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A TIME DEPENDENT MODEL TO DETERMINE THE
THERMAL CONDUCTIVITY OF A NANOFLUID

T.G. MYERS, M.M. MACDEVETTE AND H. RIBERA

Abstract. In this paper we analyse the time-dependent heat equations over
a finite domain to determine expressions for the thermal diffusivity and con-
ductivity of a nanofluid (where a nanofluid is a fluid containing nanoparticles
with average size below 100nm). Due to the complexity of the standard mathe-
matical analysis of this problem we employ a well-known approximate solution
technique known as the Heat Balance Integral Method. This allows us to de-
rive simple analytical expressions for the thermal properties, which appear to
depend primarily on the volume fraction and liquid properties. The model is
shown to compare well with experimental data taken from the literature even
up to relatively high concentrations and predicts significantly higher values
than the Maxwell model for volume fractions approximately greater than 1%.
The results suggest that the difficulty in reproducing the high values of con-
ductivity observed experimentally may stem from the use of a static heat flow
model applied over an infinite domain rather than applying a dynamic model
over a finite domain.

1. Introduction

There exists a vast literature on the enhanced thermal properties of nanofluids
when compared to their base fluids. The often remarkable enhancement then
suggests nanofluids as the solution for heat removal in many modern electronic
devices. However there are discrepancies and much debate over experimental
findings and so far no satisfactory mathematical model has been proposed to
describe the thermal response of a nanofluid (Buongiorno et al., 2009; Eastman
et al., 2004; Eastman et al., 2001; Koo & Kleinstreuer, 2004; Prasher et al., 2005).
The classical analysis of heat conduction for solid-in-liquid suspensions is that

of Maxwell (Maxwell, 1891), based on effective medium theory. Das et al. (Das et
al., 2008) describe in detail how this result is derived. The nanofluid is assumed
to occupy a sphere of radius r0. This sphere is approximated as a homogeneous
medium containing an ‘effective fluid’ and the steady state heat equation is solved
in the region outside of the sphere, r ∈ [r0,∞], subject to continuity of temper-
ature and heat flux at the boundary r = r0. The result obtained from this
analysis is then applied to describe the thermal response of an infinite volume
of liquid surrounding a single particle. Using the principle of superposition this

Key words and phrases. Nanofluid; Enhanced thermal conductivity; Mathematical model;
Heat Balance Integral Method; Maxwell model.
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2 T.G. MYERS, M.M. MACDEVETTE AND H. RIBERA

last result may then be used to approximate the temperature profile for a fluid
containing many particles. The two temperature expressions (outside the sphere
of radius r0 and that obtained by superposition) are finally equated to determine
an appropriate thermal conductivity for the effective fluid:

(1) ke =

[
2kl + kp + 2ϕ(kp − kl)

2kl + kp − ϕ(kp − kl)

]
kl ,

where ke, kp, kl represent the effective, particle and liquid thermal conductivity
respectively and ϕ is the particle volume fraction.
There are obvious problems with the Maxwell model. Firstly, it is based on

analysing the heat flow in the material surrounding an equivalent nanofluid and
the heat flow around a particle, as opposed to analysing the actual nanofluid
or particle behaviour. The analysis is carried out over an infinite region. The
principle of superposition is then applied to determine the response around in-
finitely many particles, each separated by an infinite volume of fluid. Hence the
result can only be applied to a highly disperse fluid where the particles are so
far apart that an energy change in one has a negligible effect on any other par-
ticle. This approach will clearly lead to problems as the particle concentration
increases. Further, the Maxwell model is based on a steady-state solution but in
general one would wish to analyse how a nanofluid responds in a time-dependent
situation.
Despite the various drawbacks the Maxwell model is known to work well with

low volume fraction fluids containing relatively large particles (microscale or
above). Only when the particle size decreases to the nanoscale do problems
become apparent. For example, for sufficiently small volume fractions, ϕ, the
relation between the conductivity and volume fraction may be linearised

ke
kl

≈ 1 + Ckϕ ,(2)

where Ck is known as the conductive enhancement coefficient. Keblinski et al
(Keblinski et al., 2005) compared the data from various groups working with
nanofluids and found that for most of the data Ck ≈ 5 whilst the Maxwell model
predicts Ck ≈ 3. A linear approximation to the Maxwell model follows easily
from (1) by first noting kp is much larger than kl (see Table 1) and so kl may
be neglected in the square brackets. Then, using a binomial expansion based on
small ϕ we obtain the correct enhancement coefficient,

