-
tween multiple computing cores making possible this computation,
which would have been far too heavy for any personal computer.
Lastly, EE is, upon registration, free to access and use. This allows the
algorithm to be reproduced, modified and employed by anyone with
their own orthoimages independently of their access to computing re-
sources or coding skills.

EE, however has some limitations ingesting imagery that need to be
considered when uploading data. The most evident is the limitation to a
maximum size of 10 Gb for each uploaded image. However, many
images can be uploaded up to the current storage limit of 250 Gb. This
limitation can be partially overcome by uploading the three bands (red,
green and blue) of the RGB orthoimage separately and then joining

H.A. Orengo and A. Garcia-Molsosa Journal of Archaeological Science 112 (2019) 105013

3



them in a single multiband composite. This would allow uploading an
image of a maximum size of 30 Gb, which would correspond to a very
large plot of around 75 × 75 m (larger than a football field). The RGB
orthoimages of our plots were usually well within EE allowance and
they could be ingested without problems. The second limitation is that
EE cannot currently ingest subcentimetric images. This was solved
scaling up the images prior to their upload.

The algorithm developed for the automatic extraction of potsherds
within EE is provided as Supplementary Material to this paper. It was
written in EE's implementation of JavaScript as a single script con-
sisting of several parts described below:

1. Import of the already ingested image, which could include the
creation of a mosaic or a composite if the image has been divided
into parts or the bands ingested separately.

2. Generation of texture and/or gradient analysis. This is an important
step as it adds a new layer of information to the RGB composite for
the identification of ceramics that is not based on colour but on
spatial texture (not to be confounded with the physical texture of
pottery, which is far too small to be identified using this pixel size).
Pottery sherds usually have soft surfaces (similar values between
contiguous pixels along their surfaces). In contrast to this, stone
surfaces (although some particular types of geological backgrounds
can produce distributions of surface flat stones), bare soil and ve-
getation generally present rugged surfaces with a much higher de-
gree of variation between contiguous pixel values. Several texture
analysis methods were tested (Fig. 3) and compared including en-
tropy (Fig. 3, D), grey-level co-occurrence matrix (Haralick et al.,
1973; Conners et al., 1984) and Geary's C (Anselin, 1995) (Fig. 3, E).
The standard deviation of pixel values within a kernel was also
tested (Fig. 3, F). After several tests we found that a kernel radius of
4 pixels, which equals a kernel size of 9 × 9 pixels (around a cen-
timetre) was the most adequate as it would include a minimum
number of pixels from small ceramic fragments while being large
enough to identify the inconstant values of pixels in the rest of the
field. The results of the different texture analyses were compared to
a gradient magnitude analysis, which computes the variation of
pixel values along the x and y axes. Best results were obtained by
standard deviations (Fig. 3, F) entropy (Fig. 3, D), and gradient
magnitude (Fig. 3, C). The last one was selected because a) it is not

dependent on a specific kernel size, which makes it applicable
without the need to scale it to different pixel resolutions; b) in
contrast to kernel-based methods it does not significantly reduce the
area defining ceramic fragments and; c) its lower use of computa-
tional resources. The use of texture and gradient analysis could be
complemented by the actual topography of the sherds by generating
a Digital Surface Model (DSM) directly from the drone images using
the same photogrammetric process employed for the generation of
the orthophotomosaic. In Fig. 3 (G-L) we present a test of this
method only for comparison purposes. The DSM has been processed
to extract information about the morphological character and tex-
ture of the surface (including ceramics) independently of its colour
or the presence of shadows as shown in Fig. 3 (G-H), where pot-
sherds are distinguishable for presenting a flatter surface (less var-
iation in height) than areas around them. While the standard de-
viation of the high resolution orthomosaic (Fig. 3, I) still provides
better results than any of the tested topography-based methods
(Fig. 3, J-L), these could potentially offer a complementary band
that would help differentiate particularly types of ceramics, such as
those presenting decorated surfaces, for which image-based texture
analysis alone could not provide satisfactory results. However, the
extremely large computational resources and processing time ne-
cessary to conduct this analysis prevented us to develop this avenue
at this stage as we aim to create a reproducible workflow using
standard and freely available tools.

