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Abstract: Human life expectancy has grown over the last century, which has driven governments to increase the 
efforts on caring about the eldest population. Therefore, modern trends take advantage of latest advances in 
technology to remotely monitor those people with special needs at their home, increasing their life quality and 
with less impact on their social lives. This paper presents an acoustic event detection platform for assisted living 
that tracks patients’ status by automatically identifying and analyzing the acoustic events happening in a house. 
Specifically, we have taken benefit of a Jetson TK1, with its NVIDIA Graphical Processing Unit, to process the 
acoustic data and identify a closed number of events in order to inform the care system. This is a proof of concept 
conducted with data of only one acoustic sensor, but we plan in the future to deploy a sensor network in several 
places in the house. 
 
Keywords: Ambient assisted living, Sensor network, Machine hearing, Acoustic feature extraction, Machine 
learning, Graphics processor unit. 
 
 
 
1. Introduction 

 

Human life expectancy is increasing in the modern 
society [1]. Our society has to face new challenges in 
terms of health care because the number of patients to 
attend is increasing according to [2-3] the people 
ageing who need support [4]. Nowadays, public and 
private health services try to avoid long term 
hospitalizations and, instead, foster the elderly to 
remain at home for two reasons: on the one hand, it is 
better for their health to keep them – while not 
suffering from severe deterioration – in their own 
environment and, on the other hand, it is much cheaper 

for health services and care systems. However, 
nowadays there is still a quality gap between the 
service provided at medical facilities and the service 
provided at patients' home. 

Technology is a powerful tool that can contribute 
to address this problem by enabling medical staff to 
monitor and attend patients while they are at home. 
Ambient Assisted Living (AAL) [5] can reduce the 
personnel costs in health assistance. AAL consists of 
monitoring the preferred living environment of the 
patients with intelligent devices that can track their 
status and improve their life quality, as well as obtain 
information about their behavior, which in the future 
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can lead the doctors to conclusions that with hospital 
visits could not identify. Some incipient illnesses show 
symptoms occasionally in time, so a short medical 
visit is not able to identify preliminary signals. 
Acoustic Ambient Assisted Living, by means of 
acoustic event detection, and focusing on behavioral 
monitoring can help early diagnoses of severe 
diseases.  

To address this hot research topic, several 
engineering projects have been proposed to discuss the 
feasibility of deploying smart robots at the home of 
elderly not only to cover routine tasks, but also to 
remind them to have their medication or interact with 
them through serious games [6]. One of the main 
challenges that these proposals open is the huge 
amount of data that these robots have to collect in 
order to provide a meaningful response for patients. 
Typically, these robots have limited computing 
capabilities and, thus, are able to process data from a 
reduced number of sensors.  

This paper explains the proof of concept of a 
software and a chosen hardware platform designed to 
recognize a set of the predefined events from the 
environmental sound in a house [7]. This information 
can be later used to infer the in-home context and 
detect some situations of risk. To process data from 
several sources (e.g., microphones) and conduct the 
computations associated to audio event identification 
in parallel, the system implements a recognition 
scheme using a NVIDIA Jetson TK1 [8] Graphical 
Processing Unit (GPU). This platform can reach to 
several decisions depending on the situation and 
home, and the final conclusion can be activating some 
kind of alarm or just track the patient’s behaviour for 
health purposes. Overall, the purpose of this work is to 
present an approach to the implementation of an 
acoustic event recognition platform based on a GPU 
and the obtained results when classifying a limited 
corpus of events.  

The reminder of this paper is organized as follows. 
Section 2 reviews the related work on environmental 
sound recognition; it is specially focused on ambient 
assisted living environments. Section 3 elaborates on 
the technical details of the proposed algorithm to solve 
the problem, which corresponds to a basic 
implementation. Section 4 gives details about the 
selected platform and its convenient features to 
process audio data. Section 5 describes the algorithm 
used to classify the events and shows the obtained 
results when running on the chosen platform. Finally, 
Section 6 details the conclusions and future work of 
this project. 

 
 

2. Related Work 
 
There are several approaches in the literature that 

aim to extract features from the sound. From these 
features, it is possible to create a corpus of a close 
universe of different sounds and train a machine 
learning system to classify the source of the sound. 
Therefore, environmental sound recognition has 

emerged as a hot research topic today, which has led 
to some interesting applications [9]; from animal 
recognition [10] to surveillance [surveillance], 
including ambient assisted living use cases.  