(3) ke ≈
[
kp + 2ϕkp
kp − ϕkp

]
kl ≈ (1 + 2ϕ)(1 + ϕ)kl ≈ (1 + 3ϕ)kl ,

which coincides with the conclusions of Keblinski et al. (Keblinski et al., 2005).
In an attempt to improve the fit between theory and experiment various re-

searchers have extended or modified Maxwell’s model. The Hamilton and Crosser
(Hamilton & Crosser, 1962) model is a slight adaptation to account for particle
shape: for spherical particles it reproduces the Maxwell result. Yu and Choi
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(Yu & Choi, 2003) reapply the Maxwell result to include the effect of a nanolayer
on the particle surface, they subsequently extend this to the Hamilton-Crosser
model (Yu & Choi, 2004). However, the thermal conductivity and thickness of
this nanolayer are unknown. Wood and Ashcroft (Wood & Ashcroft, 1977) pro-
pose a multi-component version of the Maxwell model which is then extended by
Wang et al. (Wang et al., 2003) to incorporate particle clustering for non-metallic
particles and is valid for very low volume fractions (below 0.5%). In each case the
introduction of new effects and new parameters permits better agreement with
certain experiments. For example, in (Yu & Choi, 2003) choosing a nanolayer
with thickness 2nm and nanolayer conductivity greater than ten times that of
the base fluid leads to excellent agreement with data for a CuO-Ethylene glycol
suspension. In (Das et al., 2008) a comprehensive list of variations to Maxwell’s
model and similar theories are described. They go on to describe a number of
dynamic models which incorporate effects such as Brownian motion and nanocon-
vection. Examples of these include the work of Koo and Kleinstreuer (Koo &
Kleinstreuer, 2004) who alter the Maxwell model by adding on a term to account
for Brownian motion. Prasher et al. (Prasher et al., 2005) multiply the Maxwell
result to include a Brownian factor. Their model has two free parameters which
are then chosen to match experiment.
Tillman and Hill (Tillman & Hill, 2007) take a slightly different approach by

focussing on the effect of the nanolayer. They analyse the steady-state heat
equation by first assuming some asymmetry which motivates a solution involving
Legendre polynomials (the functions that describe the polar angle variation of the
solution). Their nanolayer has a varying conductivity and unknown thickness and
they investigate possible forms for klayer(r). They found the nanolayer thickness
as a percentage of the particle radius, ranging between 19% to 22%, when klayer
is a polynomial of degree greater than 23.
The motivation behind the above studies and a host of others including, for

example, particle aggregation or based on matching experimental observation,
is the lack of a theory which matches a wide range of experimental data. The
Maxwell model indicates thermal conductivity varies solely with volume frac-
tion, however, there is evidence indicating variation due to size, shape, particle
material, additives, pH and temperature effects (Philip & Shima, 2012) (and
often evidence to the contrary (Philip & Shima, 2012)). Brownian motion has
been shown to provide improved agreement with certain data yet Keblinski et al
(Keblinski et al., 2002) show that the time-scale for Brownian motion is so much
slower than thermal diffusion that it is unlikely to play an important role in heat
transfer. Of course, since Maxwell is steady-state any modification of Maxwell
(or models derived from it) would not be able to take into account different time-
scales. Liquid layers have been inferred via experiments and simulation, but only
around 1nm thick, which then cannot account for a sufficient increase in conduc-
tivity (Eastman et al., 2004). Keblinski et al. (Keblinski et al., 2008) suggest
that much of the controversy over thermal conductance prediction may be due
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to the assumption of well dispersed particles, when in fact particle aggregation
may take place.
Motivated by the obvious drawbacks of the Maxwell model and the difficulties

