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Abstract: Several studies have investigated the effects of fat intake before exercise on subsequent
substrate oxidation and exercise performance. While some studies have reported that unsaturated
fatty acid supplementation slightly increases fat oxidation, the changes have not been reflected in
the maximum oxygen uptake or in other performance and physiological parameters. We selected
almonds as a fatty acid (FA) source for acute supplementation and investigated their effect on
non-esterified fatty acid (NEFA) values and exercise performance. Five physically active male subjects
(age 32.9 ± 12.7 years, height 178.5 ± 3.3 cm, and weight 81.3 ± 9.7 kg) were randomly assigned to
take an almond or placebo supplement 2 h before participating in two cycling resistance training
sessions separated by an interval of 7–10 days. Their performance was evaluated with a maximal
incremental test until exhaustion. Blood samples collected before, during, and after testing were
biochemically analysed. The results indicated a NEFA value average increase of 0.09 mg·dL−1 (95% CI:
0.05–0.14; p < 0.001) after active supplement intake and enhanced performance (5389 ± 1795 W
vs. placebo 4470 ± 2053 W, p = 0.043) after almond supplementation compared to the placebo.
The almond supplementation did not cause gastrointestinal disturbances. Our study suggests that
acute almond supplementation 2 h before exercise can improve performance in endurance exercise in
trained subjects.

Keywords: exercise; performance; almonds; supplementation; non-esterified fatty acids; ergogenic
aids; sports nutrition

1. Introduction

In endurance sports, the pattern of energy substrate use changes over time, even when the exercise
intensity remains constant. The longer the time spent on exercise, the greater the energy substrate
contribution of fat [1,2]. In endurance exercise, the hormone-dependent release and oxidation of
plasma fatty acids (FAs) increase in parallel to the gradual exhaustion of muscle glycogen reserves.
This increased oxidation occurs in response to increased levels of circulating catecholamine (adrenaline
and noradrenaline) and decreased levels of circulating insulin. Catecholamines and insulin play an
important role in stimulating and inhibiting lipolytic activity, respectively [3,4].

Trained individuals make greater use of FAs as an energy source and perform better in endurance
exercise due to their ability to increase glycogen stores and use them sparingly in submaximal
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efforts [5–8]. For this reason, acute FA supplementation has the effect of storing muscle glycogen
during prolonged exercise because the oxidation rate of non-esterified fatty acids (NEFAs) partly
depends on their blood plasma concentrations [4,8,9].

Previous studies [10–18], exploring the effects of acute FA supplementation through high fat
intake before exercise, have not demonstrated improved performance. They have, in fact, shown
the opposite, with intake causing gastrointestinal problems resulting from delayed gastric emptying
induced by long-chain triglycerides (TGs). Those studies have shown that, during endurance exercises,
while plasma NEFA availability increases, the pattern of substrate oxidation remains unchanged.

Almonds (Prunus dulcis) are highly nutritional, mainly due to their high lipid content (25–66 g
per 100 g−1 (fresh weight)), which also makes them highly calorific (Table 1). They are very rich in
unsaturated FAs, especially oleic acid (monounsaturated) and linoleic acid (polyunsaturated), which
account for around 90% of their total lipid content, although proportions vary widely depending on
the almond variety. The amounts of saturated FAs they contain, such as myristic, palmitic, and stearic
acids, are low (<10%), while the concentrations of carbohydrate, fibre, and protein per 100 g range
between 1.8 and 7.4 g, 11 and 14 g, and 14 and 26 g, respectively [19].

Table 1. Specific nutritional information for a “Marcona almond” (data from Survey (FNDDS),
2019) [20].

Component Amount Unit

Water 4.41 g
Energy 579 kcal
Protein 21.15 g

Total lipid (fat) 49.93 g
Fatty acids, total saturated 3.802 g

12:0 0 g
14:0 0.003 g
16:0 3.083 g
18:0 0.704 g

Fatty acids, total monounsaturated 31.551 g
16:1 0.239 g
18:1 31.294 g
20:1 0.005 g

Fatty acids, total polyunsaturated 12.329 g
18:2 12.324 g
18:3 0.003 g

Carbohydrate, by difference 21.55 g
Fibre, total dietary 12.5 g

Sugars, total including NLEA 4.35 g

Almonds are a good source of α-tocopherol, riboflavin, magnesium, manganese, copper,
and phosphorus. They are also rich in arginine, a substrate necessary for nitric oxide [21–23].
The phenolic and polyphenolic compounds in almonds include mostly flavonoids, especially
isorhamnetin-3-O-rutinoside and catechin [24,25] (Table 2). This nutrient profile has been demonstrated
to be important for humans, as the consumption of almonds is associated with improved oxidative
stress biomarkers [26,27] and reduced inflammation [28,29] and is inversely related to cardiovascular
diseases, diabetes, and certain cancers [26,30,31].



