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Appendix S1. Supplementary methods. 1 

Supporting Information to Martin, E. A. et al. The interplay of landscape composition and 2 

configuration: new pathways to manage functional biodiversity and agro-ecosystem services 3 

across Europe. 4 

 5 

Data preparation 6 

Sites and landscapes 7 

Raw data collected from researchers across Europe represented sampling and experiments for 8 

144 arthropod families from 1960 sites in 10 countries and 29 regions in Europe. We defined 9 

sites as belonging to the same study if they were measured by the same group of researchers, 10 

using at least one identical method in all sites and years. According to country regulations, 11 

land use maps were either directly collected from data holders, or a script was provided to 12 

contributors to run calculations on locally held maps. Vector maps of land use were required 13 

to be sufficiently detailed to detect boundaries between crop field polygons in order to enable 14 

calculation of configuration measures (Fig. S1). As this is not the case of publicly available 15 

land cover data, high quality maps compiled and partially ground-validated by study 16 

participants were used. These maps were based on digitization of 1-2 m resolution 17 

orthophotos and/or on official land use maps obtained from national or regional county 18 

offices for each study. Minimum mapping units of the included maps, which allowed 19 

boundary detection between crop fields, were 4*4 m (i.e., the smallest elements that were 20 

mapped were ca. 4*4 m; see an example land use map in Fig. S1). 21 

For all studies, land use maps were classified into five categories: arable fields (including 22 

managed grasslands in rotation, annual and perennial crops), forest, semi-natural habitat 23 

(such as hedges, grassy ditches, unmanaged grasslands, shrubs, fallows), urban areas and 24 

water (see also Fig. S1). In the following, the classes ‘arable land’ and ‘semi-natural habitat’ 25 

are thus not the inverse of each other, but are complemented by additional classes (e.g. 26 

forest). We calculated proportions of arable land and semi-natural habitat in circular sectors 27 

of 0.1, 0.25, 0.5, 1, 2 and 3 km radius around sites, or up to the maximum available radius for 28 

maps with limited extent (Table S1). Sectors were centered on sampling locations within 29 

fields, which averaged 2.3±1.9 ha in size (mean±standard deviation). To minimize overlap 30 
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between landscape sectors, radii above 500 m were excluded that led to sector overlaps of 31 

>20% for a given study.  32 

In a second step, non-crop classes (semi-natural habitat, forest, urban and water) were 33 

merged. Using the same sectors, we calculated edge density as the total length of borders 34 

between crop fields and between crop and non-crop areas, in km per ha of the landscape 35 

sectors. Maps were classified and landscape metrics were calculated using user-defined work-36 

flows in ArcGIS 9.3 (ESRI 2011) and R. Following preliminary assessment of landscape 37 

gradients, studies from Hungary (Bald01, Kova01, Kova02; Table S1), the only Eastern 38 

European country in our dataset, were found to have greatly outlying ranges of % semi-39 

natural habitat compared to all other studies, due to the presence of large amounts of semi-40 

natural grasslands in this region. This is combined with only low values of edge density. To 41 

avoid highly unequal ranges of % SNH between high and low edge density sites, we excluded 42 

Hungarian studies from further analysis. Furthermore, organic sites were excluded because 43 

only few studies sampled organic and conventional fields in the same landscapes. As a result, 44 

the total number of site replicates included in analyses was 1,637, corresponding to 1,515 45 

different landscapes of up to 3 km radius around fields (some sites having been sampled 46 

multiple times per study, in several studies or in several years). 47 

 48 

Arthropod data 49 

Arthropods were collected according to the target functional group using methods that varied 50 

by study and crop. These include pan traps, pitfall or funnel traps, malaise traps, sweep-51 

netting, visual surveys / counting, trap nests, suction sampling, and a distance method 52 

(counting webs / m2). We refer to the methods of published and unpublished studies listed in 53 

Appendix S2 for detailed information on each sampling method. As a rule the same sampling 54 

methods and effort were applied across all sites of one study. In cases where a method was 55 

applied only in a subset of sites or sampling effort varied between sites, we accounted for this 56 

using model random structures (see Model formulation and analysis) and by weighting 57 

abundances by the sampling effort as described below. 58 

Collection of arthropods using these methods took place inside ‘focal’ fields (see Fig S1) at 59 

varying distances from field edges, along transects with increasing distance from the edge, 60 

and/or in field margins. When margins were sampled, this is noted in the column ‘Site 61 

description’ of Table S1. For samples taken inside fields, distances from field edges and the 62 



3 
 

number of distances sampled per field varied between studies. We refer to Appendix S2 for 63 

published and unpublished information on sampling location within fields. However, the 64 

same distances from field edges were sampled across all sites of each study. We account for 65 

differences in sampling locations between studies and in some studies for multiple sampling 66 

locations per site using model random structures (see Model formulation and analysis). 67 

