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CHAPTER 1

Introduction and Motivation

We begin with an intuitive introduction to the variable Lebesgue spaces, briefly
sketch their history, and give some of the contemporary motivations for studying
these spaces.

1.1. An intuitive introduction

Recall that given an open set Ω ⊂ Rn, the classical Lebesgue space Lp(Ω),
1 ≤ p <∞, is defined to be the collection of measurable functions f such that∫

Ω

|f(x)|p dx < +∞.

For our purposes, the key point in this definition is its homogeneity: each point
of the space is treated the same as every other. A standard way to weaken this
homogeneity assumption is to replace Lebesgue measure with a measure µ, where
µ = w(x) dx. This leads to the theory of weighted norm inequalities, for which
there is an extensive literature. (See [33, 44] and their references. There are some
surprising and deep connections between weighted spaces and variable Lebesgue
spaces: see, for instance, Chapter 4 below and Lerner [69].)

On the other hand, in a variable Lebesgue space we vary the exponent, replacing
p by a function p(·). More precisely, given a measurable function p : Ω → [1,∞),
we define Lp(·)(Ω) to be the set of measurable functions f on Ω such that for some
λ > 0,

(1.1)

∫
Ω

(
|f(x)|
λ

)p(x)

dx < +∞.

The factor λ is introduced for technical reasons which will be made clear below; for
the moment, think of λ = 1.

As a simple example on R, consider the function

(1.2) p(x) =

{
2 x ≤ 0

4 x > 0.

Then Lp(·)(R) consists of all functions f such that∫ 0

−∞
|f(x)|2 dx+

∫ ∞
0

|f(x)|4 dx < +∞.

The lack of homogeneity of this space is immediate: the function |x|−1/3 is not in
Lp(·)(R), but |x|−1/3χ(−1,0), |x|−1/3χ(1,∞) and |x+ 1|−1/3χ(−1,1) are.

Clearly, the more complicated p(·), the more delicate the resulting space. For
instance, if we partition R into the union of two sets E and F , and let

p(x) =

{
2 x ∈ E
4 x ∈ F,

5



6 1. INTRODUCTION AND MOTIVATION

then the resulting space depends heavily on the geometry of the partition. As we
shall see, even if we assume p(·) is uniformly continuous, we can still get quite
complicated behavior.

We can also consider spaces where the exponent function p(·) is unbounded.
For example, on R we could take p(x) = 1+|x|. Such spaces behave quite differently
than the classical Lebesgue spaces. For example, in this case we have that L∞(R) ⊂
Lp(·)(R): given g ∈ L∞, fix λ > ‖g‖∞. Then∫

R

(
|g(x)|
λ

)p(x)

dx ≤
∫
R

(
‖g‖∞
λ

)1+|x|

dx <∞,

and so g ∈ Lp(·)(R). Note that here is why we include the factor λ in the definition
of Lp(·): if did not, then we can easily find g such that ‖g‖∞ > 1 and∫

R
|g(x)|p(x) dx =∞.

Thus, g is not in Lp(·)(R) but we would have cg ∈ Lp(·)(R) for c sufficiently small.

1.2. A brief history

The variable Lebesgue spaces have a long history that falls roughly into three
overlapping stages. They were introduced by Orlicz [81] in 1931; their proper-
ties were further developed by Nakano [77, 78] as special cases of the theory of
modular spaces. In the ensuing decades they were primarily considered as im-
portant examples of modular spaces or the class of Musielak-Orlicz spaces, con-
crete examples of modular spaces that are also generalizations of the classical
Orlicz spaces. See, for example, [76, 83, 103], and in particular the work of
Hudzik [53, 54, 55, 56, 57, 58, 59, 60, 61] that foreshadows many modern
developments.

The variable Lebesgue spaces were independently discovered by the Russian
mathematician Tsenov [101], and extensively developed first by Sharapudinov [94,
95, 96, 97] and then by Zhikov [104, 105, 106, 107, 108, 109, 110, 112, 111].
Russian mathematicians were the first to consider applications of variable Lebesgue
spaces to problems in harmonic analysis and the calculus of variations.