in matching experimental evidence and recent advances in the understanding of
nano phenomena in this paper we take a different theoretical approach. Our
mathematical model, described in §3 will involve the time-dependent response
of a system containing a single nanoparticle surrounded by a finite volume of
fluid (so fitting into the dynamic category of models described in (Das et al.,
2008)). This will be matched to the response of an equivalent fluid volume with
an unknown diffusivity. Given the mathematical complexity of this approach,
in §2 we will first describe an accurate approximate mathematical method for
solving the heat equation over a finite domain. In §4 we compare the expression
for the thermal conductivity determined through the present analysis with that
of Maxwell and experimental data. This shows that the present model not only
predicts a significantly larger enhancement than Maxwell, but also matches well
to a large range of data, without the need for additions such as a nanolayer or
Brownian motion. Further, since the analysis is carried out over a finite volume
it is not restricted to highly disperse fluids.

2. The Heat Balance Integral Method

The mathematical model laid out in §3 will require the solution of time-
dependent heat equations in two adjacent finite volumes. The exact mathematical
solution is cumbersome, involving infinite series, and so it is difficult to isolate the
dependence on physical parameters. For this reason we will employ an approx-
imate solution technique known as the Heat Balance Integral Method (HBIM).
In the following we will illustrate the HBIM through an example, which will then
be used in our subsequent analysis. In §3.1 we will determine the exact solution
for the simpler problem of heat flow in a single fluid volume, this will then be
compared to the HBIM to solution to verify its accuracy.
Consider the standard thermal problem, defined on a semi-infinite domain,

where a material initially at a constant temperature is heated to a different tem-
perature at the boundary y = 0. In non-dimensional form this may be written

(4)
∂u

∂t
=

∂2u

∂y2
u(0, t) = 1 u|y→∞ → 0 u(y, 0) = 0 .

The HBIM involves choosing a simple function to approximate the temperature
over a finite region δ(t), known as the heat penetration depth. Since the heat
equation has infinite speed of propagation the heat penetration depth is a notional
concept. For y ≥ δ the temperature change above the initial value is negligible
(although we do not define what constitutes negligible). For this example the
heat penetration depth would be defined by the boundary conditions u(δ, t) = 0
and uy(δ, t) = 0.
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If the approximating function is a polynomial of the form

u = a0 + a1

(
1− y

δ

)
+ an

(
1− y

δ

)n

,(5)

then the conditions u(δ, t) = 0 and uy(δ, t) = 0 determine a0 = a1 = 0, the
condition at y = 0 determines an = 1 and so

u =
(
1− y

δ

)n

.(6)

The expression for u involves two unknowns, δ(t) and n. The heat penetration
depth is determined by integrating the heat equation over the region y ∈ [0, δ]

(7)

∫ δ

0

∂u

∂t
dy =

∫ δ

0

∂2u

∂y2
dy .

This is termed the heat balance integral. Since u(δ, t) = uy(δ, t) = 0 this leads to

(8)
d

dt

∫ δ

0

u dy = −∂u

∂y

∣∣∣∣
y=0

.

Substituting for u from equation (6) leads to a single ordinary differential equation
for δ with solution

δ =
√
2n(n+ 1)t ,(9)

where δ(0) = 0.
The standard HBIM takes n = 2, although there are many other possibili-

ties, often chosen through knowledge of an exact solution, see (Mitchell & Myers,
2010). Myers (Myers, 2009) developed a method, which minimises the least-
squares error when the approximate function is substituted back into the heat
equation. This not only ensures a globally accurate representation but also re-
moves the need for an exact solution. With the above problem the value of n
that minimises the error is n = 2.233: this value leads to excellent agreement
with the exact solution.
For problems over a finite domain the HBIM generally involves two stages. The

first is as described above, this lasts until the heat penetrates to the boundary.
In the second stage the boundary temperature, rather than δ, is the second
unknown. A more detailed explanation of the HBIM, error minimisation and
further examples are provided in (Mitchell & Myers, 2010; Mitchell & Myers,
2010; Myers, 2009; Myers, 2010).