3. Generation of a composite image, which joined the orthophotomo-
saic's RGB bands and the results of the gradient magnitude analysis.
The composite image was employed both to extract training data
values, to detect pottery sherds and to test the results of the auto-
mated identification.

4. Generation of training data. Training data engineering is nowadays
considered to be a complex process requiring expertise and experi-
ence. Initial training data were selected by drawing polygons using
EE's vector editing tools on top of a) visible ceramic fragments and
b) all other elements of the image (bare soil, vegetation, stones, and
so on). These two categories were associated to a table column
‘class’ in which the type of feature was identified, 1 for pottery
fragments and 0 for all other elements. The creation of the training
data consisted in assigning to each class the values of the pixels
delimited by the polygons in each band of the composite.

Fig. 2. Computational workflow for the detection and extraction of pottery sherd from drone acquired imagery.
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5. Training of the machine learning classifier using the training data.
In this case, we selected a Random Forest (RF) classifier (Breiman,
2001). We tested other popular classifiers, such as Support Vector
Machines and CART, also available in EE. RF provided superior
results consistently, which explains its application to the few ar-
chaeological research making use of machine learning applications

for image analysis (e.g. Menze and Ur, 2012; Liss et al., 2017). We
chose 100 trees considering this is a high enough number to assure
optimal results (Oshiro et al., 2012). Given the fact that we were
only interested in differentiating pixels belonging to pottery sherds
from all other pixels in the image we set the classifier to probability
mode. That is, it would output the probability (from 0 to 1) of each

Fig. 3. Comparison of different texture analysis methods and gradient magnitude.
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pixel to belong to a pottery sherd.
6. The composite image was then classified using the trained RF clas-

sifier. This produced a first classification output. The classification
was compared to the orthomosaic to evaluate how it fit visible
ceramic fragments. New training polygons were generated to: a)
disregard groups of false-positive pixels erroneously identified as
having a high probability of belonging to pottery sherds and b) in-
clude ceramic pixels that had not been recognised as such. A new
iteration of the RF algorithm was then run. The second iteration of
the algorithm produced a very high identification rate in both fields;
however the third iteration provided only minor improvements.

7. The classification resulting from the third iteration still falsely
identified many soil pixels as ceramic fragments. This result is very
difficult to avoid as soils can have red-orange colour tonalities si-
milar to those of ceramics. These, however, were disconnected and
sparse without forming groups of high percentage pixels as it was
common with ceramic sherds. In order to remove these a morpho-
logic filter was developed that would eliminate isolated high-value
pixels without affecting large groups of these belonging to sherds.
The filter disregarded classification values below 70% and then
applied to the rest of pixel values a focal minimum filter with a
kernel radius of 1 pixel. This removed 3 × 3 (around 4–5 mm2) or
smaller pixel groups with values lower than the selected probability
threshold. A focal maximum filter was then applied to the results of
the first filter in order to: a) recover the pixels eliminated from the
edge of grouped pottery pixels, an edge effect of kernel-based filters,
such as the focal minimum and b) increase the size of pottery pixels
groupings to reduce the number of separated clusters of high
probability pixels belonging to a single sherd.

8. The last process in the algorithm was the vectorisation of the filter
results, which generated a polygon vector layer in which each fea-
ture represented a pottery sherd.

3.5. GIS treatment and generation of outputs

The final vector layer could be exported and incorporated into any
standard GIS software for visualisation and further analysis. Treatment
in GIS can provide multiple outputs, from the standard density map
(without traditional limitations based on sampling) to new measures
that could incorporate not just number of ceramics but their size, or-
ientation and the distance between them. With this method it can also
be extrapolated ceramic pixel-based density maps to consider very
small ceramic fragments that would have not been picked up on the
field or the number of vegetation-related pixels in a field (or in grid
units).

4. Results: assessing relative time cost of manual vs. automated
technique

The results of the automatic recording of surface archaeological
material can be best understood if compared with those from current
intensive survey methods (Fig. 4 and Table 1). The comparison is of-
fered so the reader can make her/his own approximate calculations.
Depending on the type of soil and conditions of the plot, visibility, type
and quantity of material culture and number and experience of sur-
veyors these results can vary greatly.