We standardized data formats provided by researchers ensuring that all species observed in a 68 

study were listed in all sampled sites of that study, including when their abundance was zero. 69 

We thus ensured that sites with zero abundance were retained in subsequent subsets of 70 

functional species groups. Total abundance of arthropods in each sampling location of fields 71 

or margins was the sum of all individuals sampled in that location by a given method, in a 72 

given year and for a given study. If data of several sampling rounds were provided in one 73 

year, we calculated mean values across rounds for that year. For studies in which sampling 74 

efforts differed between sites, we first rescaled the sampling effort between 0 and 1 by 75 

dividing it by the maximum sampling effort in all sites (Newbold et al. 2015), then 76 

standardized abundances by the rescaled sampling effort in each site. 77 

 78 

Ecosystem service data 79 

Data on pollination, pest control and yields were compiled into an ecosystem service index 80 

(ESI). Measurements included visitation rates of pollinators (per flower and time), fruit set 81 

and weight, seed set, predation and parasitism of pests, pest damage, pest density in vs. 82 

outside enemy exclusion cages, and crop yields as biomass/area or biomass/plant. Detailed 83 

units and measurement methods applied per study for each ecosystem service are specified in 84 

Table S3. Several measurements were frequently performed per study. ESI values were 85 

defined according to the type of measurement considered:  86 

1) For cage experiments comparing measures with and without pollination or pest control, 87 

only open and closed treatments were considered (excluding intermediate levels such as 88 

vertebrate-only exclosures). If several replicates existed per exclusion treatment, these were 89 

aggregated to mean values per treatment and site. Exclosures were defined as pollinator 90 

exclosures if the main focus of the study was on pollination, and as enemy exclosures if the 91 

main focus was on pest control. Similarly, fruit, pod and seed set were defined as pollination 92 

variables (not yield variables) when the study included a focus on pollination. The ecosystem 93 

service index (ESI) for cage experiments was calculated as: 94 
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⎩
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⎪
⎧𝐸𝐸𝐸𝐸𝐸𝐸 = 1 −

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜

     𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜 >  𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐸𝐸𝐸𝐸𝐸𝐸 = 0    𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜  ≤  𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

     𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜 <  𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐸𝐸𝐸𝐸𝐸𝐸 = 0    𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜  ≥  𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 95 

where 𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜 is the service measure in open treatments and 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐is the service measure in 96 

controls excluding either pollinators or natural enemies (e.g. Gardiner et al. 2009, Rusch et 97 

al. 2013). For measures representing positive services (seed set, fruit weight, fruit set, yield, 98 

seed predation), higher service provision corresponds to higher values in open than in closed 99 

cages (a). Inversely, for measures representing negative services (exclosure pest density, crop 100 

damage), higher service provision corresponds to lower values in open compared to closed 101 

cages (b). We set the ESI to zero when no difference was found between treatments or when 102 

differences between treatments led to negative ESI (i.e. no service provided; this occurred in 103 

24 (6%) of observations of pollination service provision). In one study measuring exclosure 104 

pest density, initial densities varied between sites. Here we calculated 𝑅𝑅𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜 and 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 as 105 

the growth rate of pests in open and closed treatments, following: 𝑅𝑅 = 𝑁𝑁𝑡𝑡
𝑁𝑁𝑡𝑡0

 where 𝑁𝑁𝑡𝑡 is the 106 

density of pests at the end, and 𝑁𝑁𝑡𝑡0 is the density of pests at the start of the experiment.  107 

2) Other measures included direct assessments of ecosystem service without a comparative 108 

exclosure experiment (e.g. proportion of parasitized pests), and one assessment based on 109 

exclosures for which treatment outcomes (i.e. the exclosure ESI described above) were 110 

processed directly by data contributors as the average difference in seed set between open and 111 

bagged plants (Dain01-seed set; Table S3). In these cases, the ESI was the actual value of the 112 

measurement without further processing. Differences in ranges of the resulting ESI between 113 

studies are provided in Table S3. 114 

In order to consider effects of landscape variables in models, we did not standardize the ESI 115 

within studies, years and measurement types. Instead, we account for differences in 116 

measurement type and resulting ESI range within and between studies by including random 117 

structures in mixed effects models (see below, § Model formulation and analysis), and 118 

ln(x+1)-transformed ESI variables to conform to assumptions of normality and 119 

homoscedasticity (see also Appendix S3 for results using standardized responses). 120 

 121 

 122 
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Functional trait classification and cluster regression  123 

Functional group and trait classification 124 

In a first step, we classified organisms into functional groups of natural enemies, pollinators 125 

and pests according to literature, online sources (e.g. www.discoverlife.org) and author’s 126 

knowledge. We defined natural enemies as predatory or parasitic on other arthropods at any 127 

life stage. We defined pests as causing damage to crops that has been found to reach 128 

economic injury levels. Pollinators were organisms able to transport pollen between flowers 129 

or flower parts. If organisms belonged to several functional groups throughout their life 130 

cycle, we classified them according to the life stage sampled (e.g. syrphids sampled as adults 131 

were defined as pollinators, but aphidophagous syrphid larva were defined as predators). 132 