Nutrients 2020, 12, 635 3 of 13

Table 2. Polyphenol composition of the almond (data from Bolling, 2017) [24].

Polyphenol Class Mean (range 25–75% percentile) (mg/100 g)

Proanthocyanidins (dimers and larger) 162 (67.1–257)
Hydrolysable tannins 82.1 (72.9–91.5)

Flavonoids, non-isoflavones 61.2 (13.0–93.8)
Phenolic acids and aldehydes 5.5 (5.16–12.2)

Minor phenolic constituents (isoflavones, stilbenes, lignans) 0.7 (0.5–0.9)

Sum of classes 312 (161–450)

Intense and prolonged physical effort increases reactive oxygen species (ROS) production due to,
among other reasons, improved mitochondrial respiration chain oxidation flows; ROS are produced by
an electron transfer that requires a high energy input with a very short lifetime (from milliseconds to
nanoseconds) [32]. Repeated and programmed exercise improves the ability to defend against ROS.
However, ROS overproduction during exercise can overcome antioxidant defence capabilities, causing
imbalances in the immune and endocrine systems, inducing fatigue, and impairing performance [33–35].
As almonds are a good source of unsaturated FAs, antioxidants, and certain micronutrients, they
can help maintain or improve exercise performance by modulating energy use and strengthening
antioxidant defences. For example, quercetin [36–39] may help augment the training effectiveness on
exercise performance by up-regulating mitochondrial biogenesis and oxygen sparing capacity and
facilitating oxygen delivery to skeletal muscle, and arginine [40–45] may decrease ammonia liberation.
Nonetheless, the impact of antioxidants and physiological markers on physical performance is not
completely known [46].

Based on the assumption that unsaturated FA-rich diets and endurance exercise both have
positive (if different) effects on metabolic and cardiovascular health, and given that they both increase
the oxidative capacity of fats, their combination is likely to be synergistic [47]. While studies have
demonstrated that unsaturated FA supplementation slightly increases fat oxidation after sports training
compared to control supplementation, this change has not been reported to be reflected in maximum
oxygen uptake (VO2max) or other performance and physiological parameters [47–50].

In our experimental study, we evaluated the effect of acute FA supplementation (almonds),
containing unsaturated FA and antioxidant micronutrients, on prolonged resistance training tests in
laboratory conditions.

2. Materials and Methods

2.1. Participants

The participants volunteering in the study were 5 physically active men (age 32.9 ± 12.7 years,
height 178.5 ± 3.3 cm, and body mass 81.3 ± 9.7 kg; BMI 24.5 ± 2.2 kg·m−2) who perform recreational
sports training 3 to 5 days a week. The exclusion criteria were: (1) current or recent injury, (2) intake
of fish oil or other FA supplements, and (3) any other condition that could prevent compliance with
a maximum exercise test protocol. The study was approved by the institutional ethics committee
(Institutional Review Board IRB00003099) and was performed in accordance with the Declaration of
Helsinki. Before participating, the subjects read a description of the study and its risks, and signed an
informed consent.

2.2. Study Design

In this randomised controlled double-blind crossover study, each subject performed the same test
procedure on 2 different days (with an interval of 7–10 days) after taking either an active supplement
or a placebo supplement. The order of supplementation was randomised using a random number
generator (i.e., day 1 = active/day 2 = placebo or day 1 = placebo/day 2 = active). The subjects
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performed all the tests in a similar postprandial state (3 h after a light meal) and were instructed not to
perform intense physical activity in the 72 h before testing.

2.2.1. Supplements

The ingredients of the active supplement were 60 g of ground almonds mixed with 60 mL of milk
(to obtain a paste) and 6 g of fructose (as a mild sweetener). The placebo supplement contained the
same ingredients (60 mL of milk and 6 g of fructose), but with 100 g of white bread instead of almonds
(Table 3). The supplements were prepared in the same laboratory where testing was conducted.

Table 3. Ingredients and nutritional profile of the supplements.

Active Placebo

Ingredients
60 g almonds 100 g white bread
60 mL milk 60 mL milk
6 g fructose 6 g fructose

Energy (kcal) 405 315
Fats (g) 33.5 1.9

Carbohydrates (g) 12.5 63.2
Proteins (g) 13.5 11.2

As indicated in Table 3, the active and placebo supplements differed in calorific content by just
under 100 kcal, and relatively little in terms of protein levels. The fat content was considerably higher
in the active supplement, while the carbohydrate content was lower.

2.2.2. Protocol

To identify the individual workload that corresponded to 50% of the VO2max to be used for
submaximal testing, each participant performed a maximal incremental test until exhaustion, with
workload increments of 20 W per minute. The test was performed one week before the baseline test
(stage 0).

To facilitate multiple blood extractions during the experiments, a venous catheter was inserted
into a superficial vein in the forearm of each subject.

