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This paper presents a QoS-aware routing protocol suitable for distribution of smart electricity grids based on heterogeneous
machine to machine communications. The distribution Smart Grid needs high performance communication networks capable
of handling QoS, an issue that is addressed by the present paper. The proposed algorithm is a merger between a genetic algorithm
(GA) and Ticket-Based Routing (TBR), which is an on-demand routing protocol for ad hoc networks that provide quality of service.
A suitable parameterization of the GA parameters is needed in order to use this protocol in the coming Smart Grid networks.
The resulting routing protocol, named genetic algorithm with TBR algorithm for Smart Grids (GATAS), is an adapted intelligent
evolution of the TBR.The performance of TBR has been improved by reducing the overhead of routing packets in the network and
by minimizing the communication latency due to its on-demand behavior. Experimental evidence indicates that the likelihood of
finding the optimum route using multiobjective dynamic metrics increases when the genetic algorithm is applied. In this paper, the
main simulation results on the parameterization carried out are discussed, and the proposed attributes of the GA are described.

1. Introduction

The future of electrical utilities walks hand in hand with
Smart Grids and their advantages. Smart Grids will save
energy and will cope better with the unpredictable renewable
energy supplies [1]. At present, utilities have to be prepared to
face the increasing needs of their telecommunication infras-
tructures. In fact, one of the main challenges of the Smart
Grid is to redesign the architecture of its communication
network [2, 3]. The current utility grid scheme is relatively
easy to operate, but the Smart Grid ismuchmore complex. Its
architecture is based on a decentralized schemewith elements
logically identified but not geographically located. Future
Smart Grids will manage great amounts of real-time informa-
tion through a data network andwill collect information from
Intelligent Electronic Devices (IEDs) established for control
purposes. This kind of data network is not exempt from the
growing needs of quality of service (QoS) [4, 5]. Smart Grids
are expected to face a drastic increase in information demand,
communication, and various data such as voice, data, image,
video, and multimedia communications, which will all have

to be accessed anywhere and at any time inside an M2M
architecture [6, 7].

This work deals with the issues of utmost importance to
achieve QoS-aware routing in wireless and wired sensor net-
works based on a genetic algorithm for the sensor networks
of Smart Grids. A sensor network consists of distributed
sensors that cooperativelymonitor physical or environmental
conditions. Those sensor nodes can be located anywhere in
the network and form an ad hoc network, which does not
require a communication infrastructure. In this environment,
sensor networksmust dynamically provide the necessaryQoS
depending on the type of information transmitted by sensor
nodes in a multihop topology.

This paper presents a new algorithm that copes with these
necessities. The genetic algorithm with TBR algorithm for
Smart Grids (GATAS) evolves from an ad hoc QoS-aware
routing protocol but uses a genetic algorithm (GA) [8, 9]
to reduce the amount of routing traffic. The object of this
paper is to propose a suitable parameterized GA integrated
into a QoS-aware routing protocol for the Smart Grid ad hoc
network. A QoS routing selects paths based on several QoS
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metrics to satisfy specific requirements. This new routing
protocol has been simulated using OPNET Modeler [10]
in Smart Grid related scenarios [11] under the umbrella of
the European project INTEGRIS [11]. The interdisciplinary
project INTEGRIS addresses the development of an ICT
infrastructure to handle the Smart Grid requirements. Thor-
oughly, INTEGRIS takes benefit from the profiles variety of
its members and tackles the Smart Grid domain by proposing
a global solution that considers (1) the QoS-aware commu-
nication network, (2) the ICT security issues, (3) the storage
and distributed computation, and (4) a cognitive system as a
self-containing block.

This paper is organized as follows. Section 2 briefly
describes routing mechanisms for ad hoc networks and
provides a general description of the network model used.
Section 3 describes the fundamental topics involved in the
work carried out and it also covers all the important design
issues of our genetic QoS-aware ad hoc routing protocol for
Smart Grid access networks. Section 4 introduces the charac-
teristics of modeled routing nodes and simulation scenarios
for the analysis and outlines the results obtained. Finally,
Section 5 presents the conclusions of the paper.

2. Routing for Smart Grid’s Data Network

Smart Grids will manage lots of real-time information
through a data network, and they will collect information for
control purposes from established IEDs. Smart Grid network
control and monitoring are very important features in order
to provide continuity [5, 12], QoS [4, 13], and security [14–16].
The future Smart Grid must be distinguished by self-healing
and automation. Actually, international organizations, gov-
ernments, utilities, and standardization organizations are
becoming aware that the grid needs a modernization [3, 5].