Non-pest herbivores, ants, decomposer beetles and parasitoids of bees could not be placed 133 

into these groups and were not considered in functional group and trait analyses. Table S2 134 

reports the detailed classification of taxa into functional groups. Carabids of the genera 135 

Amara (Bonelli, 1810), Ophonus (Dejean, 1821) and Harpalus (Latreille, 1802), and genera 136 

of Staphylinidae based on Clough et al. (2007) were considered non-predatory and were 137 

excluded from functional trait analyses that focussed on enemies, pollinators and pests. 138 

References used for further taxa are listed in trait descriptions below. Honeybees (Apis 139 

mellifera [Linnaeus, 1758]) were excluded from all analyses (and from functional trait 140 

classification) because their abundance in the agricultural landscape is strongly influenced by 141 

the placement of managed hives.  142 

With the aim of creating usable trait classes relevant for a broad range of taxa (Table S2), we 143 

then classified organisms into broadly defined categorical traits based on existing databases 144 

(syrphids: SyrphTheNet, Speight et al. 2010; carabids: carabids.org, Homburg et al. 2014; 145 

staphylinids: Gossner et al. 2015), published literature and expert knowledge. The traits we 146 

included are defined in Table 1 with additional detail as follows:  147 

Diet breadth: for bees excluding honeybees, we defined diet breadth as specialist for 148 

oligolectic, and generalist for polylectic species. Lecticity was extracted from existing 149 

sources when available (e.g. Gagic et al. 2015; Kremen & M’Gonigle 2015; Normandin et al. 150 

2017; Ascher & Pickering 2018; Bees, Wasps & Ants Recording Society 2018; 247 out of 151 

358 species). The remaining species were assumed to be polylectic if belonging to parasitic 152 

families (24 species) or all other species of the genus were polylectic (11 species). Some 153 

species were assumed to be oligolectic because all other species of the genus are oligolectic 154 

http://www.discoverlife.org/
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(11 species). Species only identified to genus or family (29 species) were assumed to share 155 

the lecty of the majority of species in the same genus (family). The remaining 36 species 156 

were assumed polylectic. We believe this is a safe assumption, as they fall in genera with a 157 

predominance of polylectic species (e.g. Lasioglossum [Curtis, 1833], Eucera [Scopoli, 158 

1770]). For spiders, stenophagy was based on Pekár & Toft (2015). If known for a given 159 

species, it was extrapolated to the whole genus as stenophagy tends to be consistent within 160 

genus. However, in genera in which stenophagy is unknown for common European species 161 

but known for some exotic species, we did not classify species as stenophagous (e.g. Dipoena 162 

[Thorell, 1869]). Predators including carabid, staphylinid and lady beetles, aculeate wasps, 163 

lacewings, earwigs, other Coleoptera and Hemiptera (soldier and checkered beetles; damsel, 164 

shore, flower and pirate bugs; other bugs of the families Lygaeidae, Pyrrhocoridae) feed on 165 

more than one family of prey and were classified as generalists. Similarly, adult tachinids 166 

(Stireman et al. 2006), other flies (non-hoverflies), polyphagous butterflies (Tolman & 167 

Lewington 2008) and pollen-feeding beetles of the genus Oedemera (Olivier, 1789) 168 

(Oedemeridae) were classified as generalist pollinators. Tachinids sampled as larvae were 169 

considered generalist enemies (Stireman et al. 2006). Planthoppers followed Nickel & 170 

Remane (2002) (mono- and oligophages as specialists, polyphages as generalists). Generalist 171 

pest herbivores included two shield bugs (Pentatoma rufipes [Linnaeus, 1758] and 172 

Carpocoris purpureipennis [De Geer, 1773], Pentatomidae), species of plant bugs 173 

(Adelphocoris lineolatus [Goeze, 1778], Lygocoris pabulinus [Linnaeus, 1761], Lygus 174 

gemellatus [Herrich-Schaeffer, 1835], L. pratensis [Linnaeus, 1758], L. rugulipennis 175 

[Poppius, 1911], Miridae; other plant bugs also include generalist non-pest herbivores and 176 

predators; Wheeler 2001; Cassis & Schuh 2011), the garden chafer beetle (Phyllopertha 177 

horticola [Linnaeus, 1758], Scarabeidae; Milne & Laughlin 1956) and the cowpea aphid 178 

(Aphis craccivora [C.L.Koch, 1854], Aphididae). In contrast, oligo- and monophagous 179 

butterflies, parasitoid wasps (considered enemies), the aphid midge Aphidoletes aphidimyza 180 