3. Thermal analysis of a particle-fluid system

To describe the thermal response of a nanoparticle in a fluid consider a spherical
volume of fluid, with radius R, containing a solid particle, with radius rp. The
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radius R is related to the volume fraction in the following manner. For a given
volume V , the volume fraction of particles is

ϕ =
(4/3)πr3pN

V
(10)

where N is the number of particles contained in V . If we divide the volume into
N equal components of radius R then each volume V = (4/3)πR3 contains a
single nanoparticle and so

ϕ =
(4/3)πr3p
(4/3)πR3

=
r3p
R3

.(11)

A disperse fluid, with few particles, will have R large and hence rp/R ≪ 1, whilst
a higher concentration of particles will result in higher rp/R. For a known volume

V containing N particles we may define R = 3
√
3V/(4πN).

The heat equations in the particle and liquid are

∂T

∂t
=

αp

r2
∂

∂r

(
r2
∂T

∂r

)
r ∈ [0, rp](12)

∂θ

∂t
=

αl

r2
∂

∂r

(
r2
∂θ

∂r

)
r ∈ [rp, R] .(13)

Initially the fluid and particle have the same, constant temperature T0. At time
t = 0 the boundary r = R is heated to a different temperature TR. Assuming
continuity of temperature and heat flux at the interface, the governing equations
are then subject to the following boundary conditions

θ(r, 0) = T (r, 0) = T0 θ(R, t) = TR θ(rp, t) = T (rp, t) = Tp(t)(14)

kl
∂θ

∂r

∣∣∣∣
r=rp

= kp
∂T

∂r

∣∣∣∣
r=rp

∂T

∂r

∣∣∣∣
r=0

= 0 ,(15)

where Tp is the unknown temperature at the particle-fluid interface.
To simplify the problem we first write it in non-dimensional form

T̂ =
T − T0

TR − T0

r̂ =
r

R
t̂ =

t

τ
,(16)

and immediately drop the hat notation. Since the liquid occupies most of the
volume we choose the standard diffusion time-scale τ = R2/αl and then

∂T

∂t
=

α

r2
∂

∂r

(
r2
∂T

∂r

)
r ∈ [0, rp](17)

∂θ

∂t
=

1

r2
∂

∂r

(
r2
∂θ

∂r

)
r ∈ [rp, 1] ,(18)
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where α = αp/αl and rp is now the original particle radius divided by R. The
boundary conditions become

θ(r, 0) = T (r, 0) = 0 θ(1, t) = 1 θ(rp, t) = T (rp, t) = Tp(t)(19)

∂θ

∂r

∣∣∣∣
r=rp

= k
∂T

∂r

∣∣∣∣
r=rp

∂T

∂r

∣∣∣∣
r=0

= 0 ,(20)

where k = kp/kl.

Table 1 contains a short list of thermal parameter values for typical substances
used to make nanofluids. The values α = αp/αl ∈ [60, 1200] and k = kp/kl ∈
[50, 1500] which appear in equations (17, 20) are both large. Therefore we may
divide both sides of the appropriate equations by these values and find that the
thermal problem in the particle may be well approximated by

0 ≈ 1

r2
∂

∂r

(
r2
∂T

∂r

)
(21)

T (r, 0) = 0 T (rp, t) = Tp(t)
∂T

∂r

∣∣∣∣
r=rp

≈ 0
∂T

∂r

∣∣∣∣
r=0

= 0 .(22)

For Al2O3 in water the largest error in this approximation comes through setting
Tr(rp, t) ≈ 0, this error is of the order kl/kp ≈ 1/50 = 0.02 or 2%. For Cu in
ethylene glycol the largest error comes through the heat equation by neglecting
the Tt term, which leads to errors of the order αl/αp ≈ 0.0008 or 0.08%. The
solution of this reduced system is simply