For the automated data collection, in plot 36, 564 photographs were
acquired. The photogrammetric process produced an orthoimage with
pixel sizes of 1.34 mm2. Plot 591 required 696 images and the resulting
orthomosaic had a ground spatial resolution of 1.45 mm2. Both re-
sulting orthoimages were larger than the survey grid as a result of the
need to include extra rows in all directions to achieve a perfect corre-
lation of photographs and the variability of the drone GPS-based geo-
location of the grid which could result in deviations of several meters
for the flight, which need to be compensated by increasing the flight
area.

For the manual data collection, the intensive survey grid with total
recording took 5.5 h, for plot 36 and 4.5 h for plot 591 to record all the
pot sherds visible in the surface of each field while the drone flight took
around 20 min (see Table 1). In terms of total time spent on the field a
survey team could provide faster recording depending on the survey
strategy and number of surveyors. However, counting the accumulated
time of all four surveyors, drone-based recording was 47–69 times
faster than the total recording intensive survey developed in the same
plots. This very intensive type of survey recorded 2080 fragments in
plot 591, while plot 36 yielded 15779. The automatic recording iden-
tified 1597 (76.8% of the sherds counted by total recording) in plot 591
(with a minimum identified potsherd area of 1.3 cm2) and 5189 (32.9%
of the sherds counted by total recording) in plot 36 (with a minimum
potsherd area of 1.1 cm2). The presence of false positives was measured
by checking visually 30 of the detected sherds in the orthoimage of each
field. Field 591 produced 3 false positives and plot 36 only produced 1.

The standard intensive survey using 5 m-separated surveyors fol-
lowing parallel lines recorded 1071 pottery sherds in plot 36 and took a
team of 4 surveyors 45 min. The automated recording method was
therefore able to document almost five times more ceramic fragments
9.5 times faster (in accumulated surveyors times) than the standard
method.

Plot 591, outside of the ancient town's area, used 10 m-separated
lines. The four-people survey team recorded 221 potsherds during the
20 min they took to survey the field. The automatic recording method
was therefore able to document 7.2 times more ceramic fragments 3.4
times faster than the standard method.

Photogrammetric processing of the photographs to generate an or-
thophotomosaic took a 8-processor 64 GB-RAM PC 3.2 h for field 36 and
3.5 for field 591. Although the upload of orthoimages was shorter than
10 min with a fiber optic Internet connection, the ingestion of the or-
thomosaics in EE (an internal EE transformation process that takes
place once these have been uploaded) took around 4 h. In regards to the
machine learning process the generation of the first training set took
20 min and the calculation of the first iteration of the whole algorithm a
little less than an hour. The third iteration took almost 2 h. While the
total processing time from photogrammetric treatment to the genera-
tion of ceramic distribution maps in vector format can be estimated to
be around 13–15 h, the time in requiring human intervention would be
around 2 h depending on the experience of the user.

5. Discussion

Fig. 4 in combination with Table 1 provides a comparison between
the total recording survey and the automated recording for this specific
test. Despite the fact that more ceramic fragments were recorded using
total recording field survey the large amount of time necessary to
conduct it makes it unpractical in terms of time-cost compared to re-
presentative results. The comparison of the results shows similar dis-
tributions, since the automatic recording was able to identify a statis-
tically significant number of pottery sherds (32.9% of 5189 fragments
in plot 36 and 76.8% of 1597 in plot 591). While plot 591 offers a clear
concentration of ceramics, fragments in plot 36 are much more dis-
persed and some differences in density can be observed between those
resulting from the total count survey and the automatic recording. It is
interesting to note here that those grid cells surveyed by experienced
surveyors systematically provided much larger numbers than those
surveyed by students recently introduced to archaeological survey. This
well-known bias (Plog et al., 1978; Schiffer et al., 1978) is clearly
visible in Fig. 4 where, in the total recording carried out in plot 36, the
experienced surveyor counted the cells of the southern central area of
the grid (compare with the density map generated from the automatic
recording below). This method produces continuous ceramic fragment
dispersions without the need to use a grid and markedly improves
potsherd distribution analysis and interpretation. In this regard, plot 36
density map derived from individually detected sherds shows a pattern
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that is probably related to current and past ploughing patterns in the
field, which is not visible at all in the gridded data as the grid cells size
is larger than the space between plough lines.