Due to these circumstances, Smart Gridwill be supported
by highly heterogeneous data network with strict QoS con-
straints depending on the Smart Grid service to provide [3].
Therefore, one of the most important specifications required
for Smart Grids is that regarding their communications.
A framework for management of end-to-end QoS for all
communications in the grid will be a must in the future [4, 7]
and this specificity is something that is directly addressed by
the proposal made in the paper. In fact, a suitable commu-
nication infrastructure increases the efficiency of the electric
system to a much greater extent than automation without
communication capacities could ever increase it.

There are several aspects that must be defined to obtain
an algorithm that could be implemented in a real Smart
Grid such as the detection of neighbors, the hierarchy of the
network, the definition of which synchronizationmechanism
is used, the addressable elements in the network, or the
address scheme used by the protocol to identify the nodes in
the network [17, 18]. Furthermore, if the protocol is oriented
to provide QoS, additional aspects have to be established,
such as the QoS metric, the specification of the protocol to
minimize the amount of bandwidth needed, and the load
balancing scheme [4, 12].

Ad hoc network among objects is built and every sensor
nodemay need to transmit information to other sensor nodes

and not only to the center node. If the network topology
changes dynamically due to mobility and if the state infor-
mation is inherently imprecise, the routing protocol must be
optimized for ad hoc networking. Even if the network is wired
or stationary, the network topology may change because of
power network changes or degradation of channel character-
istics, especially in the case of Power Line Communications
(PLC) and also in the case of radio systems using common
frequency bands. The main goals of a routing protocol for
Smart Grids are simplicity, scalability, and energy efficiency.
At present, topology changes due to node mobility are
infrequent as sensor nodes are stationary inmost applications
[12, 17, 19].

2.1. Related Work. A routing protocol consists of two basic
tasks: it has to collect the state information of the network
and to keep it up to date.This paper is focused on the analysis
of this first task inside the ad hoc network of Smart Grids
and leaves the path repair functions for further study. Many
alternative solutions have been proposed and analyzed to
solve the need for a routing algorithm in ad hoc networks.
The main features of well-known ad hoc protocols have been
studied in depth [20].

In recent years, routing optimization in data networks
has received considerable attention. There are several GAs in
the literature that address different routing problems, such
as multicasting routing problem [21], traffic engineering
based on link weight optimization [22], or shortest path
routing problem without providing QoS [23, 24]. Some of
them are applied in a non-real-time background mode [23].
Far from the supposed full cooperation of the participating
communication nodes, game theory has attracted the interest
of researchers in the field of routing as well in order to
monitor possible conflicting interests between communica-
tion domains [25]. Although the findings of these studies are
relevant, those approaches are beyond the scope of this paper.

Recently, routing in Wireless Sensor Networks (WSNs)
has been recognized as an important research area and much
work has been carried out. As a result, a great number of
studies have discussed the application issues of evolution-
ary computation techniques [26], clustering [27], and data
mining [28] in this kind of networks. Some of them will be
referenced along this paper. A survey of the main approaches
to the application of evolutionary techniques inWSNs can be
found in [29]. Related fields of knowledge worth to mention
are those of Particle Swarm Optimization (PSO) and ant
routing algorithms [30] that are similar to our proposal in
that they use probes that explore the space but that differ in
essential aspects such as the randomness of PSO versus the
flooding-like nature of our proposal (GATAS).

To the best of our knowledge, our approach is the first
real-time integration of a genetic algorithm with both rout-
ing parts: the routing algebra and the routing distribution
mechanism for QoS-aware networks that focus on the Smart
Grids necessities on QoS. An exhaustive study using multiple
simulations to determine the routing multipath algorithm
with the most adequate QoS behavior for High Voltage (HV)
segments has been carried out in [18]. In this highly meshed
network environment, where the communication devices are
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very powerful, the main difficulty comes from improving
the QoS behavior of the existing widely spread commercial
routing protocols [13, 19]. However, the idea of designing a
routing protocol appropriate for another segment of Smart
Grids (medium and low voltage) is presented in this paper,
in which routing protocols must operate under a set of con-
straints that traditional protocols do not typically consider.
In this sense and given the similarities between Smart Grid
networks and sensor networks, it is interesting to consider
carefully the work done in the field of sensor networks.

Although there are many academic papers and well-
known routing protocol implementations available based on
ad hoc networks, studies and demonstrations carried out in
[11, 31] formally discard all these protocols since they do
not meet the minimum criteria needed for Low Power and
Lossy Networks (LLNs) that are a class of networks in which
both the routers and their interconnections are constrained
[31]. If a protocol cannot meet these minimum criteria, then
it cannot be used in several major Smart Grid application
domains, and it is therefore unlikely to be a good candidate
for use within a broader scope.

