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Abstract:Environmental noise is increasing year after year,
especially in urban and suburban areas. Besides annoy-
ance, environmental noise also causes harmful health
effects on people. The Environmental Noise Directive
2002/49/EC (END) is the main instrument of the European
Union to identify and combat noise pollution, followed
by the CNOSSOS-EU methodological framework. In com-
pliance with the END legislation, the European Member
States are required to publish noisemaps and action plans
every five years. The emergence of Wireless Acoustic Sen-
sor Networks (WASNs) have changed the paradigm to ad-
dress the END regulatory requirements, allowing the dy-
namic ubiquitous measurement of environmental noise
pollution. Following the END, the LIFE DYNAMAP project
aims to develop a WASN-based low-cost noise mapping
system to monitor the acoustic impact of road infrastruc-
tures in real time. Those acoustic events unrelated to reg-
ular traffic noise should be removed from the equivalent
noise level calculations to avoid biasing the noise map
generation. This work describes the different approaches
developed within the DYNAMAP project to implement an
Anomalous Noise Event Detector on the low-cost sensors
of the network, considering both synthetic and real-life
acoustic data.Moreover, the paper reflects on several open
challenges, discussing how to tackle them for the future
deployment of WASN-based noise monitoring systems in
real-life operating conditions.
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1 Introduction
Environmental noise is increasing year after year and be-
coming a growing concern in urban and suburban areas,
especially in large cities, since it does not only cause an-
noyance to citizens, but also harmful effects on people.
Most of them focus onhealth-related problems [1], being of
particular worry the impact of noise on children [2], whose
population group is especially vulnerable. Other investiga-
tions have also shown the effects of noise pollution in con-
centration, sleep and stress [3]. Finally, it isworthmention-
ing that noise exposure does not only affect health, but can
also affect social and economic aspects [4].

Among noise sources, road-traffic noise is one of the
main noise pollutants in cities. According to the World
Health Organization (WHO), at least one million healthy
life years are lost every year from traffic-related noise in
western Europe [5]. For instance, it was recently stated that
transportation noise alone accounts for 36% of the total
burden of disease attributable to urban planning, an even
higher percentage than the one caused by air pollution in
Barcelona [6].

The European Union (EU) has reacted to this alarm-
ing increase of environmental noise pollution, especially
in large agglomerations, by approving the Environmental
Noise Directive 2002/49/EC (END) [7]. In accordance with
the END, the Common Noise Assessment Methods in Eu-
rope (CNOSSOS-EU) has been defined to improve the con-
sistency and comparability of noise assessment results
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across the EU Member States [8]. The main pillars of the
END are the following: i) determining the noise exposure,
ii) making the updated information related to noise avail-
able to citizens, and iii) preventing and reducing the en-
vironmental noise where necessary. Moreover, the END re-
quires the EuropeanMember States to publish noise maps
and action plans every five years for agglomerations with
more than 100,000 inhabitants, major roads, railways and
airports, besides introducing the need to discern between
different sound sources [7]. Working towards the same
goals, newmitigation regulations and strategies have been
proposed in order to evaluate and combat specific noise
sources, such as: i) road-traffic [9, 10], ii) railways [11, 12],
iii) airports [13, 14], iv) industries [15, 16] and v) wind tur-
bines, which have recently been recognized as highly an-
noying [17, 18].

The classic approach of building noise maps from
costly expert-based measurements has recently under-
gone a change of paradigm to address the END regulatory
requirements thanks to the emergence of Wireless Acous-
tic Sensor Networks (WASNs), which allow the ubiquitous
measurement of environmental noise in real time. WASNs
have been successfully applied in several cities, such as
Barcelona (Spain) [19], Pisa (Italy) [20], Monza (Italy) [21],
Halifax (Canada) [22] or the National Highway of Burdwan
(India) [23], to name a few. However, most of these WASN-
based environmental noise monitoring projects address
the problem in a holistic way by representing the global
noise levels of the area of interest without differentiating
the contribution of noise sources. As an exception, in [24],
sound recognition is applied togetherwith a subjective sur-
vey in order to cross both the acoustic and the subjective
perception of noise components. Nevertheless, since the
identification of sound sources is conducted after comput-
ing the noise levels, this information cannot be used to
modify the noise map calculation dynamically. In order
to identify specific sound sources automatically, several
acoustic event detection algorithmshave beenproposed to
address different urban environment applications, mainly
focused on surveillance. Some of them are focused on
noise source identification [25–27], while other projects
are centered on the separation between target and interfer-
ing signals with the final goal of noise monitoring in cities
[28, 29].

In this context, the LIFEDYNAMAPproject¹ aims to de-
ploy a low-cost hybrid WASN to tailor noise maps that rep-
resent the acoustic impact of road infrastructures in real
time, using a Geographic Information System (GIS) plat-

1 http://www.life-dynamap.eu/

form. The project includes two pilot areas in Italy: the A90
motorway surrounding Rome (suburban area) and the dis-
trict 9 of Milan (urban area) [30].