The third stage in the study of variable Lebesgue spaces is usually thought to
begin with the foundational paper by Kováčik and Rákosńık [64] in 1991. Following
its publication a number of mathematicians became interested in these spaces.
Without being comprehensive, we mention the work of: Fan and Zhao [36, 37,
38, 39] on the calculus of variations; Edmunds [34, 35] on variable Sobolev spaces
(i.e., the space of functions whose distributional derivatives up to order k are in
Lp(·)); and Samko and Ross [84, 90, 92, 93] on fractional differential and integral
operators of variable order.

In 2000 the field began to expand even further. Motivated by problems in
the study of electrorheological fluids (see below) Diening [25] raised the question
of when the Hardy-Littlewood maximal operator and other classical operators in
harmonic analysis are bounded on the variable Lebesgue spaces. These and related
problems are still the subject of active research to this day.

1.3. Motivation

The variable Lebesgue spaces are interesting not only in their own right, but
as we have indicated above, for their application to a wide variety of problems. We
first consider a very simple example given in [20]. By a classical result of Calderón-
Zygmund [11], given a bounded domain Ω with a smooth boundary and f ∈ Lp(Ω),
1 ≤ p < ∞, if u is a solution to 4u = f , then u ∈ Lq(Ω), where 1/p− 1/q = 2/n.
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Note, however, that the conclusion, while global, is affected by the local behavior
of f . Thus, f might be badly behaved only on the small subset A ⊂ Ω but this
affects u on all of Ω. (See Figure 1.)

However, this result remains true if we replace the constant exponent p with a
variable exponent p(·) with modest smoothness assumptions (see [20]). Therefore,
if we choose an exponent function that more precisely reflects behavior of f on the
bad set A and the good set B, we get a correspondingly sharper estimate for u.
Similar results hold for other kinds of PDEs.

A B

Figure 1. Ω and the good and bad parts for f .

More generally, we can consider problems that incorporate the variability from
the beginning. For example, in the calculus of variations Zhikov was interested in
minimizers of functionals of the form

F (u) =

∫
Ω

f(x,∇u) dx,

where the Lagrangian satisfies the non-standard growth condition

−c0 + c1|ξ|a ≤ f(x, ξ) ≤ c0 + c2|ξ|b, 0 < a < b.

An important example of such a Lagrangian is f(x, ξ) = |ξ|p(x), where a ≤ p(x) ≤ b.
The Euler-Lagrange equation associated to this function is the p(·)-Laplacian

4p(·)u = −div(p(·)|∇u|p(·)−2∇u) = 0.

The appropriate function spaces for analyzing the solutions of these equations
are the variable Lebesgue spaces Lp(·) and the associated variable Sobolev spaces
W k,p(·). These problems have been studied by a number of authors and continue
to be an active area of research; for further details see the survey articles by Har-
julehto, et al. [51] and Mingione [74].

In the past decade, the one application that provided the most impetus for the
study of the variable Lebesgue spaces is the modeling of electrorheological fluids.
These are liquids whose viscosity changes (often dramatically) when exposed to an
electric field. (See [48, 98] for further information on their physical properties and
potential for wide-ranging applications.) While broadly understood experimentally,
a comprehensive theoretical model is still lacking. Extensive work has been done
on modeling these as non-Newtonian fluids; in one extensively studied model the
energy is given by an expression of the form∫

Ω

|Du(x)|p(x) dx,
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where Du is the symmetric part of the gradient of the velocity field of the fluid,
and the exponent function p(·) is a function of the electric field. (Similar energy
expressions have appeared in the study of other kinds of fluids. See, for example,
[111].) This model has been extensively studied by Růžička [3, 89] and Acerbi
and Mingioni [4, 88]. As we noted above, this problem contributed to extensive
development of harmonic analysis on the variable Lebesgue spaces.

The variable Lebesgue spaces have also emerged in the study of image process-
ing. In 1997 Blomgren, et al. [8] suggested that smoother images could be obtained
by an interpolation technique that uses a variable exponent: the appropriate norm is∫

Ω

|∇u(x)|p(∇u) dx,

where the exponent monotonically decreases from 2 to 1 as ∇u increases. These
and related ideas has been explored by a number of authors [1, 2, 9, 13, 14, 102]
in recent years.