2.2. Network Model. In this section, the network model and
the notation used for the routing algebra and policies are
described.This notation is used to formally define the routing
protocol behavior of GATAS, and it is based on Sobrinho’s
routing algebra [32]. An algebraic approach is very useful to
both understand existing protocols and to explore the design
space of future Internet routing protocols.The routing policy
defines the elements used by the routing protocol to carry out
the routing process (1). The routing policy (RP) is formed by

RP = ⟨Σ, ⊕, 𝐿, ≼⟩. (1)

Each element of this array (1) is defined in Table 1. Based
on this representation, we propose the following model of a
network, where vertex 𝑗 is the destination and vertex 𝑖 the
origin of routing information (Table 2). The proposed nota-
tion is crucial for the protocol specification in order to define
the information used and stored by the routing protocol. The
objective is to avoid any confusion when different routing
schemes and metrics are defined at a point in the future.

3. Description of the Proposal

3.1. Underlying QoS Routing Protocol Description. GATAS
algorithm is based on a network layer on-demand routing
algorithm known as Ticket-Based Routing (TBR) [33]. A
ticket-based probing algorithm is an imprecise information
model used to find a QoS-aware routing path in ad hoc
networks. TBR is very interesting for our purposes as main-
taining a consistent route table in Smart Grids has become
increasingly challenging due to the number of nodes whose
information has to be consistent and also because of the
unpredictable changes in the actual topology mentioned in
Section 2. It is often impossible to know a priori what kind of
environment the protocol will find itself in. A QoS routing
algorithm is, after all, a complex optimization problem.
Therefore and in order to solve this complex problem, the

Table 1: Elements of the routing policy (RP).

Element Description

Σ

It is the cost associated with a path, and it is known
as the signature of the path.

⨁

It defines the way to add a link cost to a path and to
calculate the total cost. It is known as the metric
operator.

𝐿

It represents the cost associated with a link, and it is
known as the label of the link.

≼

It is the precedence relationship, and it is used to
decide which path is the best choice.

use of one of the best known techniques that has proved suc-
cessful in these matters is proposed: a genetic algorithm. We
evolve a QoS routing protocol using an artificial intelligent
technique, and, for this purpose, reactive protocols are the
most suitable kind of algorithms [20].

In the TBR routing protocol, the source node issues a
certain number of tickets and sends these tickets in several
probe packets to find a QoS feasible path. Each probe packet
carries one or more tickets. This distributed QoS routing
protocol probes multiple paths in parallel. The number of
multiple paths searched is limited by the number of tickets
issued by the source node in all the sent probe packets.
State information maintained at intermediate nodes is used
for more accurate route probing. If the available state infor-
mation is not precise or if the QoS requirements are very
stringent, more tickets are issued in order to improve the
chances of finding a feasible path. In each probe, the probe
state (signature’s path and label’s links) is recorded, including
the path, the accumulated delay, and the accumulated cost of
the path.

Figures 1 and 2 show a dialog example of the TBR mech-
anism as used by GATAS routing protocol. When source
Node 1 wants to find a path with some QoS requirements
to the destination Node 5, it generates n tickets. Then, it
has to distribute them among different probes delivered to
every neighbor. In this example, Node 1 only has one direct
neighbor. The followed path by the probe 𝑆

𝑛,𝑝
is depicted in

Figure 1 where the subindex n is the number of remaining
probe’s tickets and the sub-index 𝑝 is the type of probe (probe
request 𝑝 or probe response 𝑟). When a probing message
arrives at a neighbor, it may be split into multiple probes
and forwarded again. The neighbor Node 2 generates, in this
example, two probes and distributes 𝑛 tickets between its two
neighbors (𝑥 tickets to Node 4 and 𝑦 tickets to Node 3). Each
child probe will contain a subset of tickets from its parent.
A probing message has to contain at least one ticket. In this
way, when using a one-ticket probe, the node is not able to
continue the splitting process any further, and the node can
only forward it to one neighbor. When one probe arrives at
the destination, the recorded path’s signature is sent to the
origin within a response probe (response probes 𝑆

𝑦,𝑟
and 𝑆
𝑥,𝑟

in Figure 2).
The study presented in this paper is focused on network

level analysis (level 3). So, it is assumed that a link-level pro-
tocol assures that every node knows its neighbors, which
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Table 2: Routing algebra notation.

Element Description
𝑖 It represents the origin node.
𝑘 It represents a neighbor of node i, which has sent a routing advertisement to node i.
𝑗 It represents the advertised destination of the routing information received.
𝜆
𝑖𝑘 It is the cost of the link from node i to node k.

𝜎
𝑘𝑗 It is the cost of the path from node k to node j advertised by node k.

�̂�

𝑖

𝑘𝑗
It stands for the estimated cost of the path from node k to node j stored on the routing table of node i.