In an attempt to monitor the impact of road infrastruc-
tures solely, those events unrelated to Road-Traffic Noise
(RTN), denoted as Anomalous Noise Events (ANEs) (e.g.,
birds, people talking, sirens, etc.), shouldbe removed from
the noise map generation due to the non-negligible im-
pact [31] of both individual and aggregated ANEs on the A-
weighted equivalent noise levels (LAeq) computation [32].
Therefore, ANEs should be detected automatically in or-
der to obtain a reliable picture of citizens’ exposure to
RTN by means of the generated noise maps. Within the
DYNAMAP project, this goal has been pursued by the de-
sign and development of anAnomalousNoise Event Detec-
tor (ANED) [28, 33]. The ANED algorithm is asked to iden-
tify ANEs in real time (every second) and designed to run
in the low-cost acoustic sensors of the WASN (see Figure
1).

Thisworkdescribes thedifferentANEDapproachesde-
veloped incrementally to fulfill theDYNAMAPproject spec-
ifications hitherto, considering both synthetic and real-life
acoustic data. The paper also discusses and suggests some
potential solutions for themain open challenges of deploy-
ing WASN-based noise monitoring systems in real-life op-
erating conditions.

The paper is structured as follows. Section 2 reviews
the state of the art about acoustic sensing in urban envi-
ronments. Section 3 describes the main elements of the
ANED algorithm, and the process followed to characterize
the acoustic environment of operation. Next, Section 4 de-
tails the main results obtained considering both synthetic
and real-life acoustic datasets, together with the analysis
of the impact of ANEs on the noise maps generation. Sec-
tion 5 discusses the main open challenges of the problem
at hand. The paper ends with the conclusions in Section 6.

2 State of the art about acoustic
sensing in urban environments

In this section, firstly, we review several representative
WASN-based projects focused on measuring the quality of
life of citizens due to noise pollution. Secondly, we briefly
describe the acoustic event detection literature.

http://www.life-dynamap.eu/
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Figure 1: Block diagram of the DYNAMAP’s WASN, describing the main processes run in the low-cost acoustic sensors every second, includ-
ing the computation of the A-weighted equivalent noise level (LA1s) and the Anomalous Noise Event Detector (ANED), which labels the input
acoustic data as Road Traflc Noise (RTN) or Anomalous Noise Event (ANE) every second. Moreover, the sensor sends its identifier (ID) and
the time stamp to the central server.

2.1 WASN-based acoustic urban sensing
projects

In order to satisfy the increasing demand for automatic
monitoring of the noise levels in urban areas, several
WASN-based projects are being developed in different
countries; some of these projects include other environ-
mental measurements.

The SENSEable project in Pisa is based on the smart
city concept to measure the noise level in several points
of the city in real time [20]. A noise monitoring network
is being deployed in Barcelona in order to manage the re-
sources efficiently and to reduce the impact of urban in-
frastructures on the environment [19] and also, recently
in Monza, by a LIFE project that implements also a low-
cost system [21]. The Fi-Sonic project, which is based
on the FIWARE platform, is mainly focused on continu-
ous environmental noisemonitoring and surveillance; sev-
eral sound events can be identified for surveillance pur-
poses, with the signal processing conducted on a central-
ized server [26]. The CENSE (Characterization of urban
sound environments) project in France [34], aims to de-
velop a new methodology for the production of realistic
noise maps, based on an assimilation of simulated and
measured data through a dense network of low-cost sen-
sors. The RUMEUR (Urban Network of Measurement of the
sound Environment of Regional Use) wireless network [35]
developed in the Paris regionbyBruitParif, is a project that
includes both high-accuracy equipment for critical places
(e.g., airports) together with less precise measuring equip-
ment placed in other locations where the goal is only to
evaluate the equivalent noise level. The IDEA (Intelligent

Distributed Environmental Assessment) project [36] mea-
sures noise and air quality pollution levels in urban areas
in Belgium. The MESSAGE (Mobile Environmental Sens-
ing System Across Grid Environments) project [37] moni-
tors noise, carbon monoxide, nitrogen dioxide, tempera-
ture, humidity and traffic occupancy/flow, providing real-
time noise data levels in the United Kingdom, being the
case-study applications conducted in London.

Other projects aim to monitor the urban noise in real
time, suchas theUrbanSenseproject inCanada [22],which
also aims to monitor other pollutants as carbon dioxide
(CO2) and carbon monoxide (CO). Finally, some projects
focus in certain areas, as for example highways. In [23],
five points along the National Highway of Burdwan have
been monitored with an audiometer in order to register
the acoustic equivalent level, besides conducting the corre-
sponding statistical analyses. In [38], the urban sound en-
vironment of New York City is monitored using a low-cost
static acoustic sensing network named SONYC; the goal
of this project is to monitor the noise pollution in the city
providing an accurate description of its acoustic environ-
ment. In [39], the LIFE MONZA project addresses the issue
of the definition, the criteria for the analysis and the man-
agement of the Noise Low Emission Zones bymeans of the
use of a low-cost WASN.

The aforementioned projects aim to monitor the noise
in determined areas using low-cost WASNs. However, as
far as we know, none of them intend to remove any anoma-
lous events which bias the traffic noisemapmeasurement,
both in urban and suburban scenarios, since they are not
designed to monitor this specific noise pollutant. In the
Smart Sound Monitoring project, De Coensel et al. con-
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ducted a study in [24] that crosses acoustic information
with subjective perception surveys, enabling the typology
of the acoustic information to be considered. Besides a
sound recognition system is applied in order to give infor-
mation about the detected sounds and establish a relation
between the identified events and the perception surveys.
However, the system identifies events only to give informa-
tion but not to remove these sounds from the noisemap. In
[29], the authors introduce a supervised noise source clas-
sifier, learned from a small amount of manually classified
recordings, to automatically detect the activity of anoma-
lous noise sources; nevertheless, this pilot has been imple-
mented only in one environment, on a rock crushing site.
It has not been yet exported to usual urban and suburban
environments with wider types of interfering signals. With
the purpose of generalizing the solution to the interfering
problem, the DYNAMAP project aims to monitor road traf-
fic noise in suburban and urban areas reliably, after remov-
ing the anomalous noise events from the road traffic noise
map computation [30].