Interest in detecting in-home sounds started from 
the beginning of this technology in 2005. Chen, et al. 
[11] were monitoring the bathroom activity using only 
the sound information. Afterwards, with research not 
detailed in this work, robust environment sound 
recognition motors were designed in 2008 [12]. One 
of the most challenging problems to be solved in this 
field, is to take into account the varying acoustic 
background, the noise sources. In this regard, the 
project SonicSentinel [13] uses noise-robust model-
based algorithms to evaluate the noise sources. 
Evolving this technology, Valero, et al. [14] 
succeeded on classifying audio scenes. Additionally, 
several works can be found about audio analysis in a 
smart home to help doctors on the early diagnose of 
dementia diseases for the elder [15]. Also, it is worth 
mentioning that conditional random fields have been 
used to build an event detection framework in a real-
world environment of eight households [16], which 
led the system to be sometimes unreliable.  

From the applications point of view, one of the 
most popular use-cases nowadays of audio event 
recognition is its use in the smart home [17], especially 
when conceiving systems to meet the needs of the 
elderly people. The constraints around the design of a 
smart home for health care [5] based on audio event 
classification are as follows: 

1) Degree of dependency of the disabled person,  
2) Quality of life to be improved by means of 

automatizing the processes,  
3) Distress situations recognition and the 

activation of the preassigned protocols, including 
reducing the false alarm situations [18].  

Even though there are several solutions in the 
literature [19] that consider these three constraints, the 
primary goal of the platform presented in this paper is 
to accurately address the third one. Additionally, our 
proposal aims to meet the needs of ambient assisted 
living, which are the following [20]: 

1) Increasing the comfort of living at home,  
2) Increasing the safety, through detecting 

dangerous events,  
3) Supporting health care by professionals, 

through detecting emergencies and monitoring vital 
signs. 

 
 

3. System Description 
 
When designing and deploying an Acoustic 

Wireless Sensor Network, the main parameter to be 
considered is power consumption. Generally, the 
power consumption of a node in a wireless network 
strongly depends on its assigned duties (e.g., data 
acquisition, data storage, data computing, data 
forwarding). Therefore, system architects have to 
carefully select which devices conduct every task. In 
this regard, with the growth of the number of mobile 
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user equipment (UE) devices and the advent of the 
Internet of Things, latest advances on the distributed 
systems field have proposed several approaches and 
reference models to offload the duties of each device 
by means of the Mobile Edge Computing (MEC) 
paradigm [21]. Indeed, MEC consists of deferring the 
power consuming activities to specialized and 
dedicated devices close to the wireless sensor network. 
Therefore, it can be best seen as a particular case of 
cloud computing where the storage and computation 
infrastructure are physically close to where data are 
generated, which brings appealing advantages such as 
data security, reduced communication delay, and 
energy efficiency [21]. This section enumerates the 
latest contributions in the MEC field, justifies the 
selected alternative for the Ambient Assisted Living 
use case proposed in this paper, and details its 
deployment. 

So far, when designing a MEC architecture four 
main approaches have emerged whose details are 
further elaborated in [21]. These alternatives are 
summarized in what follows: 

1. Small Cell Cloud (SCC): It consists of extending 
the capabilities of the UE by include a Small Cell 
Manager committed to forward the UE requests to a 
storage and computation cluster. 

2. Mobile Micro Clouds (MMC): It consists of 
deploying a network of device managers each one 
committed to forward the UE requests from a small set 
of UEs. These device managers are interconnected 
between themselves and also connected to a storage 
and computation cluster. This approach minimized the 
load of the device manager, which makes it suitable 
for scenarios with a high number of UE devices. 

3. Fast Moving Personal Cloud (FMPC): It 
consists of using Software Defined Networks and 
Network Function Virtualization to build a dynamic 
and adaptable set of forwarding devices to link the UE 
with the storage and computation cluster. Therefore, it 
uses a SDN enabled transport network typically 
residing in a cloud. This is a feasible approach for 
those application that change their traffic patterns 
frequently and are not very sensible to delay. 