�̂�

𝑖

𝑖𝑘𝑗

It stands for the estimated cost of the path from node i to node j through the neighbor k stored in the routing table
of node i.

�̂�

𝑘

𝑖𝑗
It is the cost estimated of the path from node i to node j that node i guesses that is known by node k.

𝑆
𝑖𝑗 It is a set of all the neighbor nodes of node i that are feasible successors to node j.

𝑁
𝑖 It is a set of all the neighbor nodes of node i.

Estimated values are the information received from the neighbors that can be potentially outdated due to network changes that have not yet been notified, as
the routing protocol has not converged.
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Figure 1: New search of a path (probes sending).

implies that a node detects within a finite time the existence
of a new node or the loss of connectivity with a neighbor and
all packets transmitted over an operational link are received
correctly and in proper sequence within a finite time.

The study made in [31] discards all the analyzed ad hoc
routing protocols, but it does not analyze TBR-based pro-
posals, and, in fact, TBR and GATAS do not easily fit into
any of the analyzed routing protocols. Baseline TBR table
size is a function of the number of communicating pairs in
the network, scaling with O (Destinations). As explained in
[31], this is acceptable, and so TBR would pass the routing
state criterion defined in [14]. As an on-demand protocol,
TBR does not generate any traffic until data is sent; therefore,
control and loss traffic is correlated with the data and so it
receives a pass for the control traffic criterion. Furthermore,

TBR does not fail the link/node cost criterion because any
QoS-aware metric can be used, and the router can indicate its
willingness to route a packet to a destination.

Nevertheless, the criteria defined in [31] do not take into
account the special behavior of the TBR algorithm. As the
number of destination nodes and paths increases, the great
number of probes needed to find different paths, especially
if they require strict specifications of QoS, becomes a risk
for the scalability of the protocol. This is because of the large
number of routing packets that has to be transmitted in the
whole network. Obviously, routing protocols must be able
to send at least a very small amount of control traffic, in
order to discover a topology. Nevertheless, this bootstrapping
discovery traffic should be small, since most of the energy is
consumed by both transmissions and receptions. This is why
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Figure 2: New search of a path (probes receiving).

evolutionary computation techniques are applied in GATAS
to improve this TBR protocol aspect, although within the
established limits in [31], it turns into the weakest point.

3.2. Underlying Genetic Algorithm Description. GATAS is a
randomized forwarding TBR scheme that has been improved
using a GA. The resulting QoS-aware routing protocol is
decentralized and on-demand based. By using the GA,
GATAS reduces latency and routing overhead due to the high
number of tickets sent by baseline TBR for finding a valid
route to the destination. It uses the parallelized multifocus
population-based search provided by GA to search new
solutions without any extra consumption of bandwidth. Each
source node uses the GA, in an online manner, during the
TBR’s search phase for new routes, which meets the con-
straints of the communication to the destination. The main
goal of this paper is that it bridges the gap between GA and
QoS-aware routing protocol for a Smart Grid. The following
section discusses the proposed solution.

3.2.1. Chromosome Codification. The first key element is to
choose a proper codification of the chromosome, since it will
determine the search space and the mobility through this
search space. Several chromosome codification strategies
have been successfully used in data network routing algo-
rithms and topology control in ad hoc mesh networks.
The network representation could be used in order to code
the chromosome of the GA.

Two main strategies have been used to code a chromo-
some in ad hoc networks. For example, [26] proposed to

codify the complete tree of the network in the chromosomes
because the sensor network is expressed by a tree network
and the genes are expressed by the tree junctions. The
main problem of this proposal is that a topology extraction
mechanism is needed for that method, which minimizes the
value of GA unless it is used in an offline manner inside
large networks. In [34], a chromosome of the GA consists
of sequences of positive integers that represent the IDs of
nodes through which a route path passes. This second flavor
has been chosen for on-demand GATAS routing protocol as
this fits perfectly with the underlying QoS routing protocol.
Internet protocol (IPv6) addresses could be used as the node
ID.

Therefore, as shown in Figure 3, each GATAS chromo-
some is an existing path between the source node and the
destination node. There are as many genes as intermediate
nodes in the complete path.Thus, the size of the chromosome
depends on the number of intermediate nodes. Chromosome
genes are coded by the host-addressing part of the IPv6
address. A chromosome provides a possible routing solution,
and the population is formed by individuals representing all
the evaluated paths.