(Rondani, 1847) (Cecidomyiidae), and other pest herbivores (e.g. several aphids, the cereal 181 

leaf beetle, the rape pollen beetle) were classified as diet specialists feeding mainly on host 182 

plants or prey of no more than two families. The larvae of non-aphidophagous hoverflies 183 

most often rely on food sources in only one specific ‘microhabitat’ (relative to the scale of 184 

landscapes), but the actual species consumed are unknown (e.g. dead wood, stagnant water; 185 

Speight et al. 2010). While these microhabitats do not represent a taxonomic family, we 186 

chose to classify hoverflies as diet specialists due to their reliance on only one type of 187 

microhabitat or one main family of prey (aphids) for predacious species. 188 
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Agricultural specialism: all pest herbivores that are diet specialists (including the cabbage 189 

white Pieris brassicae [Linnaeus, 1758] [Lepidoptera], sampled as adult and thus considered 190 

here as a pollinator) were defined as agricultural specialists (i.e. they are diet specialists on 191 

agricultural host plants). Furthermore, aphidophagous syrphids (Speight et al. 2010; 192 

considered pollinators when sampled as adults), the aphid midge A. aphidimyza (Watanabe et 193 

al. 2014) and parasitoid wasps sampled in our study systems were defined as agricultural 194 

specialists whose prey or hosts include mainly agricultural pests. All other taxa that are diet 195 

generalists, able to feed on hosts or prey both within and outside agricultural fields, were 196 

defined as non-agricultural specialists. Taxa that are diet specialists but whose hosts or prey 197 

are neither agricultural host plants, nor pests specialized on agricultural hosts, were also 198 

defined as non-agricultural specialists. These include diet specialist bees, spiders, 199 

planthoppers, butterflies, and non-aphidophagous hoverflies (see taxon-specific references 200 

above). 201 

Diet life history: we defined taxa who experience a shift in the type of above-ground diet 202 

resources during their life cycle (plant matter vs. flower products vs. animal matter, e.g. 203 

carnivorous larvae vs. nectar- and honeydew-feeding adults) as including Lepidoptera, 204 

Diptera, parasitoid wasps (O’Neill 2001), the aphid midge (Watanabe et al. 2014), sawflies 205 

(Boevé 2008), and oedemerids (Vázquez 2002). Other taxa were defined as maintaining a 206 

similar or overlapping above-ground diet type throughout their life cycle (e.g. carabid beetles 207 

carnivorous at larval and adult stages, aculeate wasps carnivorous as larvae and omnivorous 208 

as adults; O’Neill 2001). 209 

Overwintering habitat: data on whether or not species overwinter (and survive to emerge in 210 

spring) in agricultural fields are difficult to obtain, and likely strongly depend on winter field 211 

management (till depth, presence of stubble) and/or the presence of a winter crop (Sarthou et 212 

al. 2014). Based on expert knowledge and published literature, we defined organisms 213 

considered to overwinter mainly outside crops, and that are not likely to remain or survive the 214 

winter within crops, as ‘overwintering in non-crop areas’. The majority of taxa in our datasets 215 

(see Table S2 for detailed listing), including bees, wasps, tachinids, butterflies, non-predatory 216 

hoverflies, bugs, several beetle taxa, 12 species of pests were defined as overwintering in 217 

non-crop habitats based on expert knowledge and literature (e.g. Brodeur & McNeil 1990; 218 

Leather 1993; Nickel 2003; Öberg et al. 2008). If no information was available for a taxon 219 

(e.g. identified only to family or order), we assumed its overwintering habitat to be the same 220 

as the majority of taxa in the same family (order). We defined organisms with generalist 221 
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overwintering requirements and/or that may also overwinter within crops as taxa for which 222 

empirical data or expert knowledge suggested this. These included 10 species of pests 223 

(following Milne & Laughlin 1956; Leather 1993; Alford 2014; Sutter et al. 2018), one 224 

spider (Oedothorax apicatus Blackwall 1850, Mestre et al. 2018), carabid and staphylinid 225 

beetles (Pfiffner & Luka 2000; Frank & Reichhart 2004) and aphidophagous syrphids 226 

(Raymond et al. 2014). However, some carabid species known to be mostly associated with 227 

non-crop habitats (forest, swamp) were defined as overwintering in non-crop areas. When 228 

published literature was insufficient to distinguish overwintering requirements of individual 229 

species, we generalized these to the whole taxon and resorted to expert knowledge for 230 

refinements wherever possible (coauthors M.H.E. for spiders, J.K. for butterflies and aphids; 231 

F. Bötzl and L. Pfiffner for carabids). 232 

Dispersal mode: we defined dispersal mode as “flight” for carabid species with developed 233 

wings and “ground” otherwise (species with undeveloped, dimorphic and unknown wing 234 

shape). Further, we classified Orbicularia spiders (Araneidae, Tetragnathidae, Theridiidae 235 

and Linyphiidae) as aerial wind dispersers which frequently balloon, as these have been 236 

found to balloon more often than non-Orbicularia which we classified as ground-dispersers 237 