4. Follow Me Cloud (FMC): It consists of 
embedding the UE devices inside the cloud storage 
and computing cluster. In this way, the perception that 
the cloud following the roaming UE is given.  

For the sake of our Ambient Assisted Living 
proposal in which an acoustic wireless sensor network 
based on microphones (i.e., UE) is deployed inside a 
home environment, the aforementioned four 
alternatives have been considered. FMPC and FMC 
approaches are designed for environments where UE 
are moving, which is not the case of AAL where the 
microphones are permanently installed in the  
same place.  

MMC might be a feasible option if the home 
environment was big enough to deploy a high number 
of microphones (i.e., hundreds). Considering that there 
will be two microphones per room, the overall number 
of UE per home environment is still below the 
threshold imposed by MMC.  

Therefore, we have selected the SCC option that is 
also convenient taking into account the low latency 
(i.e., AAL is committed to operate in real-time) and 
budget constraints requirements of the AAL paradigm. 
As a result, the proposed system diagram to monitor 
audio events in Ambient Assisted Living 
environments is shown in Fig. 1.  

 
 

 
 

Fig. 1. Block diagram of the network elements 
of this system. 

 
 

As far as the proof of concept herein presented is 
concerned, the system relies on a network of 
microphones consistently deployed around the house 
(see Fig. 2). The microphones are installed in such a 
way that they provide the maximum entropy of a given 
event (i.e., it is not necessary to analyze together 
different audio sources). 

 
 

 
 

Fig. 2. Example of the proposed audio sensors network 
deployed in a house. 

 
 
The microphones used in this application to sense 

the environmental sound should present a good trade-
off between the frequency response and cost, for this 
reason tests are being conducted with the electret 
condenser microphone CMA-4544PF-W [22] of the 
manufacturer CUI inc. with a very low price. 
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In this way, each microphone transmits sounds to 
this device that acts as a concentrator – the core 
element of our proposal. As a matter of fact,  
this concentrator 

1) Collects all the audio sounds of the house,  
2) Processes them to extract their features,  
3) Infers the source of the audio event,  
4) Sends this information to a remote server that 

monitors the needs of the people living in the house. 
The concentrator platform used in this work is the 

NVIDIA Jetson TK1 developer kit. This platform is 
based on the Tegra K1 SoC, which is composed of  

1) NVIDIA Kepler GPU with 192  
CUDA cores,  

2)  Quad core ARM cortex-A15 CPU.  
The Tegra family is the proposal of the NVIDIA 

manufacturer for mobile processors in which you need 
GPU-accelerated performance with low  
power consumption. 

This GPU is able to process up to 192 threads in 
parallel. Kepler architecture offers an improvement of 
performance up to 3 times more than the previous 
version, Fermi, [23]. This level of concurrency allows 
us to process audio events of several sources in real-
time. 

Therefore, to exploit the parallel capabilities of the 
concentrator, it opens a thread to process each audio 
source and infer the event that generated  
every sound.  

 
 

4. Machine Learning 
 
Endowing machines with the ability of hearing the 

acoustic environment to detect and recognize an event 
as humans do, is known as machine hearing. The 
algorithm used in this work is based on 

1) Feature extraction using mel-frequency cepstral 
coefficients (MFCC) [24]; 

2) Pattern recognition using the k-Nearest 
Neighbors classifier (KNN) [25], see Fig. 3. 

 
 

 
 

Fig. 3. Block diagram of a Hearing Machine algorithm. 
 
 

4.1. Feature Extraction 
 
Feature extraction aims to obtain a representation 

of audio events in which the dimensionality of this 
parametrization is much lower than the original 
samples [26]. This parametrization will be the input 
data of the classifier. The parametrization used in this 
work, MFCC [24], uses an approach based on 
perceptual-based frequency using the Mel scale [27] 
as shown in Fig. 4.  

The incoming audio stream is divided into blocks 
of 30 ms with a sliding window. These frames are 
transformed into frequency domain using the DFT to 
measure the power of different bands of the spectrum. 
The power measures are conducted with a bank of 48 
filters using the Mel scale (see Fig. 5).  

 
 

 
 

Fig. 4. Block diagram of the feature extraction based 
on the Mel coefficients used in this work. 

 
 

 
 

Fig. 5. Example of a Mel scale with a filter-bank of 20. 
 