1.4. Organization of this monograph

The remainder of this monograph is organized as follows. In Chapter 2 we
present the fundamental function space properties of the variable Lebesgue spaces,
concentrating primarily on the case when the exponent p(·) is bounded. There
are several approaches to this. The first is to treat them as examples of abstract
Banach function spaces, using the machinery developed by, for instance, Bennett
and Sharpley [7]. A second approach is to follow their historical development and
use the machinery of Musielak-Orlicz spaces [76]. This approach was adopted by
Diening et al. [30]. However, we prefer to take a more direct approach, proving ev-
erything “with our bare hands.” While at times not as elegant as other approaches,
we believe that this has the singular advantage of making clear the similarities and
differences between the classical and variable Lebesgue spaces.

In Chapter 3 we turn to the behavior of the Hardy-Littlewood maximal oper-
ator. We prove that sufficient conditions for the maximal operator to be bounded
are the log-Hölder continuity conditions,

|p(x)− p(y)| ≤ C0

− log(|x− y|)
, |x− y| < 1/2,

|p(x)− p∞| ≤
C∞

log(e+ |x|)
, x ∈ Rn.

These conditions are not necessary, but are the sharpest possible pointwise conti-
nuity conditions possible. Our understanding of the boundedness of the maximal
operator is still incomplete, and we will briefly consider some current areas of re-
search.

In Chapter 4 we consider the boundedness of other classical operators in the
variable Lebesgue spaces: convolution operators, singular integrals, Riesz poten-
tials. As motivation and to illustrate a key difference between the classical and
variable Lebesgue spaces we consider convolution operators, the failure of Young’s
inequality, and the convergence of approximate identities. Then, rather than treat-
ing the other operators individually, we develop a powerful generalization of the Ru-
bio de Francia extrapolation theorem from the theory of weighted norm inequalities.
As a consequence, we show that if an operator satisfies weighted norm inequalities,
then it is bounded on variable Lebesgue spaces given reasonable assumptions on
the exponent p(·) (e.g., log-Hölder continuity). These results are closely related to
recent developments in the study of Rubio de Francia extrapolation, and we refer
the reader to [24] for more information. For completeness we will provide a brief
introduction to the theory of Muckenhoupt Ap weights.
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Throughout this monograph we assume that the reader is familiar with basic
real and functional analysis; we refer the reader to the standard books by Roy-
den [85], Rudin [86, 87] and Brezis [10]. For brevity we will cite many results from
classical harmonic analysis without proof; for complete details the reader may con-
sult the books by Duoandikoetxea [33], Garćıa-Cuerva and Rubio de Francia [44]
or Grafakos [46, 47].

We have attempted to provide copious references throughout the text, both to
standard results and to the original proofs of many results about variable Lebesgue
spaces. However, given the long and complex history, many results have been dis-
covered independently, often with slightly different hypotheses. Therefore, our notes
will often fail to be comprehensive, and we apologize in advance for any omissions.
As general references, we recommend the papers by Kováčik and Rákosńık [64] and
Fan and Zhao [40], the recent book by Diening, et al. [30], and the forthcoming
book by the authors of the present monograph [19].





CHAPTER 2

Properties of Variable Lebesgue Spaces

In this chapter we develop the function space properties of variable Lebesgue
spaces. We begin with the basic properties and notation for exponent functions.
We then define the modular and the norm, and prove that Lp(·) is a Banach space.
We prove a version of Hölder’s inequality, define the associate norm, and then
characterize the dual space when p+ < ∞. We conclude with a version of the
Lebesgue differentiation theorem.

We want preface this chapter, however, by making a general comment about
theorems and proofs in this context. The variable Lebesgue spaces closely resemble
the classical Lp spaces, especially when p+ <∞. However, while this often suggests
what should be true, the proofs can range from nearly identical to the corresponding
proof in the classical case to completely different.