2.2 Detection of acoustic events in urban
environments

In the literature, we can find several works showing that
the detection of events non-related to road traffic noise is
a very challenging task [40, 41]. On the one hand, when fo-
cusing on environmental sound detection, acoustic events
tend to be disconnected one from another (see [42] and ref-
erences therein), unlike speech or music, besides present-
ing a great variability, which depends on the acoustic en-
vironment [43]. On the other hand, the occasional, unpre-
dictable and diverse nature of ANEsmakes their identifica-
tion particularly complex in real-life scenarios [25, 44].

The problem of environmental Acoustic Event Detec-
tion (AED) has attracted the scientific interest of the re-
search community recently, e.g., as can be observed in
the Workshops on Detection and Classification of Acous-
tic Scenes and Events (DCASE) 2016 [45] and 2017 [46]. In
general terms, two general approaches have been applied
to environmental AED: detection-and-classification and
detection-by-classification [47]. The former allows detect-
ing sudden changes of the background noise (i.e., acoustic
salience) at the cost of discerning between different kinds
of sounds. The latter classifies all the audio segments by
means of the parametrization and classification of the in-
put acoustic eventswithin a predefined set of classes, after
the classifier has been trained with enough representative
data per class (i.e., multi-class AED). Given that the deter-
mination of the acoustic salience of an acoustic event is

not enough to discriminate between road traffic noise and
anomalous events, the recognition of ANEs should follow
the detection-by-classification approach.

In this context, classic multi-class AED can not be
directly applied to the problem at hand due to its un-
bounded nature (i.e., the number of classes composing the
anomalous noise events can not be known beforehand).
Alternatively, the AED-based novelty detection focuses on
the major acoustic class (i.e., road traffic noise, in this
case) by means of the One-Class Classification (OCC) ma-
chine learning approach (see [48] and references therein).
This approach has been applied in urban environments
for surveillance applications oriented to the identification
of gun-shots, broken glasses, and screams, among others
[25, 49]. Another urban event detection proposal [50] in-
cludes also normal and abnormal (or anomalous) audio
events such as screams, shouting or asking for help,which
are collected in real-life outdoor public surveillance sce-
narios. The acoustic data is parametrized every 30 ms us-
ing a multi-domain feature vector including different au-
dio descriptors, such as Mel Frequency Cepstral Coeffi-
cients (MFCC), MPEG-7 Low-Level Descriptors (LLD) and
Perceptual Wavelet Packets (PWP). The parametrized au-
dio frames are fed into different probabilistic classifiers
based on Gaussian Mixture Models (GMM) [25], Hidden
MarkovModels (HMM) and Universal HMM [50], following
a class-specific modelling and universal background mod-
elling.

However, this approach omits considering valuable
information about ANE. To this aim, in [28], a two-class
classification scheme has been introduced to detect ANE
mixed with RTN in real-life environments, outperforming
the OCC-based approach when having enough represen-
tative data to model the minority class (i.e., the anoma-
lous noise events). Further details of this approach are de-
scribed in the following section.

3 Developing an anomalous noise
event detector in real-life
environments

The DYNAMAP project goal is to generate noise maps us-
ing only road traffic noise contribution; so, it requires the
detection of all non-traffic events in order to discard them.
According to the project requirements, ANEs are consid-
ered to be those acoustic events that do not come from
the engines of the vehicles or are not derived from the nor-
mal contact of their tires with the pavement, i.e. not re-
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Figure 2: Block diagram of the frame-level decision phase of the ANED algorithm, composed of two main stages: parametrization of the
input audio extracting the MFCC or GTCC at a 30-ms frame rate, and its binary classification as RTN or ANE. Four different classifiers
(DA, GMM, SVM and k-NN) have been considered hitherto, which have been trained using both real-life or synthetically-mixed acoustic
databases.

flecting regular road trafficnoise [7]. Moreover, the Anoma-
lous Noise Event Detector envisioned by the DYNAMAP
project has to be designed and integrated in the low-cost
sensors of the WASN to discard ANEs before integrating
the information to the GIS-based road traffic noise map.
As far as the ANED operating specifications are concerned,
the project consortium agreed to set the output decision
of the ANED at every second, focusing the discrimina-
tion between ANE and RTN based on their spectral differ-
ences [30].

In the pursuit of this goal, the ANED development has
been addressed incrementally throughout the course of
theproject. In the following sections, the key elements con-
sidered up to date to tackle the detection of ANEs in real
time have been defined.

3.1 Detection of ANEs in real time

In order to identify and subsequently remove the impact
of ANEs on the road traffic noise computation in real time,
an ANED has been designed, developed and implemented
to run on the low-cost acoustic sensors of the WASN de-

ployed in the two pilot areas of the DYNAMAP project: ur-
ban (Milan) and suburban (Rome) environments. As afore-
mentioned, theANED is asked to provide a binary decision
between ANE and RTN every second (see Figure 1).