The experimental stages (Figure 1) were identical for day 1 and day 2 (active or placebo with the
randomised order), as follows:

• Stage 0. Baseline

Subjects took the supplement (active or placebo) and blood was sampled (baseline; minute 0).

• Stage 1. Pre-testing

Blood was sampled at minutes 30, 60, 90, and 120 (every half hour) after supplement intake.
The subjects remained inactive during this 2 h period.

• Stage 2. Submaximal test

Subjects performed a 1 h submaximal test at 50% loading (as calculated in the pre-experimental
maximal incremental test) and blood was sampled at minutes 15, 30, 45, and 60 (every 15 min).

• Stage 3. Maximal test

With no rest period between Stage 2 and Stage 3, the subjects performed a maximal incremental
test involving 6 min steps with power increments of 25 W (starting from individual submaximal
workload) followed by 1 min recovery periods until exhaustion. Blood was sampled 5 times in the first
part, i.e., at minutes 7, 14, 21, 28, and 35.
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• Stage 4. Recovery

After maximal test completion to exhaustion, blood was sampled at minutes 5, 10, and 20
during recovery.
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Figure 1. Protocol stages.

The peripheral venous blood samples were biochemically analysed to determine glucose, lactate,
uric acid, urea, cholesterol, TG, NEFA, high-density lipoprotein (HDL), glutamate-oxaloacetate
transaminase (GOT), and glutamate-pyruvate transaminase (GPT) concentrations.

2.3. Diet

Subjects were instructed not to make changes to their diet during the study period (to avoid
changes that might confound the results) and to eat the same light breakfast on each of the test days.

2.4. Analytical Procedures

2.4.1. Metabolic Analysis

Subjects performed the tests on pre-calibrated cycle ergometers (Excalibur, Lode, Groningen,
The Netherlands). To evaluate differences in the total work performed between the two
supplementations, we used the power of each step and the time spent in each workload, assessing the
total capacity of the power developed by each subject.

Absolute VO2peak (L·min−1), relative VO2peak (mL·kg−1
·min−1), minute ventilation (VE, L·min−1),

tidal volume (VT, L), and the respiratory exchange ratio (RER) were measured breath-by-breath using
a two-way mask (Hans Rudolph, KS, USA) and an automatic gas analysis system (Metasys TR-plus,
Brainware SA, La Valette, France) equipped with a pneumotachometer. The gas and volume calibrations
were performed before each test according to the manufacturer’s guidelines.

During the tests, a 12-lead electrocardiogram was performed and the heart rates (HR) of the
subjects were continuously monitored (CardioScan v.4.0, DM Software, Stateline, NV, USA).

All tests were conducted during the morning at a room temperature of 22 ◦C to 24 ◦C and a
relative humidity of between 55% and 65%.
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2.4.2. Biochemical Analysis

Glucose, uric acid, urea, cholesterol, TG, HDL, GOT, and GPT concentrations were determined
using dry chemistry analysis, performed with the Reflotron® Plus system (Roche Diagnostics, SL,
Sant Cugat del Vallès, Spain). Blood lactate was measured using a photocolorimetry system (Vario
Photometer, Diaglobal GmbH, Berlin, Germany). NEFAs were analysed using a gas chromatograph
(Hewlett Packard, HP6890, USA) equipped with a flame ionization detector; peaks were identified
based on the retention time in relation to FAME standards (Supelco, Bellefonte, PA, USA), and peak
areas were automatically computed.

2.5. Statistical Analysis

Descriptive statistics were calculated for all the variables. To test the normality of the variables,
the Shapiro–Wilk test was used. An analysis of variance (ANOVA) for repeated measures was
performed to evaluate differences between two different supplements in the blood samples. Student’s
t-test for paired samples was used to explore differences between the means for the variables measured
on test days 1 and 2. Statistical significance was set to p < 0.05. Analyses were performed using SPSS
19.0 (IBM SPSS Statistics, Chicago, IL, USA).

3. Results

3.1. Submaximal Test

The loadings for the submaximal test are shown in Table 4.

Table 4. Submaximal test loadings.

Subject Power (W) rpm

1 75 60
2 125 60
3 125 60
4 125 70
5 125 70

Abbreviations: rpm = revolutions per minute.

The metabolic results for the submaximal test at 50% loading are summarised in Table 5.
Following active (almond) supplementation, VCO2, RER, and HR values increased significantly
(p < 0.05) compared to the placebo, but not VO2 values.

Table 5. Submaximal test metabolic results.

Active Placebo

Variable Mean SD Mean SD p

VO2 (L·min−1) 2.27 0.25 2.24 0.41 0.085
VCO2 (L·min−1) 2.12 0.26 2.03 0.35 0.050

RER 0.93 0.00 0.91 0.06 0.000
HR (bpm) 123.00 16.42 120.52 12.15 0.010

Results are the mean ± standard deviation (SD). Abbreviations: VO2 = oxygen consumption; VCO2 = carbon dioxide
production; RER = respiratory exchange ratio; HR = heart rate.