The situation is very reminiscent of the scene in Lewis Carroll’s Alice in
Wonderland, in which Alice is invited to play croquet with the Queen of Hearts.
However, instead of the traditional mallet and ball, she is given a flamingo and
hedgehog. (See Figure 1 below.) The flamingo is uncooperative, and when she is
finally ready to take a shot, the hedgehog has unrolled and wandered off. In the
same way, a proof in the variable Lebesgue spaces can be equally uncooperative,
and corralling the various pieces at times takes patience and ingenuity.

2.1. Exponent functions

Throughout, Ω will be a subset of Rn with positive measure. It is helpful to
think of it as an open connected set, and occasionally we will make these or other
assumptions on Ω.

Definition 2.1. Given a set Ω, let P(Ω) be the set of all Lebesgue measurable
functions p(·) : Ω→ [1,∞]. The elements of P(Ω) are called exponent functions.

In order to distinguish between variable and constant exponents, we will always
denote exponent functions by p(·). To measure the oscillation in p(·) ∈ P(Ω), given
a set E ⊂ Ω, let

p−(E) = ess inf
x∈E

p(x), p+(E) = ess sup
x∈E

p(x).

If the domain is clear we will simply write p− = p−(Ω), p+ = p+(Ω). We define
three canonical subsets of Ω:

Ωp(·)∞ = {x ∈ Ω : p(x) =∞},

11
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Figure 1. Alice, the flamingo and the hedgehog.

Ω
p(·)
1 = {x ∈ Ω : p(x) = 1},

Ω
p(·)
∗ = {x ∈ Ω : 1 < p(x) <∞}.

We will omit the superscript p(·) if there is no possibility of confusion. Below, the
value of certain constants will depend on whether these sets have positive measure;
if they do we will use the fact that, for instance, ‖χ

Ω
p(·)
1
‖∞ = 1.

Given p(·), we define the conjugate exponent function p′(·) by the formula

1

p(x)
+

1

p′(x)
= 1, x ∈ Ω,

with the convention that 1/∞ = 0. Since p(·) is a function, the notation p′(·) can
be mistaken for the derivative of p(·), but we will never use the symbol “ ′ ” in this
sense.

The notation p′ will also be used to denote the conjugate of a constant exponent.
The operation of taking the supremum/infimum of an exponent does not commute
with forming the conjugate exponent. In fact, a straightforward computation shows
that (

p′(·)
)

+
=
(
p−
)′
,
(
p′(·)

)
− =

(
p+

)′
.

For simplicity we will omit one set of parentheses and write the left-hand side of
each equality as p′(·)+ and p′(·)−. We will always avoid ambiguous expressions
such as p′+.
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The function space theory of variable Lebesgue spaces only requires that p(·)
be a measurable function, but in subsequent chapters we will need p(·) to have some
additional regularity. In particular, there are two continuity conditions that are of
such importance that we want to establish notation for them.

Definition 2.2. Given Ω and a function r(·) : Ω → R, we say that r(·) is
locally log-Hölder continuous, and denote this by r(·) ∈ LH0(Ω), if there exists a
constant C0 such that for all x, y ∈ Ω, |x− y| < 1/2,

|r(x)− r(y)| ≤ C0

− log(|x− y|)
.

We say that r(·) is log-Hölder continuous at infinity, and denote this by r(·) ∈
LH∞(Ω), if there exist constants C∞ and r∞ such that for all x ∈ Ω,

|r(x)− r∞| ≤
C∞

log(e+ |x|)
.

If r(·) is log-Hölder continuous locally and at infinity, we will denote this by writing
r(·) ∈ LH(Ω).

Remark 2.3. Local log-Hölder continuity was first considered for the vari-
able Lebesgue spaces by Sharapudinov [96]; log-Hölder continuity at infinity was
introduced in [22].

One nice property of log-Hölder continuity is the following extension theorem.
For a proof, see [20].

Lemma 2.4. Given a set Ω ⊂ Rn and p(·) ∈ P(Ω) such that p(·) ∈ LH(Ω),
there exists a function p̃(·) ∈ P(Rn) such that:

(1) p̃ ∈ LH;
(2) p̃(x) = p(x), x ∈ Ω;
(3) p̃− = p− and p̃+ = p+.