 

The MFCC coefficients are obtained from the 
Discrete Cosine Transform (DCT) of the logarithm of 
these 48 values. The higher order coefficients of the 
DCT are discarded to obtain a reduced dimensionality 
characterization of the sound event, this compression 
can be done because the main information is in the low 
frequency components of the signal's spectral envelop. 
The final number of MFCC coefficients is 13. 

Window lengths between 10 and 50 ms are usually 
used to detect transient audio events [28]. A Hamming 
windowing is also applied to this frame of samples to 
improve the frequency resolution in the Discrete 
Fourier Transform (DFT) – as we can see comparing 
the differences between square and Hamming 
windows in Fig. 6. This sliding block has an overlap 
of 50 % of samples to compensate the power reduction 
of the data blocks due to the laterals of the Hamming 
window, see Fig. 6. 

The Mel scale is a perceptual scale which aims to 
emulate the behaviour of the human hearing. As we 
can observe in Fig. 5, Mel scale is a bank of triangular 
filters. 
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(a) 
 

 
(b) 
 

 
(c) 
 

 
(d) 
 

Fig. 6. Comparison between a squared and Hamming 
windows in time and frequency domain: (a) is a squared 

window, (b) is the spectrum of the squared window,  
(c) is a Hamming window and (d) is the spectrum 

of the Hamming window. 

4.2. Automatic Audio Classification 
 
Machine learning algorithms are widely used in the 

literature of speech technologies to automatically 
classify audio samples. In fact, most of the audio 
recognition systems settle the use of the MFCC 
coefficients as baseline in terms of feature extraction 
[26]. Then, when the signal is processed and the 
features are already extracted, a k-Nearest Neighbors 
(kNN) [25] system can be run [29]. 

Hence, we have followed this approach and trained 
a kNN classifier as follows. We have built a training 
data set composed by 2850 audio samples belonging 
to 14 in-home events lasting a total number of 20 
hours. We have split every sample in several sub 
samples as detailed in the previous section, and for 
every sub sample we have computed the MFCC 
coefficients. This results in a vector of 13 components 
(each one corresponding to its associated MFCC) for 
every sound sub sample. As a result, a sound sample 
is characterized with a set of 13-component vectors. 

For the sake of this paper we have implemented 
two classification strategies: raw-kNN and SVM.  

The raw-kNN attempts to obtain a lower bound of 
up to what extent it is feasible to classify the training 
data set. In this regard, a simple 13-dimensions k-NN 
has been built and a grid search to come out with the 
best k parameter has been run. Actually, this 
classification strategy can be best seen as a worst case 
scenario in which the entropy provided by previous 
and subsequent subsamples is deliberately neglected. 
Thus, in order to classify a given subsample we only 
consider the closest k samples to it. As far as the 
computation cost is concerned, it is worth mentioning 
that the kNN has a linear cost (i.e., the input subsample 
has to be compared against all the vectors of the 
dataset. However, this overhead has been greatly 
alleviated by implementing a map-reduce inspired 
strategy to compare different subsets of the dataset in 
parallel. Specifically, we have assigned a thread to a 
segment of the dataset that conforms the kNN and, 
next, each thread shares its k nearest neighbors. Then, 
the output of a group of threads is collected by another 
thread in charge of selecting again the k nearest 
neighbors. This process is done recursively until the 
wining k neighbors have survived the whole 
recursively map and reduce process. 

The second classification strategy has been 
designed to improve the results of the kNN classifier 
by considering the information of the subsamples 
belonging to the same sample. As the number of 
vectors that characterize a given sound depends on the 
length of the training sound, there is an inherent class 
imbalance in the formulation of this problem, which 
limits the classifier accuracy (i.e., shorter sounds of the 
same sound type would probably be misclassified). 
Therefore, to address this issue, we have built a bag of 
words with all the vectors belonging to the same 
sample using the k-means algorithm [30]. The 
resulting vector has a fixed length of K components. 
This gives an idea of how many portions of the 
training sound set belong to each centroid of the k-
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means, which at the same time removes the temporal 
dimension of the sound event. Next, we normalize all 
these resulting vectors to make the suitable for a fair 
comparison. With this fixed size set of normalized 
vectors, we finally train a Support Vector Machine 
(SVM) that is running on the concentrator platform 
and uses a one-against-all strategy to deal with this 
multiclass problem. That is, a SVM has been built for 
every class in which the class of interest has been 
labelled as positive and all other classes as negative. 
Then the output of each SVM will be considered as a 
confidence factor. When this confidence factor is 
above a heuristic threshold, the output of the SVM will 
be considered as positive. To come out with this 
heuristic threshold we have held out a 10 % of the 
dataset and conducted a 4-fold cross-validated grid 
search. Analogously, we have found the best offset 
parameter for each SVM using the same strategy. 