The ANED has been designed following the clas-
sic architecture of machine hearing systems [42]: audio
parametrization and classification (see Figure 2). Audio pa-
rameterization by means of feature extraction aims to pro-
vide ameaningful and compact description of an input au-
dio frame. Among the different possibilities implemented
to parametrize the acoustic events, up to now, we have
opted for computing spectral-based features, being either
MFCC [51] or Gammatone Cepstral Coefficients (GTCC) [52].
While the former have been widely used in speech recog-
nition and for the identification of other type of audio sig-
nals, the latter has shown better performance in environ-
mental sound classification tasks [52].

The ANED algorithm has been designed to output a bi-
nary label every second (RTN/ANE1s) based on a two-stage
decision scheme (see Figures 2 and 3). First, the ANED cat-
egorizes the audio input as RTN or ANE following a two-
class detection-by-classificationAEDapproach (see Figure
2). Due to the short nature of some ANEs (e.g., impulse-
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Figure 3: Block diagram of the majority vote stage applied after the frame-level classification, which outputs the ANED’s binary decision
every second (RTN/ANE1s).

like events such as dog barks or door closings), the in-
put audio data is analyzed every 30 ms in order to detect
them at the frame-level. It should be noted that different
core machine learning techniques have been considered
to train the frame-level classifier, such as: Discriminant
Analysis (DA); GMM; Support Vector Machines (SVM); and
k-Nearest Neighbors (k-NN), as depicted in Figure 2. Sec-
ond, the frame-level decisions obtained every 30 ms are
integrated every second as a binary output label to fulfill
the project specifications (see Figure 3). Until now, this de-
cision has beenmade through a simple yet effective major-
ity vote. As a result, the next steps of the map generation
are informed whether the corresponding LA1s belongs to
RTNor it should be discarded since it is contaminatedwith
ANEs.

Due to the supervised nature of the frame-level classi-
fication of the ANED, it becomes essential to have enough
representative data to build the acoustic models of both
classes: RTN (also including background city noise) and
ANEs. In the following section, we describe themain steps
followed to characterize the acoustic environment, which
has addressed considering both synthetic and real-life
data throughout the project.

3.2 Characterization of the acoustic
environment

The acoustic database employed to train the ANED is one
of the key elements to tackle the problem at hand. The
classifier should be trained with enough representative
RTN and ANE examples if both acoustic classes have to be
modelled properly. Those examples can be either obtained
fromonline repositories or from real-life recordings, where
ANE and RTN should bemixed synthetically or appear nat-
urally merged with city background and traffic noise, re-
spectively. During the course of the project, we have ob-
served the complexity of both designing artificially-mixed
acoustic data that represent real-life ANEs in urban and
suburban environments reliably, and collecting represen-
tative events in the real field.

A preliminary version of the acoustic dataset was syn-
thetically generated, following similar previous works [40,
44]. The databasewas designed in a balancedmanner (250
seconds of RTN and 300 seconds of ANEs). In order to
simulate real-life conditions, we mixed on-site recordings
from a ring road of the city of Barcelona (i.e., similar to the
Rome suburban environment) together with several ANE
obtained from the Freesound² open database. The acous-
tic salience of the mixed ANEs with respect to RTN was set
to be either +6 dB or +12 dB, being computed their Signal-

2 https://freesound.org
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to-Noise Ratio (SNR) as follows:

SNR = 10 log10
(︂
PANE
PRTN

)︂
(1)

where PANE and PRTN are estimations of the acoustic
power of ANEs and RTN, respectively.

In the following sections, we describe the main steps
followed to obtain a real-life acoustic database to char-
acterize both urban and suburban pilot areas of the DY-
NAMAP project.

3.2.1 Collecting ANE in real-life urban and suburban
areas

The DYNAMAP’s WASN is currently being deployed in two
pilot areas to validate the performance of the designed
road traffic noise monitoring system in both urban and
suburban scenarios [30]. The key characteristics of the ur-
ban and the suburban pilot areas are described below.

Regarding the urban area,Milan has 1.3M citizens [53],
increasing to 3.2M inhabitants in itsmetropolitanarea. The
selection of the pilot area took into account the following
attributes [54]: extension, number of citizens, noise expo-
sure levels and linear road length. As a result, district 9
was selected as the most suitable area of the city to de-
ploy the pilot of the WASN. It is to note that this district
contains two sensitive sites that should be protected from
noise: the largest hospital of Milan and the University of
Milano-Bicocca.

Subsequent studies [55] have concluded that the
recording locations within Milan’s district 9 can be acous-
tically clustered in two groups, according to the distribu-
tion of theA-weighted traffic-noise hourly equivalent noise
levels (LAeqh). Between 08:00 and 09:00, the first cluster
presents a higher peak than the second group, while dur-
ing the night period (20:00 and 05:00), the first cluster
shows lower averaged values than the second one.

As far as the suburban scenario is concerned, Rome is
the largest and most populated city of Italy, with 2.8 M in-
habitants [53], reaching 4.3M residents if all themetropoli-
tan area is considered. The A90 ring-road surrounding
Rome has been found to be critical in terms of noise pol-
lution since it is a six-lane 68 km-longmotorwaywith pres-
ence of multiple noise sources, e.g. railways and crossing
roads. The sensors of theWASN deployed in this pilot area
are being installed in themessage panels and road signs at
critical locations, usually intersections and crossing roads
[56].