Also, the capacity to estimate the approximate area of the fragments
allows a more thorough interpretation of their distribution. Fig. 5
presents the histograms of ceramic fragment sizes (area in cm2) in plots
36 and 591. These clearly show divergent trends with plot 591

presenting a much more pronounced presence of larger ceramic frag-
ments. This can be interpreted in terms of material recently surfaced or
closer to the surface, while plot 36 pattern with thousands of very small
fragments well-distributed through the field seems to present a case for
a long-ploughed field were ceramics have been intensely fragmented
and distributed beyond their original concentration area.

It is interesting to note that the automated method detected a higher

Fig. 4. Results from the intensive total count survey compared to those of the automatic detection.
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percentage of the ceramic fragments recorded during the field total
recording survey in plot 591 than in plot 36. This is related to the
redder hue of this field (see orthoimage in Fig. 4) that forced a more
restrictive selection of the training data as there was less difference
between RGB values for soil and for ceramic fragments than in field
591. This, is also in direct relation to the higher number of false posi-
tives detected in plot 591. The more inclusive the training data the
more the false positives. In this regard, a fast measure of success can be
obtained testing a selection of identified fragments against the ortho-
photomosaic, which in turn can be used to evaluate the potential per-
centage of missed fragments, which should keep an inverse relation to
the lack of false positives when using the same ceramic training data in
plots with different environmental conditions. In the same way, a fast
inspection of the orthoimage can provide approximate percentages of
undetected sherds that, in combination with the number of identified
ceramic fragments, can be employed to provide estimates of total pot-
sherds per field.

The recording using standard side-by-side survey following parallel
lines with distances of 5 and 10 m provided less satisfactory results in
terms of time and potsherd count than the automated recording. While
the automated recording requires significant post-processing time per
plot this can be done by a single person with minimal investment of
time. Assuming the use of several computers or a powerful enough
server the processing can be conducted in parallel for several fields thus
greatly increasing the efficiency of the workflow.

The workflow presented here for the automated identification,
mapping and quantification of pottery sherds in agricultural fields of-
fers an important complementary technique to traditional fieldwalking
employed in archaeological survey. The workflow can save large
amounts of time and resources while increasing traditional survey ac-
curacy and consistency when applied in optimal environments. In
contrast with current survey practices, which provide density per areas,
it can identify individual finds and even small fragments that would not
usually been picked up and/or quantified in standard surveys. Not only
it can estimate the number and distribution of fragments but it can also
measure their approximate size. This can save much time during post-

processing, when sherds need to be measured, and provide new survey
indices that can better describe the distribution of material culture and
improve its interpretation. For example, instead of the ceramic density
per area (based on the number of sherd collected in a given transect or
survey line) the total number of pixels belonging to ceramic per area
can be estimated resulting in much improved indices as pot sherds
present highly variable sizes. By selecting pixels belonging to vegeta-
tion as training data this method would allow a quantifiable evaluation
of visibility conditions in a field on a pixel basis or per unit of area,
which are usually subjectively estimated during standard surveys for
the whole field (Shennan, 1985: 44, Thomson, 2004). Just to provide an
example, 23.5% of the cells in field 591 (Fig. 6) correspond to vege-
tation. These data can be used to correct the results of the ceramic count
per grid unit according to vegetation density as shown in Fig. 6.

Using a commercial drone, such as the Phantom 4 with GPS, the
resulting orthophotomosaic is already scaled and georeferenced saving
the postprocessing time usually necessary for the geolocation of survey
lines, sectors or transects. Although the scaling is lost when employing
EE (as it cannot currently work with subcentimetric pixels) the original
georeferenced orthoimage produced through the photogrammetric
process can be easily employed to fit the resulting classification.

One of the big issues in archaeological survey is the comparability of
survey data across regions and survey types. There is no standard
survey methodology, and each project decides their own variables.
Methods are usually designed to adapt to local environmental and
cultural conditions and the survey objectives (Mattingly, 2000). A few
surveys implement total collection of sherds while most others only
collect a selection of the most representative types. Fieldwalking stra-
tegies also vary enormously with some surveys using walking lines (at
variable distances and of variable length) or different grid sizes. This
method can help tackle this problem by going down to the survey's
atomic component, the potsherd, which can always be comparable
between surveys following this same methodology. On a similar note,
the method also improves the comparability of results within a single
survey, which is usually highly subject to variability between the skills
and efforts of individual field walkers and their relative tiredness (Plog
et al., 1978; Banning, 2002: 224–225) as seen for the total count survey
of field 36. By contrast the drone-derived results are mechanically
consistent at the cost of more intuitive recognition of “special” finds
(see below).