Finally, when our system is in exploitation mode, 
the concentrator platform extracts the audio sub 
samples and builds the fixed size vector accordingly. 
Then, this vector is delivered to all the SVMs that had 
been previously tested to predict the event. In order to 
obtain a positive outcome, a single SVM has to 
provide an output above the aforementioned threshold. 
If more than one SVM provides an output above the 
threshold, no class is assigned to  
that sample.  

 

5. Results 
 
With the dataset and the techniques described in 

the previous section we have conducted our 
experimentation to detect the following events: 
someone falling down, slice, screaming, rain, printer, 
people talking, frying food, filling water, door 
knocking, dog bark, car horn, glass breaking, baby 
crying, water boiling. We have used 60 % of instances 
to train the classifiers and the other 40 % to test them. 
In order to obtain statistically significant results we 
have run the classification in 1000 runs, performed a 
10-fold cross validation, and averaged the output. 

The obtained confusion matrix for the kNN 
classifier is shown in Table 1 with an overall accuracy 
of 50.24 %. In this confusion matrix we can see how 
often the kNN misclassifies a given class and, thus, 
assigns a wrong event to an audio sample. It is shown 
that in general, the best results for each sample are 
obtained when testing the sound event against itself. 
Also, it depicts the skill of the classifier on 
distinguishing one audio event from the others. The 
optimal value of this confusion matrix should be an 
Identity Matrix with the value 100 on its diagonal. 

We can see that although some events are 
identified with a reasonable degree of accuracy (e.g., 
screaming), some others (e.g., dog barking) cannot be 
classified properly. 

 
 
 

Table 1. Confusion Matrix of the kNN classifier. Events are ordered from left to right as follows: falling down, slice, 
screaming, rain, printer, people talking, frying food, filling water, door knocking, dog bark, car horn, glass breaking, baby 

crying, water boiling. 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 58.54 0.00 2.44 0.00 4.88 2.44 7.32 4.88 1.22 2.44 0.00 10.98 3.66 1.22 

1 0.00 60.26 0.00 3.85 0.00 11.54 3.85 0.00 6.41 2.56 7.69 0.00 1.28 2.56 

2 0.00 0.00 89.33 0.00 0.00 0.00 0.00 3.33 0.00 4.00 1.33 0.00 0.67 1.33 

3 0.00 1.54 0.00 76.92 0.77 2.31 3.08 2.31 0.00 4.62 6.92 0.00 0.00 1.54 

4 9.52 1.19 0.00 2.38 55.95 4.76 3.57 0.00 2.38 7.14 0.00 8.33 1.19 3.57 

5 2.91 8.74 1.94 4.85 3.88 18.45 1.94 0.00 6.80 18.45 7.77 1.94 3.88 18.45 

6 7.89 6.58 1.32 3.95 3.95 3.95 15.79 15.79 1.32 15.79 1.32 2.63 13.16 6.58 

7 1.08 0.00 3.23 2.15 0.00 0.00 5.38 60.22 0.00 9.68 10.75 0.00 4.30 3.23 

8 1.41 4.23 0.00 0.00 1.41 9.86 0.00 0.00 76.06 1.41 0.00 5.63 0.00 0.00 

9 2.65 0.88 4.42 7.96 1.77 10.62 6.19 4.42 3.54 14.16 25.66 3.54 3.54 10.62 

10 0.00 5.33 0.00 10.67 0.00 8.00 0.00 13.33 0.00 32.00 21.33 0.00 1.33 8.00 

11 8.70 1.74 0.87 0.00 6.96 1.74 1.74 0.00 3.48 5.22 0.87 68.70 0.00 0.00 

12 3.08 0.00 10.77 0.00 3.08 4.62 10.77 9.23 0.00 6.15 1.54 1.54 30.77 18.46 

13 1.63 3.25 1.63 1.63 0.81 11.38 1.63 4.88 0.00 7.32 4.07 0.00 4.88 56.91 
 

 

For instance, on row 6 in Table 1, door knocking, 
people talking and frying food have similar MFCC 
vector patterns and, thus, the SVM features a low 
accuracy in these specific situations Such a poor 
performance can be explained because (1) a single 

subsample is only considered to decide to which class 
it belongs to (i.e., no information from previous nor 
subsequent subsamples is considered and (2) the 
MFCCs associated to some subsamples of these events 
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are pretty similar to other subsamples from other 
events. 