2.2. The modular and the norm

Intuitively, given an exponent function p(·) ∈ P(Ω), we want to define the
variable Lebesgue space Lp(·)(Ω) as the set of all measurable functions f such that∫

Ω

|f(x)|p(x) dx <∞.

There are two problems with this approach: first, as we noted in the Introduction,
there is a problem with homogeneity if p+ = ∞. Moreover, if Ω∞ has positive
measure, then the integral no longer makes sense. We therefore make a more
careful definition.

Definition 2.5. Given Ω, p(·) ∈ P(Ω) and a measurable function f , define the
modular functional (or simply the modular) associated with p(·) by

ρp(·)(f) =

∫
Ω\Ω∞

|f(x)|p(x) dx+ ‖f‖L∞(Ω∞).

If there is no ambiguity, we will write simply ρ(f).

Remark 2.6. There are two other definitions of the modular in the literature.
One immediate alternative is to define it as

ρ(f) = max

(∫
Ω\Ω∞

|f(x)|p(x) dx, ‖f‖L∞(Ω∞)

)
.
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This was done by Edmunds and Rákosnik [35]. Clearly this is equivalent to our
definition and yields the same norm. A very different approach motivated by the
theory of Musielak-Orlicz spaces is to define

ρ(f) =

∫
Ω

|f(x)|p(x) dx,

with the convention that t∞ = ∞ · χ(1,∞)(t). This modular (or, more precisely,
semi-modular) is no longer equivalent to ours, but the resulting norm is equivalent
to ours. See Diening et al. [30] for further information about this approach.

The modular has the following properties.

Proposition 2.7. Given Ω and p(·) ∈ P(Ω), then:

(1) for all f , ρ(f) ≥ 0 and ρ(|f |) = ρ(f).
(2) ρ(f) = 0 if and only if f(x) = 0 for a.e. x ∈ Ω.
(3) If ρ(f) <∞, then f(x) <∞ for a.e. x ∈ Ω.
(4) ρ is convex: given α, β ≥ 0, α+ β = 1,

ρ(αf + βg) ≤ αρ(f) + βρ(g).

(5) If |f(x)| ≥ |g(x)| a.e., then ρ(f) ≥ ρ(g).
(6) If for some Λ > 0, ρ(f/Λ) <∞, then the function λ 7→ ρ(f/λ) is contin-

uous and decreasing on [Λ,∞). Further, ρ(f/λ)→ 0 as λ→∞.

An immediate consequence of the convexity of ρ is that if α > 1, then αρ(f) ≤
ρ(αf), and if 0 < α < 1, then ρ(αf) ≤ αρ(f). We will often invoke this property
by referring to the convexity of the modular.

Proof. Property (1) is immediate from the definition of the modular, and
Properties (2), (3) and (5) follow from the properties of the L1 and L∞ norms.

Property (4) follows since the L∞ norm is convex and since for almost every
x ∈ Ω \ Ω∞, the function t 7→ tp(x) is convex.

To prove (6), note that by Property (5), if λ ≥ Λ, then ρ(f/λ) is a decreasing
function, and by the dominated convergence theorem (applied to the integral) it is
continuous and tends to 0 as λ→∞. �

With the modular in hand we define the variable Lebesgue spaces.

Definition 2.8. Given Ω and p(·) ∈ P(Ω), define Lp(·)(Ω) to be the set of
Lebesgue measurable functions f such that ρ(f/λ) <∞ for some λ > 0.

While this more technical definition is necessary when p(·) is unbounded, we
can simplify the definition when p+ <∞.

Proposition 2.9. Given Ω and p(·) ∈ P(Ω), if p+ < ∞, then f ∈ Lp(·)(Ω) if
and only if

ρ(f) =

∫
Ω

|f(x)|p(x) dx <∞.

Proof. Since p+ < ∞, we can drop the L∞ term in the modular. Clearly, if
ρ(f) <∞, then f ∈ Lp(·). Conversely, by Property (5) in Proposition 2.7, we have
that ρ(f/λ) <∞ for some λ > 1. But then

ρ(f) =

∫
Ω

(
|f(x)|λ
λ

)p(x)

dx ≤ λp+(Ω)ρ(f/λ) <∞. �

In the proof we “pulled” a constant out of the modular. The ability to do so
is very useful, and makes the study of variable Lebesgue spaces in this case much
simpler. The proof of Proposition 2.9 is easily modified to prove the following
inequalities.
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Proposition 2.10. Given Ω and p(·) ∈ P(Ω):

(1) if p+ <∞, then for all λ ≥ 1,

λp−ρ(f) ≤ ρ(λf) ≤ λp+ρ(f).