However, a series of issues need to be taken into account at this
early stage of development:

1. Large computational resources are needed to conduct the photo-
grammetric and machine learning analysis. These have been solved
here using freely available EE computing infrastructure but this is
limited to a maximum field size of 75 m2, which is slightly larger
than current commercial drones can record in a single flight.
Multiple or mosaicked fields can still be analysed. The continued
development of cloud computing and the unremitting increase in
computational power will likely increase the availability of com-
putational resources for survey teams wanting to apply this tech-
nique during the next years.

2. A good knowledge of machine learning and experience in training
data engineering is necessary for optimal results. This is comparable
to the initial training necessary for novel surveyors, who require a

Table 1
Comparison of the costs and potsherds recorded with the different survey methods employed. Total time refers to the survey time multiplied for the number of
surveyors. Urban plot 36 used 5 m-separated lines while rural plot 591 used 10 m-separated lines.

Plots Pedestrian total record Pedestrian lines Automatic recording

Total time Sherds Total time Sherds Time Photographs Sherds

36 - 5 m lines 22 h 15779 3 h 1071 19 min 564 5189
591 - 10 m lines 18 h 2080 1:20 h 221 23 min 696 1597

Fig. 5. Histograms of potsherd fragment sizes in both plots.
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few days or weeks of survey experience to be able to reach an op-
timum identification rate.

3. Best detection rates should be obtained in sedimentary plains with
recently ploughed soils that offer a good colour contrast with pot-
tery. In this regard the fields in Abdera required a more complex set
up of the training data than it would have been necessary under
ideal conditions but both plots provided more accurate results than
those provided by traditional pedestrian line survey. Although some
drones already incorporate sensors that can be employed to keep a

constant height above ground in irregular terrain or avoid trees in
forested areas these types of environment still represent a barrier for
the application of this technique.

4. Light conditions and the presence of shadows can reduce the de-
tection rate and will require more carefully selected training data. A
particular drawback with dark shadows is the reduction of detection
capability of the texture/gradient layer due to their low-contrast.
Improvements in drone-based photogrammetry, pre-treatment of
aerial images using photography software and a careful selection of

Fig. 6. Potsherd distribution plotted against vegetation density in plot 591.
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time of day and year to acquire the images should offer much im-
proved results. Vertical light or uniform light conditions will provide
the better results but the method works with any kind of light that
allows the differentiation of ceramics. In fact the selected fields were
recorded with oblique light. Drone survey, being not dependent on
the availability of surveyors during summer months and holidays,
offers the necessary freedom to conduct survey during most seasons
and adapt to particular field conditions (not just those that are not
under cultivation in summer). Also, being much faster than tradi-
tional fieldwalking the moment of the day offering best light con-
ditions can be selected without the survey taking long enough for
these conditions to change.

5. The method, based on spectral information and texture, will only
detect one range of ceramics. While the more common type of
oxidant ceramics or red-ware range from red to orange, the field
might present dark reductive pottery types or light buff-ware that
will not be detected by the algorithm. Other types of material cul-
ture with different colour and/or texture will go largely ignored.
Also, material of little archaeological interest, such as modern
building bricks (discarded dumps of which are frequently en-
countered by archaeologists in the Aegean countryside, but can be
more easily ignored by a human data collector), will also be in-
cluded if we aim at locating ceramics within a similar colour range.
This can be addressed running different machine learning processes
for the various ranges of pottery colour present in the field that can
be combined in multitype distribution maps. Equally, other types of
material culture, such as lithics or figurines, can also be identified if
their colour is different enough from that of the field. In these cases
it might be convenient to alter the script, for example not to use the
texture/gradient band when the type material culture selected do
not present flat surfaces or select different light or surface vegetation
conditions during survey as dark pottery might not be easily dif-
ferentiable from dark shadows.