On the contrary, Table 2 shows the confusion 
matrix obtained when using the bag of words approach 
and the aforementioned SVM classifier. We can see 
that this classification strategy reaches an overall 
accuracy of 72.88 %, which is much better than the 
kNN. Also, we can see that with this strategy, the 
classification accuracy is more consistent for all the 
events (i.e., the worst value 56.23 %). However, 
despite considering information from previous and 
subsequent subsamples thanks to the bag of words 
approach, this approach still gets confused on some 
sound events. To address this concern, we plan to (1) 
complement the training vector set with other features 
in addition to MFCCs, and (2) use a more 
sophisticated classifier such as a deep net. 

 
 

6. Conclusions 
 

Preliminary results of our paper encourage us to 
keep on working on the analysis of the events 

happening in the house. We will work with the feature 
extraction improvement with other methods, as well as 
we will test more machine learning algorithms to 
increase the accuracy of the system with just one 
acoustic measurement. 

Next steps after this proof of concept using the 
Jetson TK1 are the expansion of the platform, by 
means of using a wider sensor network, where several 
autonomous acoustic sensors sending data to the GPU 
to be processed. In this stage, an important part of the 
work will be focused on the optimization of the 
acoustic event detection algorithm to take advantage 
of the parallelization of the GPU unit. 
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Table 2. Confusion Matrix of the SVM classifier. Events are ordered from left to right as follows: falling down, slice, 
screaming, rain, printer, people talking, frying food, filling water, door knocking, dog bark, car horn, glass breaking, baby 

crying, water boiling. 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 89.10 0.11 1.78 0.35 0.00 0.12 0.12 1.60 2.39 0.00 1.26 0.80 1.48 0.89 

1 1.53 85.48 2.18 0.17 0.79 2.71 0.00 0.41 0.00 1.31 3.05 0.47 1.35 0.55 

2 2.16 5.18 63.22 0.04 2.89 0.00 5.21 4.83 3.37 1.16 4.98 5.65 0.00 1.30 

3 0.27 1.29 0.00 87.14 0.59 2.15 0.00 1.75 0.83 3.36 0.20 0.81 0.62 0.98 

4 0.03 0.87 16.37 0.75 69.60 0.00 0.79 0.87 3.23 0.00 0.06 2.02 1.45 3.97 

5 0.00 1.44 1.67 1.72 4.44 85.62 0.00 1.18 0.33 0.01 0.92 1.69 0.00 0.99 

6 3.17 0.81 1.32 1.08 2.92 3.79 71.05 6.28 3.55 5.04 0.00 0.14 0.00 0.85 

7 0.00 0.00 2.10 0.00 0.14 0.86 3.80 89.46 0.20 0.71 0.98 0.38 0.04 1.33 

8 0.84 1.91 1.75 0.00 0.14 6.71 2.05 3.31 65.36 15.61 0.00 0.06 1.34 0.92 

9 1.08 3.82 4.56 12.18 0.00 0.00 5.45 4.52 3.67 56.78 1.34 3.67 2.93 0.00 

10 5.27 5.36 5.70 2.20 6.09 0.80 0.00 1.75 4.15 5.19 56.23 1.63 2.98 2.65 

11 0.00 12.15 1.53 0.00 0.24 0.13 2.09 0.22 2.20 0.28 1.42 78.14 0.89 0.70 

12 10.13 0.71 1.19 2.21 1.97 1.55 0.43 1.09 1.04 11.57 0.00 1.33 66.78 0.00 

13 0.00 0.92 7.83 0.00 3.15 5.46 4.08 5.12 4.93 0.00 6.90 2.15 3.10 56.36 
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