3.2.2. Fitness Formulation. GAs guide the search toward fitter
solutions; therefore, the definition of a fitness function that
identifies which are the goal solutions is the second key for
success. The fitness function of GAs is generally the objective
function that requires to be optimized. QoS-aware routing
algorithms attempt to find an optimized path based on one
or more QoS metrics. GATAS protocol can work whichever
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Figure 3: Chromosome coding.

metric strategy is used as GATAS copes with the drawback of
multiobjective NP-complete problem [35]. The reason is that
the cost of the path is computed in real time during the probe’s
trip from source node to destination due to its on-demand
nature. GATAS routing capabilities are not limited by using
a relax path criteria or by using concave metrics [22, 35].
While a feasible path can be selected using any shortest
path algorithm [24], additional optimality constraint needs
to be imposed to achieve a feasible QoS-aware path [12]. QoS
metrics choice is a critical decision as the challenge for sensor
ad hoc networks is to design a routing protocol that can adapt
to the wide variety of conditions that may appear in Smart
Grid networks over time. Metrics should be orthogonal to
each other so that there is no redundant information among
the metrics.

The results presented in this paper are based on a multi-
path dynamic delaymetric (Table 3), themost importantmet-
ric for several Smart Grid functions [5, 12, 13, 19], although
any QoS metric strategy could be applied by using the
proposed routing algebra (Table 4).

3.2.3. End Condition. The end condition is responsible for
deciding when to stop the search for a better solution.
Typically, in the real world, the application of the GA is run
either for a fixed number of iterations or till the search has not
been able to find better solutions for a number of iterations.
In the parameterization of GATAS algorithm, several end
conditions have been used. Actually, QoS-aware routing
problem, given a source node 𝑠, a destination node 𝑑, a set
of constraints 𝐶 and an optimization goal, pursues finding
the best feasible successor (2) or several conforming paths
from 𝑠 to 𝑑, which satisfies 𝐶 (3), if multipath routing is
desired. Since a QoS-aware routing protocol must search for
routes with sufficient resources in order to satisfy the QoS

Table 3: Routing policy based on delay metric.

Element Description
Σ 𝜎 ∈ 𝑅

+ (real positive numbers)
⨁ 𝜆

𝑖𝑘
⨁𝜎
𝑘𝑗

= 𝜆
𝑖𝑘
+ 𝜎
𝑘𝑗

| 𝑘 ∈ 𝑁
𝑖

𝐿 𝜆 ∈ 𝑅

+, 𝜆 = delay
≼ ≤

requirements of a flow, this is fairly a suitable end condition
for real operation. This end condition must not increase
unnecessarily the latency of the network. Although in order
to carry out the parameterization of the GA attributes, other
end conditions have been used such as certain number of GA
iterations, however, they can hardly be used in a real scenario.
In our simulation scenarios, the end condition could be
configured during simulation time.

Consider the following:

𝑆
𝑖𝑗
= {𝑘 | �̂�

𝑖

𝑖𝑘𝑗
= min𝜎

𝑖𝑗
, ∀𝑘 ∈ 𝑁

𝑖
} , (2)

𝑆
𝑖𝑗
= {𝑘 | �̂�

𝑖

𝑖𝑘𝑗
⟨(min𝜎

𝑖𝑗
⋅ 𝛾) , ∀𝑘 ∈ 𝑁

𝑖
} | 𝛾⟩ 1. (3)

3.2.4. Initial Population. The initial population should be
supplied with sufficient variety of genetic material so that
the genetic pressure could lead the population toward better
individuals. Therefore, the existence of partial solutions is
necessary for the success of the genetic search. The correct-
ness of the path coded by the chromosome inside the actual
network topology is critical, so it must be carefully verified
by our methodology in order to avoid potential gibberish.
However, if the initial population is randomly created as
usually done inGA application, it is always necessary to check
whether individuals are valid, and they can exist when a new
generation is created or when a genetic operation is applied.

To avoid this problem, instead of a random generation,
GATAS relies on the underlying QoS routing protocol to
obtain suitable paths for the initial population and to avoid
a mismatch between actual topology and new individuals.
Thus, the existence of each individual of the initial population
does not need to be verified by a topology extraction mecha-
nism. The maximum number of initial individuals is limited
by the number of available tickets issued by the origin of
the path request process. In this way, the genetic algorithm
cycle is activated by a source node, only when the search
phase of the underlying QoS routing protocol is needed. It is
important that GATAS uses the GA in an online manner like
in real-time systems [12, 28].The reason is that the path repair
function could be activated by the neighbor discovery process
and it is crucial that the repair function is not activated during
the search phase as the routing protocol will converge slowly.

3.2.5. New Mutation Operator. The mutation operator is
responsible for locally searching new solutions in the parent’s
neighborhood. In our case, mutation is applied gene by
gene. Legacy mutation operator allows modifying any of the
genes of a chromosome from the mutation probability. The
mutation, as it has been defined in GATAS, requires the node
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Table 4: Routing policy based on several additive metrics.