T (r, t) = Tp(t) ,(23)

where Tp(t) is an unknown function, however, the initial condition on T indicates
Tp(0) = 0. This solution shows that the temperature is approximately indepen-
dent of r in the nanoparticle. The physical interpretation of this is that changes
in the liquid temperature are relatively slow: the speed of heat flow in the liq-
uid is characterised by αl/R

2 and αl is much smaller than αp. When a change
in liquid temperature reaches the particle, which has a much higher diffusivity,
it very rapidly distributes the heat. Consequently, on the liquid time-scale the
particle temperature is approximately (to within the errors quoted above) the
temperature at the liquid-particle boundary. Note, this result matches the ex-
perimental observations of Philip and Shima (Philip & Shima, 2012) that the
conductivity of the solid does not dictate the conductivity of the nanofluid. It
is also clear from simple equations, such as the Maxwell equation (1), as shown
by the approximation (3), with an error of order kl/kp which is below 2% for the
values quoted in Table 1.

The HBIM is well-known to be less accurate in spherical than Cartesian co-
ordinates, particularly if the origin is included in the domain. In the following
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Substance
Density ρ
(kg/m3)

Specific heat c
(J/kg K)

Diffusivity α
(m2/s)

Conductivity k
(W/m K)

Al203 4000 880 8.522× 10−6 30

Copper 8920 390 1.152× 10−4 401

Water 998 4190 1.387× 10−7 0.58

Ethylene Glycol 1110 2470 9.4102× 10−8 0.258

Table 1. Typical thermal parameter values for two nanoparticles
and base fluids.

analysis we will work over the range r ∈ [rp, 1]. For very low volume fractions,
rp → 0, we will see that the results do not compare well with experimental data
but for ϕ > 1% the agreement is good. To improve the HBIM accuracy and
to exploit the method described in the previous section we now transform the
problem in the liquid to a Cartesian system, with heat applied at the left hand
boundary, by making the change of variables

θ =
u

r
y =

1− r

1− rp
.(24)

The heat equation in the liquid is now

∂u

∂t
= λ

∂2u

∂y2
(25)

where λ = 1/(1− rp)
2 and is subject to

(26) u(y, 0) = 0 u(0, t) = 1 u(1, t) = rpTp(t)
∂u

∂y

∣∣∣∣
y=1

= −(1− rp)Tp .

The domain r ∈ [rp, 1] is transformed to y ∈ [0, 1] with the heat applied at y = 0.
The HBIM analysis of this system requires two stages. In the first stage heat
is applied at the boundary and penetrates to a depth δ ≤ 1, so the boundary
conditions at y = 1 are replaced with

u(δ, t) = 0
∂u

∂y

∣∣∣∣
y=δ

= 0 .(27)

This is exactly the problem formulated in §2 (with time scaled by a factor λ) and

so we define u by equation (6) with n = 2.233 and δ =
√
2n(n+ 1)λt. This stage

ends when δ = 1 at time t = t1 = 1/(2n(n+ 1)λ).
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In the second stage the boundary conditions (26) apply and the HBIM analysis
is slightly modified,

u = rpTp + (1− rp)Tp(1− y) + (1− Tp)(1− y)n .(28)

In this case there is no δ, instead the boundary temperature, Tp(t), is the unknown
function of time. To allow continuity of temperature at t = t1, n = 2.233 again
(note the issues arising from switching n in different phases are discussed in
(Mitchell & Myers, 2008)). The heat balance integral is applied over y ∈ [0, 1]
and leads to

dTp

dt
= Λ(1− Tp) ,(29)

where Λ = nλ/cT and cT = (1 + rp)/2− 1/(n+ 1), hence

Tp = 1− e−Λ(t−t1) .(30)

The HBIM problem is now completely solved. In Stage 1 u is defined by (6),

δ =
√

2n(n+ 1)λt and the particle temperature Tp = 0. This ends at time
t = t1. In Stage 2 u is defined by (28) and the particle temperature Tp by (30).
The non-dimensional temperature in each stage is determined by the relation
θ = u/r.