3.2. Maximal Test

The performance results for the maximal test (maximum loads) are summarised in Table 6.
An improvement was evident in all five subjects. Performance, overall, improved by 919 ± 705 W
(range: 214–1995 W; t = 2.91, p = 0.043, statistical power = 0.596), reflecting a generalised improvement
of 20.6%.
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Table 6. Maximal test performance.

Active Placebo

Subject
Time in Last

Workload
(min)

Maximum
Power (W)

Total
Work (W)

∆Total
Work (W)

Time in Last
Workload

(min)

Maximum
Power (W)

Total
Work (W)

1 3.6 200 4020 1995 4.5 150 2025
2 6 200 3150 663 4 200 2487
3 6 250 6000 500 4 250 5500
4 3.1 250 6134 214 2.5 250 5920
5 2 275 7642 1,225 4 250 6417

Mean 5389 919 4470

Cardiorespiratory and metabolic data from the maximal tests are summarised in Table 7. Following
active supplementation, significant increases were observed in RER, VE and HR (p < 0.05) compared
to the placebo, but not in VO2, VCO2, VO2kg, or VT.

Table 7. Maximal test metabolic results.

Active Placebo

Variable Mean SD Mean SD p

VO2 (L·min−1) 3.38 0.59 3.44 0.52 0.814
VCO2 (L·min−1) 3.34 0.79 2.88 1.36 0.065

RER 1.00 0.07 0.97 0.08 0.005
VE (L·min−1) 100.80 36.3 89.3 31.50 0.000

VT (L) 2.64 0.48 2.90 0.61 0.063
VO2kg (mL·kg·min−1) 44.44 8.70 45.20 6.90 0.855

HR (bpm) 160.90 24.4 157.5 23.30 0.013

Results are the mean ± standard deviation (SD) in the last workload achieved for each subject. Abbreviations:
VO2 = oxygen consumption; VCO2 = carbon dioxide production; RER = respiratory exchange ratio; VE = ventilation;
VT = tidal volume; HR = heart rate.

3.3. Biochemical Analysis

The biochemical data recorded at the end of the submaximal test are summarised in Table 8,
demonstrating that TG and NEFA values were higher for the active supplement than for the placebo.

Table 8. Biochemical data after the submaximal test.

Active Placebo

Variable Mean SD Mean SD p

Lactate (m mol L−1) 2.75 2.00 2.86 1.49 0.898
TG (m mol L−1) 127.48 46.86 111.19 29.79 0.016

Cholesterol (mg·dL−1) 177.29 51.72 182.71 40.72 0.822
Glucose (mg·dL−1) 89.09 17.97 89.04 16.27 0.995
Uric acid (mg·dL−1) 5.68 0.94 5.91 0.97 0.648

Urea (mg·dL−1) 41.02 5.79 40.71 6.32 0.921
HDL (mg·dL−1) 34.40 8.09 40.38 11.03 0.001
GOT (UI·L−1) 19.23 5.86 33.68 30.69 0.227
GPT (UI·L−1) 13.13 7.82 18.10 6.97 0.216

Results are the mean ± standard deviation (SD). Abbreviations: TG = triglycerides; HDL = high-density lipoprotein;
GOT = glutamate-oxaloacetate-transaminase; GPT = glutamate-pyruvate transaminase.

After active supplementation, the NEFA values remained higher compared to the placebo, with
an average increase of 0.09 mg dL−1 (95% CI: 0.05–0.14; p < 0.001). Figure 2 depicts the changes in the
NEFA values in both cases.
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the mean ± standard deviation (SD). A statistically significant increase in the mean values following
active supplementation was found (0.09 mg· dL−1; p < 0.001). Abbreviations: NEFA = non-esterified
fatty acids.

4. Discussion

We evaluated the impact of acute FA supplementation in the form of almonds on plasma NEFA
values and endurance performance, comparing it to a placebo. Our results indicate that acute almond
supplementation modified the energy substrate availability pattern in plasma. In contrast to the
little increase produced by the placebo supplementation, almond supplementation before exercise
significantly increased plasma NEFA concentrations during the physical test by a mean value of
0.09 mg dL−1 (>30% vs. the placebo).

NEFAs, as an oxidisable fuel for physical exercise, can improve performance. According
to previous studies [14,16,51–53], NEFA availability may save on the use of muscle glycogen
during exercise and, thus, delay fatigue. Those previous studies administered heparin to increase
plasma NEFA levels; however, while this reduces the oxidation of muscle glycogen, it is not an
acceptable pre-competition strategy. Our study demonstrated that NEFA values can be increased using
exclusively nutritional strategies. Other studies using fat supplementation unaccompanied by heparin
administration [10,11,15] have reported increased NEFA values, but no improvement in performance.
By contrast, we found that exercise performance improved by 20.6% following fat supplementation.