Element Description
Σ Σdelay × Σhop × Σbandwidthinversion :⟨𝜎𝑑, 𝜎ℎ, 𝜎𝑏𝑖⟩

⨁

(𝜆
𝑑
, 𝜆
𝑏𝑖
)⨁(𝜎

𝑑
, 𝜎
ℎ
, 𝜎
𝑏𝑖
) =

⟨𝜆
𝑑
+ 𝜎
𝑑
, 𝜎
ℎ
+ 1, 𝜆

𝑏𝑖
+ 𝜎
𝑏𝑖
⟩

𝐿

𝜆
𝑑
∈ 𝑅

+, 𝜆
𝑑
= delay

𝜆
𝑏𝑖
∈ 𝑅

+, 𝜆
𝑏𝑖
=

1

bandwidth

≼

(𝜎
𝑑
, 𝜎
ℎ
, 𝜎
𝑏𝑖
) ≼ (𝜎



𝑑
, 𝜎



ℎ
, 𝜎



𝑏𝑖
) if and only if

(𝜎
𝑑
< 𝜎



𝑑
) ∨ (𝜎

𝑑
= 𝜎



𝑑
∧ 𝜎
ℎ
< 𝜎



ℎ
) ∨

(𝜎
𝑑
= 𝜎



𝑑
∧ 𝜎
ℎ
= 𝜎



ℎ
∧ 𝜎
𝑏𝑖
≤ 𝜎



𝑏𝑖
)

to send a new one-ticket probe to obtain a mutated path.
The generation of infeasible chromosomes, which violate the
current network topology, is avoided by using the underlying
QoS routing protocol.

In the process of Figure 4, the gene 𝑁2 of an individual,
like path no. 10, has been selected formutation.Therefore, the
source node sends an𝑚 type one-ticket probe (mutation type
probe 𝑆

1,𝑚
) to the mutation point, in this example the node

𝑁2. Then, node 𝑁2 uses the underlying QoS-aware routing
protocol to search for another path by issuing a 𝑝 type one-
ticket probe (request type probe 𝑆

1,𝑝
) to the destination node

𝑁5. When the packet 𝑆
1,𝑝

arrives at the required destination
node, an 𝑟 type one-ticket probe (response type probe 𝑆

1,𝑟
) is

transmitted to the origin in order to advertise a new potential
route to the destination𝑁5. In that example, you can observe
how a hypothetical individual such as {𝑁1,𝑁2,𝑁4,𝑁5}

mutates into the individual {𝑁1,𝑁2,𝑁3,𝑁6,𝑁5}. GATAS
generates one and only one new individual obtained from a
successful mutation phase of each individual. This fact limits
the number of extra routing packets overhead to one packet
per chromosome mutation.

3.2.6. Crossover Operator. Thecrossover operator is responsi-
ble for the identification and reassembly of subsolutions with
the aim of creating better solutions. In our specific problem,
the crossover operator is used to expand the search space
by finding paths unknown to origin during the search phase
of the on-demand routing protocol. The flexibility provided
by GATAS enables the application of different crossover
schemes. In the experiments conducted herein, we applied
1-point crossover since we tried to avoid an overdisrup-
tive approach in the reproduction phase. Nevertheless, we
acknowledge that a more detailed study on which crossover
operator would be the best is an interesting future line of
research.

The crossover operator works as follows: to start with, the
individuals for the crossover must be chosen, selected from
the current population from the crossover probability. In
addition to this, the crossover point between both individuals
must also be chosen. The crossover process does not need
any extra routing packet because it is locally executed in the
source node during the search path phase of GATAS.

4. Genetic Algorithm Parameterization

In this section, we analyze in detail several results obtained
throughout the OPNET simulations of GATAS in order to
carry out the required parameterization of the underlyingGA
and the TBR for its use in the Smart Grid sensor networks.

4.1. Models for the Parameterization of the GA. In order
to study the behavior of GATAS protocol in a Smart Grid
scenario, we used the OPNET Modeler, which is a network
simulation tool oriented to events. All the nodes of the net-
work obey the state machine of Figure 5.Themost important
states of the finite state machine (FSM) are shown in Table 5.

The studies carried out in this paper are focused on the
parameterization of the underlying QoS routing protocol
and the underlying GA of GATAS. Furthermore, our study
focuses on the analysis of the improvement using a GA
compared with the underlying QoS routing protocol.TheGA
parameterization and the analysis carried out are specifically
for ticketing issues, QoS metric, initial population, crossover
probability, mutation probability, end condition, selection
method, bandwidth requirements, routing overhead, and
response time.