In order to obtain an accurate picture of the real-life
acoustic urban and suburban environments where the

Figure 4: Recording campaign sites of the Milan urban area.

Figure 5: Recording campaign sites of the Rome suburban area.

ANED is asked to operate, a recording campaign was con-
ducted between the 18th and 21st May 2015, covering both
Milan (urban) and Rome (suburban) pilot areas. Several
recording sites were selected taking into consideration di-
verse representative traffic conditions and acoustic charac-
teristics within the pilot areas defined in the previous sec-
tion. The specific recording sites of Milan are depicted in
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Figure 4,while the recording spots along theA90 ring-road
portals of Rome are shown in Figure 5. The next section de-
scribes the main characteristics of the gathered acoustic
data.

3.2.2 Characteristics of the real-life urban and suburban
acoustic database

After the manual annotation of all the gathered acoustic
data during the recording campaign, an audio database of
9h and 8min of real-life datawas obtained, after removing
some synchronization passages. The ANEs only represent
the 7.5% of the labelled data [43]. In particular, 19 differ-
ent ANE categories were identified perceptually, such as
airplanes, bird songs, barking dogs, thunders, sirens, or
people talking, among others. ANEs lasted from 30-40 ms
for impulse-like sounds like door closing to 30 seconds
for longer events like a siren pass-by, besides presenting
SNR from -10 dB to +15 dB with a relevant diversity of inter-
mediate SNR values. When comparing both environments,
ANEs represent about 3.2% of the 4 h and 44min database
of the suburban environment, being 12.2% in the urban
context (4 h and 45 min). Among them, ANEs with signif-
icant acoustic salience (i.e., those with SNR ≥ 6 dB) only
represent the 29% and the 1.85% of the total ANEs for the
urban and suburban environments, respectively.

These values togetherwith the in-depth analysis of the
distribution of the collected acoustic data show thehighdi-
versity of ANEs in terms of their occurrence, duration and
SNR with respect to the synthetically generated database,
besides confirming the higher complexity and unbalanced
nature of the classification problem in real-life environ-
ments (the reader is referred to [43] for further details).
Furthermore, although both urban and suburban environ-
ments share some general characteristics, it is worth men-
tioning the significant differences found between them
due to their specific acoustic nature. Thus, this entails, at
least, a specific training of the ANED algorithm for each
environment to address the problem appropriately.

4 Experiments and results
In this section, the main results obtained from the process
of design and implementation of the ANED algorithm for
real-time road traffic noise mapping are presented. Firstly,
Section 4.1 presents an analysis of the impact of the real-
life ANE audio passages on the computation of the aver-
aged noise equivalent levels, showing some specific ex-

amples for illustrative purposes. Secondly, the results ob-
tained from the different design phases of the ANED algo-
rithmare described in Section 4.2, which encompasses our
previous works ranging from those which used the syn-
thetic audio database to the research conducted using au-
dio datasets obtained from real-life urban and suburban
environments.

4.1 Impact of ANEs on the LAeq computation

The removal of ANEs from the RTN map generation is
based on the hypothesis that they may bias the LAeq value
significantly. In this context, it seems reasonable to as-
sume that individual ANEswith high acoustic salience and
long duration (e.g., a siren pass-by) could affect signifi-
cantly the LAeq computation. Nevertheless, other combi-
nations such as a large number of medium-impact ANEs
or the presence of frequent impulse-like ANEs within the
integration period considered to compute the LAeq could
also have a similar effect.

In [32], the impact of both individual and aggregated
ANEs on the A-weighted equivalent noise level computa-
tion is evaluated, proving their potential bias on the road
traffic noise map computation. That work computed the
deviation causedbyANEs on the LAeq valuewith respect to
a predefined ground truth, obtained after themanual iden-
tification of all the events that should be removed from the
equivalent RTN level computation [32]. In that research,
two parameters were used to parametrize the anomalous
noise events: the duration, which is obtained as the differ-
ence between the time stamp of the first and last sample of
the ANE; and the SNR of the ANE under study.

That work concludes that both duration and SNR of
the ANE are key variables to identify the most relevant
events to take into account; however, there is a need to
quantify the contributionof eachANE to the LAeq. This con-
tribution is calculated as the difference between the LAeq
considering the individual ANE and the LAeq replacing the
event with the linear interpolation from the last and the
following RTN sample of the original raw data.

In the DYNAMAP project the dynamic map is updated
every fiveminutes during the day, because the LAeq values
present higher variability depending on time; evening and
night show more stable LAeq values [55]. To take into ac-
count all circumstances, the equivalent noise level and the
impact of ANEs should be calculated over the minimum 5-
min integration time, i.e. LA300s. In Figures 6 and 7, a cou-
ple of examples collected in two different recording sites of
the Milan pilot area are included for illustrative purposes.
In those figures, the impact is plotted together along the
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Figure 6: A detailed example of the Site 4 of the Milan pilot area recording [43], showing the bias of the ANEs on the LA300s computation,
including the evolution of the LA1s curve with and without ANEs obtained from the ground truth manual labelling reference.
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Figure 7: A detailed example of the Site 5 of the Milan pilot area recording [43], showing the bias of the ANEs on the LA300s computation,
including the evolution of the LA1s curve with and without ANEs obtained from the ground truth manual labelling reference.
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same temporal axis with the duration (color legend) and
the SNR (size of the dot). The A-weighted equivalent noise
level computed every second (LA1s) of the raw audio and
the resulting LA1s of the same audio without ANEs is also
shown for comparative purposes. Thisway, the readermay
analyze in detail the impact of each and every individual
ANE within the 5-min period it belongs to.