When 0 < λ < 1 the reverse inequalities are true.
(2) If p+(Ω \ Ω∞) <∞, then for all λ ≥ 1,

ρ(λf) ≤ λp+(Ω\Ω∞)ρ(f).

We now want to prove that Lp(·)(Ω) is a Banach space. Here we will prove
that it is a normed vector space; we defer the proof that it is complete to the next
section.

Theorem 2.11. Given Ω and p(·) ∈ P(Ω), Lp(·)(Ω) is a vector space.

Proof. Since the set of all Lebesgue measurable functions is itself a vector
space, and since 0 ∈ Lp(·)(Ω), it will suffice to show that for all α, β ∈ R, not both
0, if f, g ∈ Lp(·)(Ω), then αf + βg ∈ Lp(·)(Ω). By Property (5) in Proposition 2.7,
there exists λ > 0 such that ρ(f/λ), ρ(g/λ) <∞. Therefore, by Properties (1), (3)
and (4) of the same proposition, if we let µ =

(
|α|+ |β|

)
λ, then

ρ

(
αf + βg

µ

)
= ρ

(
|αf + βg|

µ

)
≤ ρ

(
|α|

|α|+ |β|
|f |
λ

+
|β|

|α|+ |β|
|g|
λ

)
≤ |α|
|α|+ |β|

ρ(f/λ) +
|β|

|α|+ |β|
ρ(g/λ) <∞. �

Next, we define the norm. On the classical Lebesgue spaces, if 1 ≤ p < ∞,
then the norm is gotten directly from the modular:

‖f‖Lp(Ω) =

(∫
Ω

|f(x)|p dx
)1/p

.

Such a definition obviously fails since we cannot replace the constant exponent
1/p outside the integral with the exponent function 1/p(·). Instead, we use the
Luxemburg norm, similar to that used to define Orlicz spaces (cf. [7, 66]).

Definition 2.12. Given Ω, p(·) ∈ P(Ω), and a measurable function f , define

‖f‖Lp(·)(Ω) = inf
{
λ > 0 : ρp(·),Ω(f/λ) ≤ 1

}
.

If there is no ambiguity over the domain Ω, we will often write ‖f‖p(·) instead of
‖f‖Lp(·)(Ω).

When p(·) = p, 1 ≤ p ≤ ∞, Definition 2.12 is equivalent to the classical norm
on Lp(Ω): if p <∞ and ∫

Ω

(
|f(x)|
λ

)p
dx = 1,

then λ = ‖f‖Lp(Ω); the same is true if p =∞.

Theorem 2.13. Given Ω and p(·) ∈ P(Ω), the functional ‖ · ‖Lp(·)(Ω) defines a

norm on Lp(·)(Ω).

Proof. We will prove that ‖ · ‖p(·) has the following properties:

(1) ‖f‖p(·) = 0 if and only if f ≡ 0;
(2) for all α ∈ R, ‖αf‖p(·) = |α|‖f‖p(·);
(3) ‖f + g‖p(·) ≤ ‖f‖p(·) + ‖g‖p(·).
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If f ≡ 0, then ρ(f/λ) = 0 ≤ 1 for all λ > 0, and so ‖f‖p(·) = 0. Conversely, if
‖f‖p(·) = 0, then for all λ > 0,

1 ≥ ρ(f/λ) =

∫
Ω\Ω∞

(
|f(x)|
λ

)p(x)

dx+ ‖f/λ‖L∞(Ω∞).

We consider each term of the modular separately. It is immediate that we have
‖f‖L∞(Ω∞) ≤ λ; hence, f(x) = 0 for almost every x ∈ Ω∞. Similarly, if λ < 1, we
have

1 ≥ λ−p−
∫

Ω\Ω∞
|f(x)|p(x) dx.