Simulated scenarios are based on networks that have
more than 100 sensor nodes with reduced mobility. This
behavior is likely to occur in the future Smart Grids based
on heterogeneous Power Line Communications (PLC) plus
wireless networks [7, 17]. For example, AMR systems can
intelligently integrate the actions of all users connected to it
in order to efficiently deliver sustainable electricity supplies
using narrowband PLC and Zigbee communications [5, 12,
19]. The Smart Grid network topology may change due to
channel characteristics. Disconnections and lowest bit rates
may arise when there is significant interference from outside
sources or other transmitting nodes. During these periods of
time, network topology may change rapidly [17].

4.2. GATAS GA Parameterization. In this point, the decision
of the most important parameters of the GA will be justified.
Through Figure 6, the initial population of the GA and how
many generations will be necessary for its correct operation
(a possible end condition) could be determined. These
simulations have been carried out by means of the Roulette
Wheel Selection method with a crossover probability of 95%
and a mutation probability of a 1%. These probabilities will
be justified later and the evaluation of the selection method
choice is out of the scope of this paper. Elitism is applied by
copying the best individual to the next generation in every
GA iteration.

In Figure 6, it is observed that up to an initial generation
of 100 tickets, the system continues improving. From that
value on, almost the same final result is obtained every time,
and no additional improvement is obtained by issuing more
initial tickets. The only exception that improves over 100
tickets is the TBR with 0 iterations because, since the number
of tickets increases, there are more available routes. Thus, an
initial population of 100 individuals could be a suitable one
with acceptable bandwidth consumption. Figure 6 could also
help us to choose the number of generations that our system
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Table 5: Finite state machine of the GA.

State Description

INIT The FSM of a GATAS node begins in this state, where all the variables needed for the rest of the process are
initialized. In this first state, the routing algorithm and the neighbor discovery algorithm are activated.

Wait The process remains in the wait state waiting for any interruption to jump to one or another state depending on
the interruption arrived at.

Hello
This state manages the neighbor discovery process. It operates in the link layer, and it is responsible for the
discovery of other nodes directly connected to the origin, thereby determining the node address and its
associated link metric (L). This process implements a basic keep-alive mechanism controlled by the routing
protocol.

Routing This is the state that manages the underlying QoS routing protocol as it has been succinctly described in
Section 3.

GA, mutation, and solve These states are all related with the underlying genetic algorithm as described in Section 3.
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Figure 4: Mutation example (where𝑁2 is the mutation point).

has to produce at most, and, therefore, it will set a candidate
for an end condition based on the maximum number of
iterations. Note that in most of the cases, it is nonsense to
evolve the system more than 10 generations, because it does
not practically improve the best obtained path. We must take
into account that the optimal end condition for a routing
algorithm is to obtain the desirable number of feasible paths
that satisfy all the QoS constraints by allowing a premature
convergence.

Figures 7 and 8 illustrate the crossover and mutation
probabilities, and they clearly show that the best performance
of the system is at a crossover probability of 95%. At a
crossover probability of 10%, the systemdoes not evolve as the
final solution (the shortest path) is almost the same as the
basic TBR gets. From the outset, there are three possible
candidates as the bestmutation probability: 1%, 10% and 20%.
The mutation probability has a drastic effect on the usage of
the network bandwidth. As stated before, a mutation requires

to send a new probe packet; this means that, if we increase
the mutation probability by too much, the network could be
collapsed by routing overhead. Note that with a probability of
20%, 20 new probes are sent for each GA iteration, for each
destination by every origin node. This explains our decision
to choose a mutation probability of a 1%.

The recapitulation of the achieved GA parameterization
after the carried out simulations and experiments can be seen
in Table 6.

4.3. Simulation Conclusions. Overall, the effectiveness of our
GATAS routing algorithm scheme has been tested through
a series of 50 simulation experiments. The bandwidth usage
of our algorithm was determined by reckoning the number
of packets that each node has generated in simulations. As
expected, the network usage increases as the number of initial
tickets is increased. The most outstanding peaks are in those
nodes with many ad hoc interconnections, a fact that makes
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Figure 6: Genetic algorithm study for parameterization.

them have to deal with more tickets. At this point, three
different case studies have been analyzed in order to assess
the improvements introduced by the GA-based approach in
the underlying QoS ad hoc routing protocol: TBR with 100
tickets, TBRwith 1000 tickets, andGATAS algorithmwith the
final parameterization. The given convergence time results
are standardized at 1 time unit.

In the TBR scenario with 100 tickets, the shortest path
that the TBR has achieved in the best simulated case study is
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Table 6: GATAS genetic algorithm parameterization for smart
grids.