(Entling et al. 2011). Other beetles (checkered, soldier beetles) and earwigs with no aerial 238 

dispersal were defined as ground-dwellers. Taxa able to actively fly were classified as active 239 

fliers (‘flight’; bees, aculeate wasps, butterflies, flies, bugs, beetles following Gossner et al. 240 

2015). Taxa capable of active flight but are also frequently transported on wind currents were 241 

defined as ‘flight/wind’ dispersers (parasitoid wasps, aphids, the aphid midge A. aphidimyza, 242 

cereal leaf and pollen beetles, weevils; Sawyer & Haynes 1986; Westbrook et al. 2000; 243 

Skellern et al. 2017; Ludwig et al. 2018).  244 

Stratum: taxa that forage mainly by walking, jumping or web-building on the ground or 245 

within vegetation were defined as occupying the ground and vegetation strata. These included 246 

aphids, spiders, earwigs, beetles (except lady, cereal leaf and pollen beetles), shore, shield, 247 

and damsel bugs. Taxa that frequently forage by flying between target hosts or to find prey 248 

were defined as occupying the aerial stratum, including bees, wasps, butterflies, flies, 249 

lacewings, midges, rape stem weevils, lady, cereal leaf and pollen beetles, planthoppers, saw- 250 

and stoneflies. 251 

Full trait data for all species are accessible at doi:10.5061/dryad.6tj407n. Species and family 252 

names were resolved using online databases (NCBI 2018; World Spider Catalog 2018) and 253 
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classified using R package taxize v.0.9.0 (Chamberlain & Szöcs 2013; Chamberlain et al. 254 

2016). 255 

Cluster regression 256 

Functional groups of organisms with similar impacts on, or responses to, their environment 257 

can be defined a priori, using existing knowledge or assumptions on which species should 258 

have similar impacts or responses to the environment. Alternatively, functional groups can be 259 

defined using classification methods that identify emergent groups with similar 260 

environmental responses. We used one such method, cluster regression, to aggregate the 261 

diversity of responses of individual species into emergent groupings (trait syndromes) formed 262 

with less subjectivity than a priori groupings (Kleyer et al. 2012).  263 

Cluster regression is a multivariate approach that first builds species groups from all possible 264 

combinations of their functional traits, then separates trait combinations (syndromes) that are 265 

responsive to environmental gradients from those that are neutral. The method assumes that 266 

the species pool in a landscape can be classified based on correlations between traits due to 267 

underlying tradeoffs or allometries, and that the emergent groups can have similar responses 268 

to the environment (Kleyer et al. 2012; Lavorel et al. 1997; Lavorel and Garnier 2002). The 269 

first step of this approach involves forming groups based on hierarchical clustering of the 270 

functional trait space. For this, the trait space is defined successively using one to all six 271 

available functional traits. In a second step, the resulting groups based on all possible 272 

combinations of traits are regressed against environmental variables (see below). Goodness of 273 

fit measures of these regressions then allow to compare and identify the most parsimonious 274 

trait combinations that are responsive to environmental variables. 275 

Following Kleyer et al. (2012), we performed a cluster regression on the six categorical traits 276 

defined in Table 1 using Ward’s hierarchical agglomerative clustering algorithm based on 277 

Gower distance between categorical traits (function hclust in R package stats v.3.4.3, using 278 

Ward’s minimum variance method with clustering criterion; Murtagh & Legendre 2014). 279 

Clusters were bootstrapped 500 times to assess cluster stability and the Calinski-Harabasz 280 

stopping criterion was used to determine the optimal number of clusters for each combination 281 

of traits. Using R code adapted from Kleyer et al. (2012), we then performed a cluster 282 

regression of all stable cluster combinations. For this, we used linear models to regress the 283 

ln(x+1)-transformed abundance of all stable cluster combinations against linear and 2nd 284 

degree polynomial explanatory landscape variables, measured at 500 m radius around sites. 285 
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As 500 m is the minimum radius for all studies, all species of all studies were included. 286 

Tested explanatory landscape variables were % seminatural habitat (SNH), % arable land and 287 

edge density (ED). These variables were hypothesized to act as environmental filters for 288 

different species groups (see Introduction and Methods). Performing a cluster regression with 289 

these variables allowed us to identify shared responses to environmental filters of different 290 

possible species groups (clusters) obtained by hierarchical clustering. These regressions used 291 

simplified models compared to the main analyses (see Methods and ‘Model formulation’ 292 

below). They were used to identify the most parsimonious combinations of traits and 293 

numbers of clusters for the set of landscape variables that we explore in subsequent analyses 294 