Both examples show the frequent occurrence of ANEs,
with diverse duration and SNR. In particular, the most
salient ANE in Figure 6 is a train pass-by in minute 12,
which lasts 32 s, it has an SNRof 6.9 dB and it adds 2.8 dB to
the corresponding LA300s. Next, in minute 6, an 18-s train
pass-by with an SNR of 13 dB contributes with 2 dB to the
final LA300s computation. And finally, another train pass-
by is captured in the 2nd minute that has a duration of 7 s,
with an SNR of 2.6 dB and affecting the LA300s in 1.2 dB.
As the reader may observe, the recording of Site 4 contains
basically train pass-bys in terms of ANEs occurrences.

As can be observed in Figure 7, the most salient ANE,
a 30-s siren with an SNR of 5.9 dB, can be found in the 21st

minute. According to the graph, it contributes 3.9 dB to
the final LA300s computation. In the same recording, there
are other ANEs biasing the LA300s, but with a contribution
of 1 dB or less to the LA300s computation. However, as ob-
served in [32], all ANEs should be taken into consideration
in the computation, as many low-impact ANEs detected in
the same period could have a significant aggregated im-
pact.

4.2 Classification accuracy

In this section, we describe themain results obtained from
the experiments conducted to evaluate the accuracy of the
different implementations of the anomalous noise events
detector within the DYNAMAP project.

In [44], a preliminary version of the ANED algo-
rithm trained with the synthetically generated environ-
mental acoustic database was tested using a 4-fold cross-
validation scheme. As described in Section 3.2, two SNR
values were set artificially by changing a gain factor for
both ANEs and RTN audio passages (+6 dB and +12 dB)
to generate the artificial mixtures. Moreover, two classi-
fiers (k-NN and linear DA) and two audio parametriza-
tion techniques (MFCC and GTCC) were evaluated under
supervised and semi-supervised two-class classification
schemes. The results showed the superiority of the semi-
supervised approach inmost of the simulated scenarios in
terms of the F1 measure of the ANE class, yielding around
80% of classification accuracy, and presenting better re-

sults for the +12dB than the +6dB ANEs, as expected a pri-
ori.

Unfortunately, these results proved to be non-
generalizable to real-life conditions during the course of
the project [57]. Two main conclusions were derived from
the obtained results when tested with real-life data. First,
the ANED performance fell around 25% on average with
respect to the classification results observed when work-
ing on the synthetic balanced database. Second, the high
complexity of real-life acoustic environments due to the
larger diversity of ANEs, SNRs, etc. makes it difficult (or
almost unfeasible) to model them artificially [43]. Thus,
subsequent research was focused on training and eval-
uating the ANED with real-life acoustic data, discarding
any strategy based on using non-realistic mixtures be-
tween ANEs and RTN, even though it was an approach
widely considered in the literature related to audio event
detection. In the following studies, we used the real-life
database built from the recording campaign, and consid-
ered a larger diversity of coremachine learning techniques
for the two-class classification approach (see Figure 2).

The subsequent experiments using the real-life
database considered 4-fold and leave-one-out cross-
validation schemes to study the ANED performance at the
frame-level (every 30 ms) and at the high-level (every 1 s) -
see Figure 3 -, respectively [28]. The 4-fold schemewas em-
ployed to select the best core classifier of the ANED when
making a binary RTN/ANE30ms decision at the frame-level
(see Figure 2). The followingmachine learning approaches
were compared: DA with quadratic discriminant function;
k-NN with K = 1; SVM with Radial Basis Funtion kernel;
and GMM with 256 components for both acoustic models
(RTN and ANE). The obtained macro-averaged F1 values
ranged from 58,01% to 74,43% for the suburban scenario,
and from 68,96% to 81,44% for the urban environment,
respectively. SVM and k-NN were the two classifiers that
obtained the best F1 scores in both environments, followed
by GMM and DA.

Moreover, since the ANED algorithm is asked to per-
form its classification in real time on a low-cost acoustic
sensor, the computational cost of these core classifierswas
also evaluated. As the training stage can be performed off-
line, the study only focused on the computational load of
the testing phase. The results showed that k-NN and SVM
were the two core classifiers yielding the highest computa-
tional cost, while GMM and DA obtained the lowest scores
(being the computational complexity of the GMM, around
1% and 2% of the computational complexities of k-NN and
SVM, respectively). Therefore, from the 4-fold cross valida-
tion experiments, we selected the GMM approach as the
ANED core classifier since it entailed the best trade-off be-
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tween classification performance and computational load
(i.e., it can be run on the low-cost sensors of the WASN in
real time).