6. The filtering process to eliminate small groups or single isolated
false-positive pixels can also eliminate very small ceramic frag-
ments. The kernel radius employed (see supplied code as
Supplementary Material) would disregard any fragment smaller
than 3 × 3 px (around 4–5 mm2), which, in any case are not col-
lected during field survey. More problematic is the case of ceramic
fragments positioned in such a way that only the section of the wall
is visible forming a long but thin line of ceramic pixels. No matter
how long the visible edge of the sherd is it will not be identified if it
does not fit entirely within the filter kernel. The use of higher re-
solution imagery can address this problem.

7. During the data training process a trade-off between obtaining high
values for ceramic pixels and disregarding those pixels that do not
correspond to potsherds should be assumed. When pixels corre-
sponding to ceramics present spectral information within the
bounds of non-ceramic pixel values (as defined during the training
process) then there will be an increase of false positives. To Illustrate
this point the spectral and gradient signatures of the potsherds (as
selected for the training data), in comparison to those presented by
soil and vegetation (the other most common types of elements in the
field) are presented in Fig. 7. The signatures show much overlap in
the RGB bands between potsherd and soil classes with a higher value
on the Red band for the ceramic fragments and lower Blue band
values as expected. If very strict parameters for pottery are selected
for the training data then fewer pottery sherds will be identified as
such. Therefore, the user will need to choose between having false
positives or achieving lower rates of detection. In our work we have
preferred the latter. The better the quality of the orthomosaics, the
conditions of the field and the training data the less significant this
trade-off is on the results.
Fig. 7 also highlights the very discriminant values of vegetation that
set it apart and ensures correct identification of field visibility va-
lues. More interesting, however, is the clearly discriminant values

provided by the gradient magnitude layer, with values for ceramic
well below those of soil and vegetation in accordance to its uniform
texture represented by a lower interpixel variability. This clearly
illustrates the importance of texture analysis for the successful ap-
plication of this method.

8. The postprocessing of finds usually involves a laboratory-based
analysis of selected sherds in which the most significant ceramic
fragments are measured and recorded and the type of pot and other
important information, such as the pot date or function, are ex-
tracted by specialists. This is, of course, not possible with this
method. However, the workflow does not aim to exclude sherd
collection, which his still essential for interpretation. Standard
survey practices quantify fragments after collection during post-
processing, when ceramic density maps are generated. The auto-
mated method generates distribution data with a delay of a few
hours or a day. These data can then allow to conduct fast targeted
small-scale collection at significant concentrations (as defined by
potsherd densities but also sizes) by a few specialists and, in doing
so, it can save large long-term storage space usually consumed by
survey projects in which material collection is systematic and only
after the analysis of the finds significant concentrations of material
are mapped. Material collection will always be necessary for in-
depth pottery analysis but this method can help reducing the
amount of stored ceramics by defining significant potsherd sampling
points instead of the traditional systematic collection. What this
approach cannot do is to interpret material culture. For example,
even if it is able to identify figurines or written tablets, these will
just be identified as a group of pixels with high probability of being
ceramic. There is a risk therefore that valuable particular types of
finds will be recorded but not identified as such and therefore left
uncollected.

9. When large areas are being surveyed and these incorporate different
types of soils or environments (or they are surveyed under very
different light conditions) it might not be adequate to apply the
same training data systematically to all fields and it might need to be

Fig. 7. Spectral/gradient signatures for potsherd training data, vegetation and
soil.
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updated with pixels selected from different orthomosaics.

Other concerns not directly related to the survey method and its
results but of a more practical nature are the difficulty of obtaining
permissions for drone photographic survey in different jurisdictions. A
relatively new technology, many countries have only recently begun
regulate drone usage but in many cases have done so in a way which
may make application of this workflow bureaucratically difficult or
impossible. Flights might also be constrained in restricted areas such as
military bases or airport surroundings. On the plus side, the very low
altitude of necessary flights (3 m) and the location of survey usually
being unpopulated areas may make it easier to argue to the authorities
that risks and security concerns are unwarranted.

Also important if the production of potsherd distribution and den-
sity maps while on the field is sought, is the need to have a reliable and
relatively fast internet access, which is necessary for the upload of large
plot orthoimages into EE. This is not always available in many survey
areas but we are confident that the setting up of satellite-based global
broadband internet services such as Starlink and OneWeb during the
next few years will alleviate this need.