(see Statistical analyses; Kleyer et al. 2012). Prior to regression, abundances of each study 295 

were standardized between 0 and 1. Following Kleyer et al. (2012), linear and 2nd degree 296 

polynomials of landscape variables were applied in univariate and multivariate additive 297 

models with all combinations of uncorrelated variables. After model-averaging significant 298 

univariate and multivariate models (with p≤0.05) (Burnham & Anderson 2002), we 299 

calculated the R2 of averaged models as the squared correlation between observed and 300 

predicted (model-averaged) values for each cluster. We then selected optimal parsimonious 301 

trait combinations as those for which the number of clusters and the correlation between 302 

observed and predicted values did not increase with the inclusion of additional traits 303 

(Bernhardt-Römermann et al. 2008). Clusters obtained from parsimonious trait combinations 304 

were defined as trait syndromes. As trait syndromes may differ between functional groups 305 

(due to interactions between effect and response traits; Lavorel & Garnier 2002), we 306 

performed these analyses separately for pollinators, enemies and pests. 307 

 308 

Model formulation and analysis 309 

Here we present the structure of full models analysed in R. Due to several studies reporting 310 

average values of abundance over multiple censuses in each site, generalized models for 311 

count data were not used. Full linear mixed models included edge density, one composition 312 

variable (% semi-natural habitat or % arable land) and their interaction as fixed effects. In 313 

addition, we expected non-linearity including hump shapes for several parameters (Fig. 1). 314 

We thus included quadratic terms (R function poly() scaled using package polypoly v.0.0.2; 315 

Mahr 2017) for predictors and their interactions as recommended by Hainmueller et al. 316 

(2017) (see all terms included in full models excepting intercepts Fig. S5-7). Below, we 317 
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provide an explanation of how to interpret quadratic interactions in these models (§ Model fit 318 

and interpretation). As we expected changes at low values of predictors to have stronger 319 

impacts than at high values, we ln(x+1)-transformed all landscape predictors. This 320 

transformation improved model fits (R2 calculated as the variance explained by marginal and 321 

conditional effects, respectively; Nakagawa & Schielzeth 2013) compared to untransformed 322 

variables and was maintained in all analyses. 323 

To account for multiple nesting of sites according to study, year and measurement method, 324 

we built random structures as follows. Random intercepts were SY (study-year, the 325 

combination of one study in one year); SYM (sampling method nested in study-year, for 326 

studies with multiple sampling methods e.g. targeting different taxonomic groups) and 327 

SYMB (block within method within study-year). Blocks grouped together observations 328 

sampled from multiple distances in the same field (3 studies), from multiple locations in the 329 

same landscape (e.g. fields and their margins; 11 studies), or from multiple locations in the 330 

same region for studies including several regions (2 studies). Since these random terms are 331 

strictly nested, specifying crossed effects is equivalent to specifying nested ones (Newbold et 332 

al. 2015). As similar studies were frequently performed in the same area, occasionally in the 333 

same year, and studies with multiple years usually used different sites each year, we did not 334 

nest year within study. Instead, we considered each year of multi-year studies to be an 335 

independent dataset and used study-year combinations as the highest hierarchical unit. 336 

Further, landscape effects may vary according to study and year. Initial models included 337 

random slopes with respect to study-year for edge density, landscape composition and their 338 

interaction (Barr et al. 2013). To avoid overparameterization, we then obtained parsimonious 339 

random structures for each model accounting for the variance explained by each random term 340 

using the ‘RePsychLing’ procedure (Baayen et al. 2015; Bates et al. 2015). In functional 341 

group analyses, we excluded study-year-method combinations (SYM) where fewer than 4 342 

sites and <20% of all sites had non-zero abundance. For some responses and landscape radii, 343 

variances were abnormally inflated despite the use of orthogonal polynomials. This is likely 344 

due to high variable correlation for particular groups and radii (O’Brien 2007). To account 345 

for this, we excluded these responses and scales from interpretation. As all CIs of these cases 346 

included zero, the overall interpretation of results was not affected. The three excluded cases 347 

were: all enemies, ‘gd, crop’ enemies in models with % arable at 100 m radius, and ‘wind, 348 

non crop’ enemies in models with % SNH at 3 km radius. In these cases, variance inflation 349 
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factors (VIF) were above 10 and exceeded the mean VIF across radii for these responses by 350 

>300% (they were respectively 51, 101, and 75). 351 

Models including polynomial terms may potentially produce artefacts at the boundaries of 352 

observed values of explanatory variables. To confirm the robustness of results obtained with 353 

polynomial models, we ran additional analyses using generalized additive mixed modelling 354 

(GAMM, R package mgcv v.1.8-24; Wood 2017). We present the detailed methods and 355 

results of these analyses in Appendix S4. GAMM analyses led to similar results to those 356 

presented in the main text, thus confirming overall conclusions (see Appendix S4). 357 