An important factor in fat supplementation during exercise is the type of FAs administered. It is
important to bear in mind that fat digestion and absorption is a lengthy process, depending on the
length of the FA chain, with long-chain TGs, for instance, being absorbed more slowly than short-
or medium-chain TGs [54]. Diet almond consumption (>42.5 g) may reduce the risk of CVD by
improving blood lipids and by decreasing body weight and apolipoprotein B, but triglycerides, systolic
blood pressure, apolipoprotein A1, high-sensitivity C-reactive protein, and lipoprotein (a) showed no
difference [55]. In a dose–response study, the results indicated that almond consumption increases
oleic acid and monounsaturated fat content in serum triacylglycerol and non-esterified fatty acids
fractions, which are inversely associated with CHD lipid risk factors and overall estimated 10-year
CHD risk [56]. However, after an acute intake of 60 g of almonds, triglycerides in plasma may be
elevated because they are highly nutritional, mainly due to their high lipid content (25–66 g per 100 g−1

(fresh weight)), and richness in unsaturated FAs, especially oleic acid (monounsaturated) and linoleic
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acid (polyunsaturated). In our data, triglycerides increased 14.7% with almond supplementation with
respect to placebo after submaximal exercise, with similar dietetic and exercise conditions.

Several studies have evaluated the effects of supplements made with healthy foods rich in
monounsaturated FAs, such as almonds, pistachios, and extra-virgin olive oil. In a study by
Nieman et al. [57], performance (measured as exercise time) worsened, possibly due to increases
in plasma levels of compounds such as raffinose, sucrose, or myo-inositol, accompanied by an increase
in leukotoxin (derived from linoleic acid), which may have had a negative impact on mitochondrial
function. In studies by Boss et al. [47], Capó et al. [48,49], and Esquius et al. [50], performance (again
measured as exercise time) was not affected by supplementation. However, Yi et al. [58], in their
evaluation involving 75 g of almonds administered as single pre-exercise supplements over 4 weeks,
reported improved performance (measured as distance travelled). While the amount of almonds
administered in that study (70 g) was similar to the 60 g administered in our study, the administration
protocol differed.

The supplements used in our study were well received by the subjects and did not cause any
gastrointestinal problems. The high fat content of the supplements had no negative influence on
exercise performance in our study, unlike in other studies reporting impaired physical performance
due to fat intake [59]. Digestibility was good and plasma NEFA levels were observed to increase
around 90 min after almond supplementation (Figure 2). The increase in plasma NEFA levels occurred
at an earlier stage in our study than in other studies [60,61].

The calorie difference between the active supplement (405 kcal) and the placebo (315 kcal) was 90
kcal, while the carbohydrate content was lower. The main difference was in the amount of fat. Further
research is warranted to explore differences between different FAs used for acute supplementation in
endurance exercise.

Studies in humans have shown that the consumption of almonds increases circulating levels
of α-tocopherol in a dose-dependent manner [62,63] and reduces oxidative stress biomarker
levels [23,26,27]. The phenolic compounds in almonds have been shown to exert an antioxidant
effect against free radicals [27,64] and to decrease inflammatory markers [28,29]. The phenolic and
polyphenolic compounds in almonds may, therefore, contribute to improving the antioxidant capacity
of athletes (not determined in this study).

No differences were observed for oxygen consumption or CO2 production during the submaximal
effort, which could have been because there were no differences in the energy substrate used. During
the maximal effort, there were also no differences in the maximum oxygen consumption reached,
with more CO2 being produced. This could indicate that the positive effect on performance was due to
the peripheral effect of the polyphenols rather than the energy savings from the extra lipid supplement,
resulting in a reduced perception of fatigue that enabled the physical effort to last longer.

The main limitation of this study was the small number of participants and the fact that our
sample was composed only of men. The complexity of the protocol, however, needed a homogeneous
and trained sample to rule out any training effect. Studies with larger samples would be necessary to
confirm our findings, explore individual differences in responses, and test differences arising from
other factors such as gender. Since oxidative stress and inflammatory biomarkers could not be assessed
in this research, we cannot evaluate the role of phenolic and polyphenolic compounds in almonds in
improving the antioxidant capacity of the athletes. Therefore, further research is warranted analysing
inflammatory and oxidation markers to confirm this hypothesis.

Our results, in summary, suggest that almonds can be included in pre-training or pre-competition
supplements for endurance athletes.