Therefore, ‖f(·)p(·)‖L1(Ω\Ω∞) = 0, and so f(x) = |f(x)|p(x) = 0 for almost every
x ∈ Ω \ Ω∞. Thus f ≡ 0 and we have proved (1).

To prove (2), note that if α = 0, this follows from (1). Fix α 6= 0; then by a
change of variables,

‖αf‖p(·) = inf {λ > 0 : ρ(|α|f/λ) ≤ 1}
= |α| inf {λ/|α| > 0 : ρ(f/(λ/|α|)) ≤ 1}
= |α| inf {µ > 0 : ρ(f/µ)) ≤ 1} = |α|‖f‖p(·).

Finally, to prove (3), fix λf > ‖f‖p(·) and λg > ‖g‖p(·); then ρ(f/λf ) ≤ 1 and
ρ(g/λg) ≤ 1. Now let λ = λf + λg. Then by Property (3) of Proposition 2.7,

ρ

(
f + g

λ

)
= ρ

(
λf
λ

f

λf
+
λg
λ

g

λg

)
≤ λf

λ
ρ(f/λf ) +

λg
λ
ρ(g/λg) ≤ 1.

Hence, ‖f + g‖p(·) ≤ λf + λg. Taking the infimum over all such λf and λg we get
the desired inequality. �

Remark 2.14. There is an equivalent norm on Lp(·)(Ω) that is usually referred
to as the Amemiya norm. For p+ <∞, define

‖f‖Ap(·) = inf{λ > 0 : λ+ λρp(·)(f/λ)}.

Then

‖f‖p(·) ≤ ‖f‖Ap(·) ≤ 2‖f‖p(·).
For a proof, see Samko [91].

Though the norm is defined by an infimum, if f is non-trivial, then the infimum
is always attained. (If f ≡ 0, then clearly the infimum is zero and is not attained.)
In Proposition 2.15 below we will prove that ρ(f/‖f‖p(·)) ≤ 1, so λ = ‖f‖p(·) is
always an element of the set {λ : ρ(f/λ) ≤ 1}.

Proposition 2.15. Given Ω and p(·) ∈ P(Ω), if f ∈ Lp(·)(Ω) and ‖f‖p(·) > 0,
then ρ(f/‖f‖p(·)) ≤ 1. If p+ < ∞, then ρ(f/‖f‖p(·)) = 1 for all non-trivial f ∈
Lp(·)(Ω).

Proof. Fix a decreasing sequence {λn} such that λn → ‖f‖p(·). Then by
Fatou’s lemma and the definition of the modular,

ρ(f/‖f‖p(·)) ≤ lim inf
n→∞

ρ(f/λn) ≤ 1.

Now suppose that p+ < ∞ but ρ(f/‖f‖p(·)) < 1. Then for all λ, 0 < λ <
‖f‖p(·), by Proposition 2.10,

ρ(f/λ) = ρ

(‖f‖p(·)
λ

f

‖f‖p(·)

)
≤
(‖f‖p(·)

λ

)p+

ρ

(
f

‖f‖p(·)

)
.



2.3. CONVERGENCE AND COMPLETENESS 17

Therefore, we can find λ sufficiently close to ‖f‖p(·) such that ρ(f/λ) < 1. But by
the definition of the norm, we must have ρ(f/λ) ≥ 1. From this contradiction we
see that equality holds. �

Corollary 2.16. Fix Ω and p(·) ∈ P(Ω). If ‖f‖p(·) ≤ 1, then ρ(f) ≤ ‖f‖p(·);
if ‖f‖p(·) > 1, then ρ(f) ≥ ‖f‖p(·).

Proof. If ‖f‖p(·) = 0, then f ≡ 0 and so ρ(f) = 0. If 0 < ‖f‖p(·) ≤ 1, then by
the convexity of the modular (Property (4) of Proposition 2.7) and Proposition 2.15,

ρ(f) = ρ(‖f‖p(·) f/‖f‖p(·)) ≤ ‖f‖p(·)ρ(f/‖f‖p(·)) ≤ ‖f‖p(·).