Despite these drawbacks the results obtained in the fields under
analysis have yielded accurate results even when these were selected as
complex testing areas that had not recently been ploughed and in-
corporated vegetation, stones, shadows, and red-orange soil tones. The
workflow has been optimised for speed, ease of application and low-
cost as images were taken in jpeg and had not been treated after their
acquisition, an open to the public cloud computing platform has been
employed and all information is derived from photographic visible RGB
bands taken using an affordable popular drone.

The workflow is applicable to many survey situations. Extensive
survey aiming to locate sites could be carried out, for example, by ac-
quiring images following long parallel lines (at distances of, for ex-
ample, the typical site's ceramic dispersion radius) across the study
area. However, this workflow efficiency is proportional to the quantity
of ceramics to be identified per unit of area. That is, the more ceramics
in the field the more time it saves with respect to traditional survey.
Also the smaller the area the more similar the environmental conditions
(such as the type and colour of the soil) and the more applicable a single
training set is to the whole study area. In this regard, intra-site surveys
have the most to gain from it but any intensive survey in adequate areas
with a minimum of pottery sherd visibility would benefit from com-
plementing current survey methods with drone-based automated clas-
sification approaches.

6. Future developments

If the trends in technical developments documented in the in-
troduction continue, it is possible to expect an important increase in the
quality and applicability of this or similar workflows during the next
years.

As drones incorporate differential GPS and increase flight time,
planning and execution of survey missions will be faster and more ef-
ficient. As their cameras improve their quality and resolution, better
spectral signatures can be obtained for ceramics and both kernel-based
texture analyses and gradient magnitude will markedly increase their
prediction capacity as shown in Fig. 3. An increase in computing ca-
pacity with the wider availability of cloud computing facilities at a
lower price will allow reducing computing times in both photo-
grammetry-based processes and machine learning-based detection or
maintain them when larger fields or higher resolutions are involved.

The incorporation of multispectral and, most importantly, thermal
imagery will also imply a qualitative increase in ceramic detection
given the difference in thermal signatures between pottery, stones, soil
and vegetation. Many commercial drones allow payloads of up to 10 kg
and multispectral and thermal cameras (and combinations of these) are
available for many popular professional drone-models. Thermal

cameras resolution is still coarse in comparison with optical and mul-
tispectral cameras but important improvements can be expected in the
future.

Improvements in computing will also result in deep-learning algo-
rithms being employed for the detection of ceramic sherds. Potsherds’
particular morphology, texture and straight edges in combination with
their spectral signature will allow deep learning processes to detect
them reliably and in combination with other machine learning pro-
cesses even differentiate between ceramic types.

7. Conclusions: a new era for archaeological survey?

We have presented here a new workflow combining drone-based
photogrammetry and machine learning for the automated recording of
surface distributions of archaeological material. With a fraction of the
cost than that of traditional pedestrian survey, this method has the
potential to deliver faster results and higher analytical capabilities
when applied under favourable conditions. This workflow uses free or
low cost software and cloud computing services and the code employed
and clear instructions on how to use it are available as Supplementary
Material. It can be applied with minor adjustments to user-uploaded
orthomosaics after the selection of appropriate training data. The only
pre-requisite is a drone able to fly following a pre-programmed path
carrying a camera with enough resolution to record potsherds or other
items of material culture of interest. These characteristics are nowadays
available in many professional and recreational drones at relatively low
prices.

The workflow presented here addresses a specific part of an in-
tensive survey: the quantification of surface material culture items. This
is the most mechanical part of the work and requiring large amount of
hours to obtain basic information, which is necessary for the inter-
pretation of cultural data but, by itself, has limited value. Aspects, such
as site chronology, the use of space and how these change through time
will continue to be addressed through the analysis of collected relevant
material by specialised archaeologists. Automated sherd detection can
represent an important contribution, allowing to focus human resources
on those aspects of a survey that can yield more relevant answers to
research questions, and directing the efforts to the areas with more
potential.

The results show that this method provides a reliable and detailed
recording of material consistently surpassing those of traditional
fieldwalking even in less than optimal conditions. However, there is still
room to maximise detection of material culture and discrimination of
false positives. This paper aimed to provide a strong methodological
and conceptual basis on which future applications can build up. There
is little doubt that technical advances will largely contribute to the
widespread adoption of this and related approaches during the next
years.
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