5. Conclusions

The acute supplementation with almonds (60 g), administered 2 h before exercise, increases mean
plasma NEFA values by 30% and improves exercise performance by 20.6%. Our study suggests that
almond supplements could have a positive effect on performance in endurance exercise. Further
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studies are required to confirm the effects on long-term exercises, using it directly in field tests with
larger samples and other population groups (e.g., both sexes).
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Salas-Salvadó, J. Nut consumption and incidence cardiovascular diseases and cardiovascular disease
mortality: A meta-analysis prospective cohort studies. Nutr. Rev. 2019, 77, 691–709. [CrossRef]

31. Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.;
Riboli, E.; Norat, T. Nut consumption and risk cardiovascular disease, total cancer, all-cause and cause-specific
mortality: A systematic review and dose-response meta-analysis prospective studies. BMC Med. 2016, 14,
207. [CrossRef]

32. Finaud, J.; Lac, G.; Filaire, E. Oxidative Stress. Sports Med. 2006, 36, 327–358. [CrossRef]
33. Powers, S.K.; Talbert, E.E.; Adhihetty, P.J. Reactive oxygen and nitrogen species as intracellular signals in

skeletal muscle. J. Physiol. 2011, 589, 2129–2138. [CrossRef] [PubMed]
34. Powers, S.K.; Nelson, W.B.; Hudson, M.B. Exercise-induced oxidative stress in humans: Cause and

consequences. Free Radic. Biol. Med. 2011, 51, 942–950. [CrossRef] [PubMed]
35. Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle

force production. Physiol. Rev. 2008, 88, 1243–1276. [CrossRef] [PubMed]
36. Nieman, D.C.; Williams, A.S.; Shanely, R.A.; Jin, F.; McAnulty, S.R.; Triplett, N.T.; Austin, M.D.; Henson, D.A.

Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Med. Sci. Sports Exerc.
2010, 42, 338–345. [CrossRef]

37. Davis, J.M.; Carlstedt, C.J.; Chen, S.; Carmichael, M.D.; Murphy, E.A. The dietary flavonoid quercetin
increases VO(2max) and endurance capacity. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 56–62. [CrossRef]

38. Kressler, J.; Millard-Stafford, M.; Warren, G.L. Quercetin and Endurance Exercise Capacity. Med. Sci. Sports
Exerc. 2011, 43, 2396–2404. [CrossRef]

39. Davis, J.M.; Murphy, E.A.; Carmichael, M.D.; Davis, B. Quercetin increases brain and muscle mitochondrial
biogenesis and exercise tolerance. Am. J. Physiol. Integr. Comp. Physiol. 2009, 296, 1071–1077. [CrossRef]

40. Bailey, S.J.; Winyard, P.G.; Vanhatalo, A.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Jones, A.M. Acute
L-arginine supplementation reduces the O2 cost moderate-intensity exercise and enhances high-intensity
exercise tolerance. J. Appl. Physiol. 2010, 109, 1394–1403. [CrossRef]

http://dx.doi.org/10.1016/j.jfca.2011.01.007
https://data.nal.usda.gov/dataset/food-and-nutrient-database-dietary-studies-fndds
https://data.nal.usda.gov/dataset/food-and-nutrient-database-dietary-studies-fndds
http://dx.doi.org/10.1093/ajcn/77.6.1379
http://dx.doi.org/10.1016/j.foodchem.2005.07.033
http://dx.doi.org/10.1002/jsfa.2659
http://dx.doi.org/10.1111/1541-4337.12260
http://dx.doi.org/10.1021/jf0603937
http://www.ncbi.nlm.nih.gov/pubmed/16819912
http://dx.doi.org/10.1093/jn/137.12.2717
http://dx.doi.org/10.1093/jn/138.5.908
http://dx.doi.org/10.1016/j.intimp.2011.02.003
http://dx.doi.org/10.1017/S0007114509992480
http://dx.doi.org/10.1093/nutrit/nuz042
http://dx.doi.org/10.1186/s12916-016-0730-3
http://dx.doi.org/10.2165/00007256-200636040-00004
http://dx.doi.org/10.1113/jphysiol.2010.201327
http://www.ncbi.nlm.nih.gov/pubmed/21224240
http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.009
http://www.ncbi.nlm.nih.gov/pubmed/21167935
http://dx.doi.org/10.1152/physrev.00031.2007
http://www.ncbi.nlm.nih.gov/pubmed/18923182
http://dx.doi.org/10.1249/MSS.0b013e3181b18fa3
http://dx.doi.org/10.1123/ijsnem.20.1.56
http://dx.doi.org/10.1249/MSS.0b013e31822495a7
http://dx.doi.org/10.1152/ajpregu.90925.2008
http://dx.doi.org/10.1152/japplphysiol.00503.2010


Nutrients 2020, 12, 635 12 of 13

41. Álvares, T.S.; Meirelles, C.M.; Bhambhani, Y.N.; Paschoalin, V.M.F.; Gomes, P.S.C. L-Arginine as a Potential
Ergogenic Aid in Healthy Subjects. Sports Med. 2011, 41, 233–248. [CrossRef]

42. Campbell, B.I.; La Bounty, P.M.; Roberts, M. The Ergogenic Potential Arginine. J. Int. Soc. Sports Nutr. 2004,
1, 35–38. [CrossRef]