3.1. Equivalent fluid analysis. To define an equivalent fluid we imagine a
sphere of fluid with diffusivity αe, in the non-dimensional system we write α′ =
αe/αl. If the equivalent fluid temperature is denoted θe then the temperature is
determined by

∂θe
∂t

=
α′

r2
∂

∂r

(
r2
∂θ

∂r

)
θe(1, t) = 1

∂θe
∂r

∣∣∣∣
r=0

= 0 .(31)

We define ue = rθe and denote the temperature at r = 0 as Tc(t). This is
obviously the limit of the liquid thermal problem described in the previous section
after setting rp = 0 and writing Tc instead of Tp. Consequently we may use the
previous solution.
In Stage 1 Tc = 0 and so the formulation matches the HBIM problem of §2 (with

time scaled by the diffusivity α′). Hence the temperature in Stage 1 is described

by equation (6) with δ′ =
√

2n(n+ 1)α′t. This ends at time t′1 = 1/(2n(n+1)α′).
In Stage 2 setting rp = 0 and Tp = Tc equation (28) gives

ue = Tc(1− y) + (1− Tc)(1− y)n(32)

where

Tc = 1− e−Λ′(t−t′1)(33)

and Λ′ = nα′/cT0 and cT0 = (n− 1)/(2(n+ 1)).
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In fact, the thermal problem described by (31) has an exact solution obtained
by separation of variables. This may be used to verify the HBIM solution. In the
Cartesian system this is

us = (1− y) +
N∑

n=1

2
(−1)n

πn
sin(nπ(1− y))e−n2π2α′t ,(34)

where the subscript s denotes separable and r = 1− y.
Equation (34) may be used to verify the HBIM solution given by equation (32).

Since this system has no nanoparticle the equivalent fluid diffusivity is exactly the
liquid value, α′ = 1. The two sets of solutions, with α′ = 1, are shown in Figure 1,
the solid lines are the separable solutions and the dashed lines the HBIM solution
at times t = 0.02, 0.08, 0.2, 0.4. The value of t′1 = 1/(2n(n+1)) = 0.069 indicates
that for t = 0.02 we must use the Stage 1 solution where ue is given by equation
(6) and δ′ = 1/(0.04n(n + 1)) (recall δ′ indicates the position where the HBIM
method predicts the temperature rise is negligible). It may be observed that
the separable solution is approximately zero just slightly beyond the end of the
HBIM solution. For subsequent times the dashed curves are given by equation
(32). In general it is clear that there is a good correspondence between the two
sets of curves.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

t=0.02
0.40.2

0.08

y

u(y,t)

Figure 1. Comparison of separable (solid) and HBIM (dashed) solu-
tions at times t = 0.02, 0.08, 0.2, 0.4

In the r, θ system we may write the temperatures as

θe = Tc + (1− Tc)r
n−1(35)

θs = 1 +
N∑

n=1

2
(−1)n

πnr
sin(nπr)e−n2π2α′t ,(36)

where the first equation holds for t > t′1. The temperature at the centre predicted
by the HBIM is zero for t ≤ t′1 and Tc(t) for t ≥ t′1. For the separable solution



C
R
M

P
re
p
ri
nt

S
er
ie
s
nu
m
b
er

11
77

MODELLING THE THERMAL CONDUCTIVITY OF A NANOFLUID 11

the centre temperature is

θs(0, t) = lim
r→0

us(r, t)

r
= 1 +

N∑
n=1

2(−1)ne−n2π2α′t.(37)

Figure 2 shows a comparison of Tc(t) and θs(0, t). The HBIM solution is the
dotted line which begins at t′1 = 0.069 and steadily rises to the asymptote of
Tc = 1 (the steady-state solution is that the temperature everywhere matches
the boundary temperature θ(1,∞) = 1). The solid line is the separable solution,
which shows that the centre temperature is indeed close to zero for some time,
but it does start to increase noticeably earlier than the HBIM solution. For
t > 0.1 the HBIM solution predicts a slightly higher temperature but in general
the agreement is reasonable.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

t

T
c
(t)