Performing within-model contrasts by testing interactions of functional groups or response 358 

syndromes with landscape terms is the only way to formally test differences in effects 359 

between groups (Brown et al. 2014; Forstmeier et al. 2016). Here, due to the imbalanced 360 

nature of the contrasts (different groups sampled in different studies) and to avoid model 361 

overcomplexity (Brown et al. 2014), we do not include such interactions in models and 362 

instead consider functional groups as separate response variables. In results, no effects found 363 

for a certain group thus indicate only that, and they do not indicate a significant difference 364 

from a group where effects were found. 365 

To examine whether landscape predictors had significantly higher explanatory power when 366 

applied to trait syndromes within functional groups compared to broad groups of arthropods, 367 

we compared the marginal R2 of models relating to trait syndromes (n=132) to those of 368 

models relating to pollinators, enemies and pests (n=36). We tested significance of the 369 

difference by applying a Wilcoxon rank sum test for non-parametric data on the marginal R2 370 

values obtained at each scale for each response variable. 371 

 372 

Model fit and interpretation 373 

Interpretation of model terms 374 

Quadratic terms were included in models to account for expected hump shapes of the effect 375 

of landscape predictors across full gradients (see hypotheses in Introduction and Fig 1d). In 376 

addition, we expect the non-linearity of effects (e.g. decreases of abundance and/or services 377 

at high values of the predictors) to depend on interactions between the landscape variables 378 

(shaded grey area in Fig.1d). For example, decreases in abundance at high amounts of semi-379 

natural or arable habitat, caused by a lack of complementary crop and non-crop resources, 380 
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may be lifted when edge density between patches is high, increasing spillover. In models, this 381 

is formalized by including interactions between quadratic and linear effects of composition 382 

and configuration variables (ED:SNH^2 and SNH:ED^2, Fig. S5-7). A significant 383 

ED:SNH^2 term indicates that a quadratic effect of % SNH is present at some values of ED, 384 

but changes or disappears at other values of ED. Conversely, the effect of ED depends on the 385 

value of SNH^2 (e.g. it can be positive at low SNH^2 = low or high % SNH, but not at high 386 

SNH^2 = intermediate SNH). Following the principle of marginality, lower order terms (e.g. 387 

ED and SNH) are only interpreted as main effects if they are not involved in significant 388 

higher-order interactions (Nelder 1994; Hao & Zhang 2017). The direction of effects in the 389 

presence of significant interactions is shown in Figs. 2-4 and can be interpreted from model 390 

coefficients (Figs. S5-7) as follows: 391 

Full models (excluding error and random terms) are coded as: 392 

Y = b0 + b1SNH + b2SNH2 + b3ED + b4ED2 + b5ED × SNH + b6SNH × ED2 + b7ED × SNH2 (1) 393 

Where Y is the response variable, 𝑏𝑏0…𝑏𝑏7 are the estimates of each term, and SNH and ED 394 

are mean-centered %SNH and edge density, respectively. For any given value of SNH, Y is a 395 

simple function of ED and ED^2 (and vice versa for any given value of ED), following: 396 

𝑌𝑌 = 𝑎𝑎0 + 𝑎𝑎1𝐸𝐸𝐸𝐸 + 𝑎𝑎2𝐸𝐸𝐸𝐸2  where  �
𝑎𝑎0 = 𝑏𝑏0 + 𝑏𝑏1𝐸𝐸𝑁𝑁𝑆𝑆 + 𝑏𝑏2𝐸𝐸𝑁𝑁𝑆𝑆2

𝑎𝑎1 = 𝑏𝑏3 + 𝑏𝑏5𝐸𝐸𝑁𝑁𝑆𝑆 + 𝑏𝑏7𝐸𝐸𝑁𝑁𝑆𝑆2

𝑎𝑎2 = 𝑏𝑏4 + 𝑏𝑏6𝐸𝐸𝑁𝑁𝑆𝑆
        (2) 397 

𝑌𝑌 = 𝑎𝑎′0 + 𝑎𝑎′1𝐸𝐸𝑁𝑁𝑆𝑆 + 𝑎𝑎′2𝐸𝐸𝑁𝑁𝑆𝑆2  where  �
𝑎𝑎′0 = 𝑏𝑏0 + 𝑏𝑏3𝐸𝐸𝐸𝐸 + 𝑏𝑏4𝐸𝐸𝐸𝐸2

𝑎𝑎′1 = 𝑏𝑏1 + 𝑏𝑏5𝐸𝐸𝐸𝐸 + 𝑏𝑏6𝐸𝐸𝐸𝐸2

𝑎𝑎′2 = 𝑏𝑏2 + 𝑏𝑏7𝐸𝐸𝐸𝐸
    (3) 398 

In particular, if either covariate is at its mean (mean-centered SNH = 0 or mean-centered ED 399 