43. Doutreleau, S.; Rouyer, O.; Di Marco, P.; Lonsdorfer, E.; Richard, R.; Piquard, F.; Geny, B. L-arginine
supplementation improves exercise capacity after a heart transplant. Am. J. Clin. Nutr. 2010, 91, 1261–1267.
[CrossRef] [PubMed]

44. Gonçalves, L.C.; Bessa, A.; Freitas-Dias, R.; Luzes, R.; Werneck-de-Castro, J.P.S.; Bassini, A.; Cameron, L.-C.
A sportomics strategy to analyze the ability arginine to modulate both ammonia and lymphocyte levels in
blood after high-intensity exercise. J. Int. Soc. Sports Nutr. 2012, 9, 30. [CrossRef] [PubMed]

45. Chen, S.; Kim, W.; Henning, S.M.; Carpenter, C.L.; Li, Z. Arginine and antioxidant supplement on performance
in elderly male cyclists: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2010, 7, 13. [CrossRef]
[PubMed]

46. Braakhuis, A.J.; Hopkins, W.G. Impact Dietary Antioxidants on Sport Performance: A Review. Sports Med.
2015, 45, 939–955. [CrossRef]

47. Boss, A.; Lecoultre, V.; Ruffieux, C.; Tappy, L.; Schneiter, P. Combined effects endurance training and dietary
unsaturated fatty acids on physical performance, fat oxidation and insulin sensitivity. Br. J. Nutr. 2010, 103,
1151–1159. [CrossRef]

48. Capó, X.; Martorell, M.; Busquets-Cortés, C.; Sureda, A.; Riera, J.; Drobnic, F.; Tur, J.A.; Pons, A. Effects dietary
almond- and olive oil-based docosahexaenoic acid- and vitamin E-enriched beverage supplementation on
athletic performance and oxidative stress markers. Food Funct. 2016, 7, 4920–4934. [CrossRef]

49. Capó, X.; Martorell, M.; Sureda, A.; Riera, J.; Drobnic, F.; Tur, J.; Pons, A. Effects Almond- and Olive Oil-Based
Docosahexaenoic- and Vitamin E-Enriched Beverage Dietary Supplementation on Inflammation Associated
to Exercise and Age. Nutrients 2016, 8, 619. [CrossRef]

50. Esquius, L.; Garcia-Retortillo, S.; Balagué, N.; Hristovski, R.; Javierre, C. Physiological- and performance-
related effects acute olive oil supplementation at moderate exercise intensity. J. Int. Soc. Sports Nutr. 2019, 16,
12. [CrossRef]

51. Dyck, D.J.; Peters, S.J.; Wendling, P.S.; Chesley, A.; Hultman, E.; Spriet, L.L. Regulation muscle glycogen
phosphorylase activity during intense aerobic cycling with elevated FFA. Am. J. Physiol. 1996, 270, 116–125.
[CrossRef]

52. Dyck, D.J.; Putman, C.T.; Heigenhauser, G.J.; Hultman, E.; Spriet, L.L. Regulation fat-carbohydrate interaction
in skeletal muscle during intense aerobic cycling. Am. J. Physiol. 1993, 265, 852–859. [CrossRef]

53. Costill, D.L.; Coyle, E.; Dalsky, G.; Evans, W.; Fink, W.; Hoopes, D. Effects elevated plasma FFA and insulin
on muscle glycogen usage during exercise. J. Appl. Physiol. 1977, 43, 695–699. [CrossRef] [PubMed]

54. Ramírez, M.; Amate, L.; Gil, A. Absorption and distribution of dietary fatty acids from different sources.
Early Hum. Dev. 2001, 65, S95–S101. [CrossRef]

55. Lee-Bravatti, M.A.; Wang, J.; Avendano, E.E.; King, L.; Johnson, E.J.; Raman, G. Almond Consumption and
Risk Factors for Cardiovascular Disease: A Systematic Review and Meta-analysis of Randomized Controlled
Trials. Adv. Nutr. 2019, 10, 1076–1088. [CrossRef] [PubMed]

56. Nishi, S.; Kendall, C.W.C.; Gascoyne, A.M.; Bazinet, R.P.; Bashyam, B.; Lapsley, K.G.; Augustin, L.S.A.;
Sievenpiper, J.L.; Jenkins, D.J.A. Effect of almond consumption on the serum fatty acid profile:
A dose–response study. Br. J. Nutr. 2014, 112, 1137–1146. [CrossRef] [PubMed]

57. Nieman, D.C.; Scherr, J.; Luo, B.; Meaney, M.P.; Dréau, D.; Sha, W.; Dew, D.A.; Henson, D.A.; Pappan, K.L.
Influence Pistachios on Performance and Exercise-Induced Inflammation, Oxidative Stress, Immune
Dysfunction, and Metabolite Shifts in Cyclists: A Randomized, Crossover Trial. PLoS ONE 2014, 9,
113725. [CrossRef] [PubMed]