Next, the leave-one-out strategy was used to evalu-
ate the classification accuracy of the GMM-based ANED
at the high-level one second rate (see Figure 3), using en-
tire audio clips to assess the ANED decisions under sim-
ulated real-life operating conditions. When compared to
the alternative Universal GMM-based OCC, the two-class
GMM-based classifier presented significant improvements
for both urban and suburban environments, yielding a rel-
ative increase of 18.7%and 31.8% in the frame-levelmacro-
averaged F1 measure, respectively [28]. Moreover, the re-
sults also showed that the the classification accuracy in-
creased in 3.8% and 4.4% for the suburban and urban en-
vironments, respectively, after the majority vote.

These results confirm that the two-class classification
approach outperforms the OCC alternative when enough
representative data can be found to model the minority
class, in our case, the ANE category. Moreover, the exper-
iments also demonstrate the major complexity of the sub-
urban acoustic environment ahead the urban one in terms
of anomalous noise events detection in real-life environ-
ments.

5 Discussion
In this work, we have described the key milestones of the
DYNAMAP project approach to develop an automatic pro-
cess to detect and remove those acoustic events unrelated
to road traffic noise from the WASN-based noise map com-
putation. In this section, we discuss some open challenges
that should be addressed to improve the future versions of
the ANED algorithm running on a WASN in real-life oper-
ating conditions.

5.1 Acoustic Databases

We have found that the performance of the ANED highly
depends on the nature of the audio database used for
the training stage. The preliminary ANED algorithm was
trained and tested on a class-balanced synthetic database,
obtaining very satisfactory results at the frame-level. How-
ever, when the same classifier was applied to real-life au-
dio recorded data, i.e., with unbalanced proportion of RTN
and ANEs containing a high diversity of SNR values, the
performance of the classifier fell dramatically. These re-
sults proved that the simulation of real-life operating en-

vironment by mixing RTN recorded from a real suburban
soundscape with ANEs collected from online repositories
is very complicated, becoming almost unfeasible to ad-
dress the real-life problem properly [43].

Moreover, the significant acoustic differences ob-
served between the urban and suburban scenarios (both
in terms of ANE typology and SNR variations) suggest that
the ANED implementation should discern, at least, be-
tween these two different acoustic environments [28, 43].
Nevertheless, and according to [55], we do not discard in-
troducing another level of adaptation in the Milan pilot
area to take into account the two observed acoustic clus-
ters. The typology of the streets, of the traffic flow and the
different types of noise propagation and ANEs is leading
us to consider the possibility of designing more than one
ANED for the urban scenario [58]. Therefore, the potential
local adaptations should be accounted for when analyzing
the degree of generalization of the ANED approach.

5.2 Classification

Another key characteristics of the acoustic data collected
in real-life environments is their inherent unbalanced na-
ture in terms of the occurrence of ANEs with respect to
RTN.Obviously, during our researchwehaveobserved that
RTN is themajority class while the ANE class contains a re-
duced number of heterogeneous samples. Moreover, by its
definition, the ANE class is unbounded since it accounts
for any sound event different from road traffic noise. These
particular characteristics of the problem at hand makes
it specially complex to address effectively, as already dis-
cussed in the literature. Up to now, we have observed that
designing the ANED by means of a two-class classifier at
the frame-level outperforms tackling the problem by only
focusing on the majority class, i.e., by means of the so-
called OCC novelty detection approach, when enough rep-
resentative data is obtained to model the minority class
correctly.

Nevertheless, those techniques designed to minimize
the unbalanced nature of the problem, such as reducing
the RTN class samples or increasing the ANE set of the
database [59], could be also considered in future works so
as to improve the ANED classification performance. How-
ever, it is worth mentioning that oversampling the ANE
subset synthetically has proven unrealistic to follow pat-
terns in real-life environments (e.g., considering the same
type of acoustic sensors, recording conditions, events
SNRs diversity, etc.). Whatever the solution adopted, it
should include improvements in ANED reliability and per-
formance in real-life operating conditions.
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As for the machine learning approach, the current im-
plementation of the ANED has considered the detection of
ANEs as a two-class classification problem based on spec-
tral parametrization and Gaussian Mixture Models [28].
However, other classicmachine learning techniques could
also have been considered. Among them, Deep Neural
Networks (DNN) have recently gained relevance in acous-
tic event detection problems (e.g., [40, 60] and those re-
cently presented inDCASE competitions, see [45] and [46]).
Nevertheless, a large amount of ANE examples should be
gathered from real-life conditions to train DNN-based ap-
proaches appropriately, making this alternative a daunt-
ing task due to the nature of this kind of anomalous noise
events. Finally, other approaches which consider not only
the spectral but also the temporal evolution of the au-
dio input, e.g. through spectro-temporal parameterization
and/or classification schemes such as HMM could be con-
sidered, only if we can guarantee the real-time perfor-
mance required by the problem at hand. Nevertheless, this
research will be addressed for future work.

5.3 Real-world WASN operating challenges

AnyWASN deployed to cover a dynamic acoustic mapping
project presents a set of challenges associated with the
hardware design and system maintenance. One of the key
elements of a WASN is the inclusion of low-cost sensors,
so as to ensure an affordable sensor network deployment,
with a good trade-off between the cost of each sensor and
the features the sensors offer (e.g., being able to run the
ANED and compute LAeq every second as in the DYNAMAP
project).