= 0, respectively), then:  400 

𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏3𝐸𝐸𝐸𝐸 + 𝑏𝑏4𝐸𝐸𝐸𝐸2           𝐸𝐸𝑁𝑁𝑆𝑆 = 0             (2a) 401 

𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏1𝐸𝐸𝑁𝑁𝑆𝑆 + 𝑏𝑏2𝐸𝐸𝑁𝑁𝑆𝑆2           𝐸𝐸𝐸𝐸 = 0             (3a) 402 

In equations (2) and (3), the parameters 𝑎𝑎1 and 𝑎𝑎′1 determine the slope of quadratic effects at 403 

mean predictor values. The parameters 𝑎𝑎2 and 𝑎𝑎′2 determine the direction and degree of 404 

curvature of quadratic effects: positive values indicate a convex curve (‘bowl-shaped’), and 405 

negative values a concave one (‘hump-shaped’). For example, for all arthropods at scale 3: 406 

both 𝑏𝑏3 and 𝑏𝑏4 are non-significant (i.e., not significantly different from zero; Fig. S5), thus, 407 

when % SNH is at its mean, Y is not significantly different from a constant and the 408 
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abundance of all arthropods does not vary significantly according to edge density (eq. 2a). 409 

However, when %SNH is higher than the mean (mean-centered SNH >0), then: 410 

𝑌𝑌 = 𝑎𝑎0 + 𝑎𝑎1𝐸𝐸𝐸𝐸 + 𝑎𝑎2𝐸𝐸𝐸𝐸2   where   �𝑎𝑎1 ≈ 2𝐸𝐸𝑁𝑁𝑆𝑆 + 1.8𝐸𝐸𝑁𝑁𝑆𝑆2 > 0
𝑎𝑎2 ≈ 0  411 

Thus 𝑌𝑌 = 𝑎𝑎0 + 𝑎𝑎1𝐸𝐸𝐸𝐸 + 𝑎𝑎2𝐸𝐸𝐸𝐸2 where 𝑎𝑎1 > 0 and 𝑎𝑎2 ≈ 0, indicating a significant positive 412 

(linear) effect of edge density when %SNH is higher than the mean. Similarly, all arthropods 413 

do not vary significantly with %SNH when edge density is at its mean (𝑏𝑏1 and 𝑏𝑏2 non-414 

significant; eq. 3a). However, when edge density is higher than the mean (mean-centered ED 415 

>0), then: 416 

𝑌𝑌 = 𝑎𝑎′0 + 𝑎𝑎′1𝐸𝐸𝑁𝑁𝑆𝑆 + 𝑎𝑎′2𝐸𝐸𝑁𝑁𝑆𝑆2  where  � 𝑎𝑎′1 ≈ 2𝐸𝐸𝐸𝐸 > 0
𝑎𝑎′2 ≈ 1.6𝐸𝐸𝐸𝐸 > 0 417 

Thus 𝑌𝑌 = 𝑎𝑎′0 + 𝑎𝑎′1𝐸𝐸𝑁𝑁𝑆𝑆 + 𝑎𝑎′2𝐸𝐸𝑁𝑁𝑆𝑆2  where 𝑎𝑎′1 and 𝑎𝑎′2 are positive, indicating a convex effect of 418 

%SNH on all arthropods, with positive slope when % SNH is at the mean. 419 

 420 

Model cross-validation 421 

Full models were fit for all responses and scales. To verify the absence of overfitting, we 422 

used a cross-validation approach testing whether prediction error of the models increases 423 

when applied to new data (Hastie et al. 2009). We partitioned the data for each response into 424 

‘training’ and ‘test’ datasets (80 vs. 20% of the data, respectively) with 200 permutations, 425 

respecting the grouping structure of the data (all observations from one study were kept in 426 

one partition) using R package groupdata2 v.1.0.0 (Olsen 2017). We used 4-fold cross-427 

validation (respecting data structure by study and method) to obtain Root Mean Square Errors 428 

(RMSE) of predictions on the training datasets, and compared these to the RMSE of 429 

predictions on the ‘test’ datasets using one-sample t-tests of the difference in RMSE between 430 

test and training data (ΔRMSE). Hereby, a significant positive difference in RMSE would 431 

indicate that the prediction error is higher when applying predictions to new data, and would 432 

thus suggest that overfitting is an issue. 433 

For all responses and scales, the prediction error on test datasets was not significantly higher 434 

than on training datasets (all p>0.1). Overall, differences in error between test and training 435 

data were non-significant for all response variables, indicating that the full models including 436 

quadratic terms did not overfit the data. In two cases (‘All pests’ with %SNH at scale 6: 437 

ΔRMSE = 9, and ‘Pest control’ with % arable at scale 6: ΔRMSE = 2.4), differences in error 438 
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were higher than the maximum difference of 1.5 for all other response variables. However, 439 

excluding these models does not affect the interpretation of results. 440 

 441 
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