58. Yi, M.; Fu, J.; Zhou, L.; Gao, H.; Fan, C.; Shao, J.; Xu, B.; Wang, Q.; Li, J.; Huang, G.; et al. The effect almond
consumption on elements endurance exercise performance in trained athletes. J. Int. Soc. Sports Nutr. 2014,
11, 18. [CrossRef] [PubMed]

59. Fleming, J.; Sharman, M.J.; Avery, N.G.; Love, D.M.; Gómez, A.L.; Scheett, T.P.; Kraemer, W.J.; Volek, J.S.
Endurance Capacity and High-Intensity Exercise Performance Responses to a High-Fat Diet. Int. J. Sport
Nutr. Exerc. Metab. 2003, 13, 466–478. [CrossRef]

http://dx.doi.org/10.2165/11538590-000000000-00000
http://dx.doi.org/10.1186/1550-2783-1-2-35
http://dx.doi.org/10.3945/ajcn.2009.27881
http://www.ncbi.nlm.nih.gov/pubmed/20200265
http://dx.doi.org/10.1186/1550-2783-9-30
http://www.ncbi.nlm.nih.gov/pubmed/22734448
http://dx.doi.org/10.1186/1550-2783-7-13
http://www.ncbi.nlm.nih.gov/pubmed/20331847
http://dx.doi.org/10.1007/s40279-015-0323-x
http://dx.doi.org/10.1017/S000711450999287X
http://dx.doi.org/10.1039/C6FO00758A
http://dx.doi.org/10.3390/nu8100619
http://dx.doi.org/10.1186/s12970-019-0279-6
http://dx.doi.org/10.1152/ajpendo.1996.270.1.E116
http://dx.doi.org/10.1152/ajpendo.1993.265.6.E852
http://dx.doi.org/10.1152/jappl.1977.43.4.695
http://www.ncbi.nlm.nih.gov/pubmed/908685
http://dx.doi.org/10.1016/S0378-3782(01)00211-0
http://dx.doi.org/10.1093/advances/nmz043
http://www.ncbi.nlm.nih.gov/pubmed/31243439
http://dx.doi.org/10.1017/S0007114514001640
http://www.ncbi.nlm.nih.gov/pubmed/25138064
http://dx.doi.org/10.1371/journal.pone.0113725
http://www.ncbi.nlm.nih.gov/pubmed/25409020
http://dx.doi.org/10.1186/1550-2783-11-18
http://www.ncbi.nlm.nih.gov/pubmed/24860277
http://dx.doi.org/10.1123/ijsnem.13.4.466


Nutrients 2020, 12, 635 13 of 13

60. Goodman, K.J.; Brenna, J.T. High sensitivity tracer detection using high-precision gas chromatography-
combustion isotope ratio mass spectrometry and highly enriched [U-13C]-labeled precursors. Anal. Chem.
1992, 64, 1088–1095. [CrossRef]

61. Emken, E.A. Metabolism dietary stearic acid relative to other fatty acids in human subjects. Am. J. Clin. Nutr.
1994, 60, 1023S–1028S. [CrossRef]

62. Maguire, L.S.; O’Sullivan, S.M.; Galvin, K.; O’Connor, T.P.; O’Brien, N.M. Fatty acid profile, tocopherol,
squalene and phytosterol content walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food
Sci. Nutr. 2004, 55, 171–178. [CrossRef]

63. Jambazian, P.R.; Haddad, E.; Rajaram, S.; Tanzman, J.; Sabaté, J. Almonds in the diet simultaneously improve
plasma alpha-tocopherol concentrations and reduce plasma lipids. J. Am. Diet. Assoc. 2005, 105, 449–454.
[CrossRef] [PubMed]

64. Chen, C.-Y.O.; Blumberg, J.B. In Vitro Activity Almond Skin Polyphenols for Scavenging Free Radicals and
Inducing Quinone Reductase. J. Agric. Food Chem. 2008, 56, 4427–4434. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/ac00034a004
http://dx.doi.org/10.1093/ajcn/60.6.1023S
http://dx.doi.org/10.1080/09637480410001725175
http://dx.doi.org/10.1016/j.jada.2004.12.002
http://www.ncbi.nlm.nih.gov/pubmed/15746835
http://dx.doi.org/10.1021/jf800061z
http://www.ncbi.nlm.nih.gov/pubmed/18512942
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Participants 
	Study Design 
	Supplements 
	Protocol 

	Diet 
	Analytical Procedures 
	Metabolic Analysis 
	Biochemical Analysis 

	Statistical Analysis 

	Results 
	Submaximal Test 
	Maximal Test 
	Biochemical Analysis 

	Discussion 
	Conclusions 
	References