The potential problems of low-cost technology are ac-
curacy and reliability, aswell as robustness over time. This
last point is crucial both from an economic point of view
and when considering the monitoring accuracy. On the
one hand, the deployed WASN will have to cover mainte-
nance costs, which should be minimized as much as pos-
sible. On the other hand, the noisemap computation (and,
thus, the ANED results) together with the subsequent ac-
tion plans are based on the measurements of the low-cost
acoustic sensor. If they stop working properly, any derived
conclusions becomes inaccurate.

Moreover, the power supply of the devices is also an is-
sue to take into account. Nowadays,most of the sensors de-
ployed in the city are supplied by the public electrical net-
work, but this limits the places where they can be located.
One of the goals of the sensor devices design should be to
minimize energy consumption and invest in affordable al-
ternatives which can generate energy autonomously.

Furthermore, many cities already have a sensor net-
work to capture other types of data, e.g., CO2, CO or air par-
ticle sensors, aggregating and transmitting the collected
data through specific software platforms, as SENTILO [61],
which is being used in Barcelona. Any new WASN design
should take into account the compatibility issues with all
those software platforms already processing data in smart
cities, while no specific solution such as CityOS has been
agreed as a general standard yet.

Data management is also a key issue in terms of de-
sign of a WASN. An acoustic network running in real time
captures a large amount of raw data that should be pro-
cessed properly to obtain themaximum information about
the events and noise pollution occurring in urban and sub-
urban areas. A deep study of the goals of the noise moni-
toring projects should be conducted in order to evaluate
the impact of this question. From the DYNAMAP point of
view, we have opted to process the data collected in each
and every one of the sensors locally, and send the result
to the central server, which is asked to subsequently tai-
lor the GIS-based noise map. This way, the amount of data
sent through the communication network is reduced dra-
matically with respect to centralized server-based WASN
approaches (e.g., Fi-Sonic project [26]), since the node only
transmits the SensorID, the time stamp of the measure,
the LAeq in dBA and the binary RTN/ANE label every sec-
ond (see Figure 1). The map is then provided to both city
management authorities and citizens through an intuitive
web interface. However, other approaches may also prefer
to register the acoustic environmental data in the cloud
where it could be integrated with other city environmental
sensors.

Finally, the deployment of WASN in urban environ-
ments can lead to a wide range of possible methods to an-
alyze the acoustic events in the city. The acoustic sensors,
further than evaluating the LAeq levels, can be used to run
AED algorithms in order to detail the contents of the acous-
tic events in the street, such as: the typology of sounds
identified (e.g., man-made or coming from nature), the im-
pact of these on the environmental noise, the subjective
perceptual effects over the people living in some areas, etc.
In any case, these algorithms should be designed to run
in real-time within the sensors and to address the partic-
ularities of the real-life acoustic environments where they
should operate.
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6 Conclusions
In this work, we have described and reviewed the incre-
mental development of the Anomalous Noise Event De-
tector envisioned by the DYNAMAP project to monitor the
acoustic impact of road infrastructures in urban and sub-
urban areas solely. From our research, we have proven the
relevance of including an ANED to detect and avoid the
impact of ANE on the road traffic noise map computation.
Since both individual and aggregated ANEs can have a sig-
nificant impact on the A-weighted equivalent noise level
computation, their removal from thenoisemapgeneration
provides the competent authorities with a reliable picture
of the RTN affecting citizens.

The ANED has been designed and implemented as a
two-stage binary classifier based on a two-class classifier
at the frame-level followed by a majority voting scheme
providing the required output decision every second. The
frame-level classifier has been tested under simulated and
real-life operating conditions in urban and suburban sce-
narios. The results obtained on real-life data have demon-
strated the complexity (or even theunaffordability) ofmod-
elling the problem synthetically by means of building an
artificially-mixed database composed of road traffic noise
with superimposed anomalous noise events. Moreover, we
have observed that the ANED is sensitive to the character-
istics of the acoustic environment, entailing the suburban
and the urban areas similar but different classification sce-
narios. Therefore, at least the ANED has to be trained with
specific data for each acoustic environment where it is de-
ployed. Nevertheless, we do not discard studying the po-
tential improvements for adapting theANED to the specific
characteristics of the two clusters ofMilan’s district 9 in the
near future.

Moreover, during the course of the project we have
concluded that addressing the problem through a two-
class classification approach outperforms the results ob-
tained by the one-class classification alternative, when
enough representative data are collected and labelled to
train the minority class properly. Furthermore, we have
observed that the implementation of the majority voting
scheme acts as a post-processing stage that filters some
spurious classification decisions of the ANED algorithm at
the frame-level, thus, improving theperformance of thede-
tection system.

Nevertheless, as discussed, there are still several open
questions that should be analyzed in detail. Among oth-
ers, since the recording campaign only covered specific pe-
riods, the acoustic database is currently being completed
by collecting new acoustic data from the sensors already

deployed in the Rome and Milan pilot areas, mainly from
night and weekend periods. Moreovoer, other problems
derived from real-life operation have to be taken into ac-
count, as the huge amount of data to be processed when
the WASN is working in real-time, and the accurate defi-
nition of the acoustic event detection algorithms to obtain
valuable information. The accuracy of the data obtained
using the low-cost acoustic sensors of the WASN and their
robustness along timedeserve special attention so as to ob-
tain reliable conclusions from the road traffic noise mon-
itoring network. Finally, we will continue to investigate
on the ANED proposal by considering, for instance, other
parametrization and/or classification schemes in order to
improve its overall performance in real-life operating con-
ditions.
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