Parameter Value
TBR method Random TBR
Initial population 100 individuals
Selection method Roulette Wheel Selection
Elitism Yes
End condition 1 Feasible QoS path found
End condition 2 10 GA iterations
Crossover probability 0.95
Mutation probability 0.01

obtained in a response time of 75 time units with a path cost
of 0.248 seconds. On average, TBR with 100 tickets takes 94
time units to give us the best route it can get during the whole
simulation time, and it has a path cost of 0.459 seconds. It is
important to keep in mind that TBR with 100 tickets takes an
average of 280 time units to send us all probeswith valid paths
with a maximum convergence time of 299 time units. Table 7
shows the results of the three case study scenarios. In it, the
best path (metric delay in seconds) and the simulation real
time needed to obtain the resulting feasible paths by using an
orthogonal unit to the deployed network (OPNET simulation
units [u]) can be noticed.

In the TBR scenario with 1000 tickets, we will find more
and better routes than TBR with 100 tickets since there
are more tickets. In contrast, the convergence time of the
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Table 7: Results comparison.

Best shortest path—simulation time Average best feasible path—simulation time Convergence time
TBR (100 tickets) 0.248 seconds—75 [u] 0.459 seconds—94 [u] 280 [u]
TBR (1000 tickets) 0.177 seconds—162 [u] 0.381 seconds—486 [u] 1762 [u]
GATAS 0.169 seconds—283 [u] 0.344 seconds—394 [u] 626 [u]

Figure 9: Example of an automatic generated scenario.

routing protocol is more than 6 times higher, and the routing
overhead is more than 9 times higher.

GATAS response time is directly affected by the response
time of TBR, since the GA is not activated until the TBR has
completely generated the initial population of 100 individuals
and these are either received or their timeout has expired.
The mutation operation is the only one that adds delay to
the convergence time since it is the only one that generates
an extra probe routing packet which must be waited for in
order to be processed. However, GATAS provides the best
balanced ratio of best found feasible path to response time
in the simulations carried out. Regardless of the convergence
time of the TBR with 100 tickets, the GATAS results are the
best by far in all the automatic generated scenarios byOPNET
(e.g., Figure 9).

4.4. Future Comparisons. In future work, other ad hoc rout-
ing protocols must be compared with GATAS over a standard
Medium Access Control (MAC) wireless level in order to
evaluate its commercial utilization. To this respect, our main
goal for further work is to develop the GATAS protocol in
a general purpose development platform module for IEEE
802.15.4/6lowpan compatible Wireless Sensor Networks. The
future objective is to assess the protocol designed to empir-
ically monitor the consumption parameters and their con-
vergence times. The comparison has to be made between
the parameterized GATAS protocol and real mature protocol
implementations which provide a feasible contrast in the
created working environment.

The only algorithm that, so far, could be compared with
the GATAS algorithm is the IPv6 Routing Protocol for Low
Power and Lossy Networks (RPL) [36] as the IETF ROLL

Working Group focuses specifically on the IPv6 routing
architectural, which has been recently specified by the IETF.
For this reason, the comparison will be done when the first
devices are launched in 2013-2014 and when we conclude
our development. RPL intends to support a variety of low-
cost network applications including industrial monitoring,
building automation, connected homes, health care, environ-
mentalmonitoring, urban sensor networks (e.g., SmartGrid),
and asset tracking.

5. Conclusions and Further Work

GATAS routing protocol based on QoS-aware ad hoc routing
has been presented as the evolution of its predecessor, the
TBR algorithm. The study has concluded that this enhanced
protocol based on evolutionary computation techniques
improves many aspects in an M2M communication network
such as optimal found path and convergence time. The main
advantage is the increment of the network efficiency by min-
imizing routing overhead and by increasing the practicable
bandwidth with the same resources.

Given that on-demand routing protocols for multihop
ad hoc networks can result in increased packet latency, the
paper has successfully appliedGA to the existing TBR routing
protocol to create the GATAS routing protocol that improves
thementioned latency aspect over that in TBR to better fit the
Smart Grid requirements.

The design of an ad hoc QoS-aware routing protocol is
more demanding than a shortest path routing protocol. The
reason is the increase in the number and exigency of usable
paths. On the other hand, the amount of routing information
to transmit is greater. As our experiments demonstrate,
GATAS is a better protocol to use for Smart Grids than TBR
scheme.Overall, this paper presents the results of an incipient
research work. In terms of CPU runtime and complexity,
GATAS is comparable with TBR and other similar routing
protocols with the difference that GATAS could be aware of
multiple QoS metrics, the thing that is fit to the Smart Grid
nature and requirements. In terms of energy saving, con-
vergence time, overhead, and effectiveness, GATAS greatly
improves its predecessor. Several trends were clearly visible
in this study but the most important is that evolutionary
techniques have been successfully applied to a QoS-aware ad
hoc routing protocol for Smart Grids networks.
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