θ
s
(0,t)

Figure 2. Comparison of Tc(t) and θs(0, t)

The goal of this exercise is to find an equivalent fluid that behaves in a similar
manner to the fluid with a nanoparticle. Now the HBIM solution has been shown
to be reasonably accurate we may achieve this goal by some form of matching of
the HBIM solution with a particle and for the equivalent fluid. In this case we
take the simple option of equating the decay rates in the expressions for Tp and
Tc (since this forces the temperature profiles to be similar). This is equivalent to
setting Λ = Λ′ and gives

αe =
αl

(1− rp)2
n− 1

2(n+ 1)

[
1 + rp

2
− 1

n+ 1

]−1

.(38)

The radius rp is non-dimensional, scaled with the fluid radius R. We may express
this result in a more standard form via equation (11), which states rp = ϕ1/3,

αe =
αl

(1− ϕ1/3)2
n− 1

2(n+ 1)

[
1 + ϕ1/3

2
− 1

n+ 1

]−1

.(39)
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Hence the thermal diffusivity of the equivalent fluid depends only on the liquid
diffusivity and volume fraction (the value of n = 2.233 is fixed). The composition
of the nanoparticle does not affect αe. Noting that αe = ke/(ρc)e and (ρc)e =
ϕρpcp + (1 − ϕ)ρlcl, see (Zhou & Rui, 2008), we may write the effective thermal
conductivity as

(40) ke =
kl

(1− ϕ1/3)2

[
(1− ϕ) + ϕ

ρpcp
ρlcl

]
n− 1

2(n+ 1)

[
1 + ϕ1/3

2
− 1

n+ 1

]−1

According to this formula, the equivalent fluid conductivity does depend on the
particle properties, through (ρc)p, but there is no dependence on kp. However,
since the ratio ρpcp/(ρlcl) is order 1 and ϕ is small this is a weak dependence.
In proposing the above formula for the effective diffusivity and conductivity

we must stress the limitations of these results. The reduction of the governing
equations was based on the observation that αp/αl, kp/kl are both large for the
systems given in Table 1 but this may not be true for all nanofluid systems.
So the errors associated with the approximations will increase as the α and k
ratios decrease (for example with ceramic and organic particles). Philip and
Shima (Philip & Shima, 2012) discuss a wealth of experiments and devote a
section to the effect of nanoparticle material on the nanofluid properties. They
quote studies, including their own, that indicate kp is not an important factor in
determining ke (they also quote results leading to the opposite conclusion). The
above formula indicates that the key particle parameter is ρpcp. This does not
appear to have been studied. In the cases where αl/αp, kl/kp are not negligible
then our approximations do not hold and the nanoparticle properties will become
important in determining αe, ke.

4. Comparison with experiment

The true test of a theory comes through comparison with experiment. In
Figures 3, 4 we compare the present prediction for ke with that of Maxwell and
a number of data sets taken from the literature. The most common technique
used to obtain data was the Transient Hot Wire technique. As mentioned in
the introduction, there are many discrepancies between experimental data sets,
see (Buongiorno et al., 2009; Eastman et al., 2004; Eastman et al., 2001; Koo
& Kleinstreuer, 2004; Prasher et al., 2005), and so we cannot hope to match
all points. Figure 3 shows results for an Al2O3-water nanofluid. The predicton
of the current theory, given by equation (40), is shown as the solid line, the
Maxwell result of equation (1) is the dashed line. For very low volume fractions
the Maxwell curve lies above ours and captures the data better, but for ϕ > 0.008
the present model rapidly increases above Maxwell and, more importantly, passes
between a large amount of the experimental data. The slight dip in the solid line
is an artefact of the approximation method, which loses accuracy as ϕ and hence
rp → 0. In contrast to the Maxwell model, which becomes less accurate as ϕ
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Figure 3. Conductivity ratio ke/kl for Al2O3-water nanofluid with
kl = 0.58W/mK: equation (40) (solid line); Maxwell model equation (1)
(dashed line); experimental data from (Wang et al., 1999; Kwek et al.,
2010; Chandrasekar et al., 2010; Teng et al., 2010; Yoo et al., 2007;
Timofeeva et al., 2007; Das et al., 2003; Li & Peterson, 2007)

increases our model becomes less accurate for very small ϕ. To be specific, to
ensure that ke/kl > 1 our model requires volume fractions ϕ > 0.004 or 0.4%.
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0.9

1

1.1

1.2

1.3

1.4

1.5

φ

k
e
/k

l

Lee et al 1999

 Kleinstreuer and Feng 2011

Kwak and Kim 2005

Maxwell model

Current model

Figure 4. Conductivity ratio ke/kl for CuO-ethylene glycol nanofluid
with kl = 0.258W/mK: equation (40) (solid line); Maxwell model equa-
tion (1) (dashed line); experimental data from (Kwak & Kim, 2005;
Kleinstreuer & Feng, 2011; Lee et al., 1999)

Figure 4 shows results for a Cu-ethylene glycol nanofluid. In this case we only
plot three sets of data points. Kwak and Kim (Kwak & Kim, 2005) only present
one data point for ϕ > 0.005, but this point lies close to our curve, the other two
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data sets lie on either side of the present result. As the volume fraction increases
the Maxwell model underpredicts the experimental data.
In both figures it is clear that the present model provides a much better ap-

proximation to the majority of experimental data when compared to the basic
Maxwell model for volume fractions approximately greater than 1%.

5. Conclusion

The Maxwell model and its many variants are based on analysing steady-state
heat flow over an infinite domain to provide an expression for the effective thermal
conductivity of a nanofluid. The infinite domain assumption means the model
is only valid for very disperse fluids. The theory developed in the present pa-
per follows a different approach in that it analyses the dynamic behaviour of a
nanofluid occupying a finite domain. Our analysis is based on a time-dependent
model whereas the Maxwell model is steady-state. The majority of the exper-
imental data was obtained using the Transient Hot Wire technique, that is, a
time-dependent experiment. However, the conductivity should be a constant
fluid property so although our approach may seem more suited to the experi-
mental technique in fact it should be irrelevant whether data is obtained through
transient or steady experiments.
Our model does not have the restriction of a disperse fluid, in fact it loses

accuracy for very low volume fractions, below around 0.4%. Further, to make the
analysis tractable we require the particle to have a much higher diffusivity and
conductivity than the fluid (which is generally the case). This approach leads
to a novel, simple analytical expression for the effective thermal conductivity.
The model contains no unknown parameters, such as nanolayer properties. For
volume fractions ϕ > 1% it shows a greater enhancement than the Maxwell model
and, most importantly, lies well within the values of ke measured via numerous
experiments up to high concentrations.
The variations that have been applied to the Maxwell model could also be ap-

plied to the present model. However, these modifications were motivated by the
fact that Maxwell underpredicts the thermal conductivity. The present model,
which predicts much higher conductivity suggests that perhaps these modifica-
tions are unnecessary. Put another way, the inability of the Maxwell model to
capture the enhancement may be due to the limitations or unphysical assump-
tions of that model rather than any unusual nanoscale effect, such as the presence
of nanolayers or aggregation.
There are many experiments indicating the dependence of ke on quantities

such as particle size, shape and material, additives, pH and temperature effects
(Philip & Shima, 2012) (and many suggesting a lack of dependence (Philip &
Shima, 2012)). Our analysis indicates the effective thermal diffusivity depends
solely (to within an error of the order αl/αp) on ϕ and kl, whilst the effective ther-
mal conductivity depends primarily on these two parameters, with a small effect
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coming from the product of particle density and specific heat, ρpcp. However,
these conclusions rely on the high conductivity and diffusivity ratios between
the particle and base fluid which may not always be true. Organic or ceramic
nanoparticles typically give lower values. When the difference between the parti-
cle and liquid thermal properties is not so large then other effects will enter into
the expressions for conductivity and diffusivity. This could explain the depen-
dence on other system properties mentioned above.
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