If ‖f‖p(·) > 1, then ρ(f) > 1: for if ρ(f) ≤ 1, then by the definition of the norm we
would have ‖f‖p(·) ≤ 1. But then we have that

ρ
(
f/ρ(f)

)
=

∫
Ω\Ω∞

(
|f(x)|
ρ(f)

)p(x)

dx+ ρ(f)−1‖f‖L∞(Ω∞)

≤
∫

Ω\Ω∞
|f(x)|p(x)ρ(f)−1 dx+ ρ(f)−1‖f‖L∞(Ω∞) = 1.

It follows that ‖f‖p(·) ≤ ρ(f). �

The previous result can be strengthened by the following result due to Fan and
Zhao [40].

Corollary 2.17. Given Ω and p(·) ∈ P(Ω), suppose p+ <∞. If ‖f‖p(·) > 1,
then

ρ(f)1/p+ ≤ ‖f‖p(·) ≤ ρ(f)1/p− .

If 0 < ‖f‖p(·) ≤ 1, then

ρ(f)1/p− ≤ ‖f‖p(·) ≤ ρ(f)1/p+ .

If p(·) is constant, Corollary 2.17 reduces to the identity

‖f‖p =

(∫
Ω

|f(x)|p dx
)1/p

.

Proof. We prove the first pair of inequalities; the proof of the second is es-
sentially the same. If p+ <∞, by Proposition 2.10,

ρ(f)

‖f‖p+

p(·)
≤ ρ

(
f

‖f‖p(·)

)
≤ ρ(f)

‖f‖p−p(·)
.

By Proposition 2.15, ρ(f/‖f‖p(·)) = 1, and we are done. �

2.3. Convergence and completeness

To prove that variable Lebesgue spaces are Banach spaces, we first consider
norm convergence. The following results are all of interest in their own right; in
addition the first two are necessary for the proof of completeness.

Theorem 2.18. Given Ω and p(·) ∈ P(Ω), let {fk} ⊂ Lp(·)(Ω) be a sequence of
non-negative functions such that fk increases to a function f pointwise a.e. Then
either f ∈ Lp(·)(Ω) and ‖fk‖p(·) → ‖f‖p(·), or f 6∈ Lp(·)(Ω) and ‖fk‖p(·) →∞.

In the context of Banach function spaces, Theorem 2.18 is referred to as the Fa-
tou property of the norm. To emphasize the connection with the classical Lebesgue
spaces, we will refer to it as the monotone convergence theorem. This result was
first proved in [12].
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Proof. Since {fk} is an increasing sequence, so is {‖fk‖p(·)}; thus, it either

converges or diverges to ∞. If f ∈ Lp(·)(Ω), since fk ≤ f , ‖fk‖p(·) ≤ ‖f‖p(·);
otherwise, since fk ∈ Lp(·)(Ω), ‖fk‖p(·) <∞ = ‖f‖p(·). In either case it will suffice
to show that for any λ < ‖f‖p(·), for all k sufficiently large ‖fk‖p(·) > λ.

Fix such a λ; by the definition of the norm, ρ(f/λ) > 1. Therefore, by the
monotone convergence theorem on the classical Lebesgue spaces,

ρ(f/λ) =

∫
Ω\Ω∞

(
|f(x)|
λ

)p(x)

dx+ λ−1‖f‖L∞(Ω∞)

= lim
k→∞

(∫
Ω\Ω∞

(
|fk(x)|
λ

)p(x)

dx+ λ−1‖fk‖L∞(Ω∞)

)
= lim
k→∞

ρ(fk/λ).

Hence, for all k sufficiently large, ρ(fk/λ) > 1, and so ‖fk‖p(·) > λ. �

The next result is the analog of Fatou’s Lemma. It is proved in [19].

Theorem 2.19. Given Ω and p(·) ∈ P(Ω), suppose the sequence {fk} ⊂
Lp(·)(Ω) is such that fk → f pointwise a.e. If

lim inf
k→∞

‖fk‖p(·) <∞,

then f ∈ Lp(·)(Ω) and
‖f‖p(·) ≤ lim inf

k→∞
‖fk‖p(·).

Proof. Define a new sequence

gk(x) = inf
m≥k
|fm(x)|.

Then for all m ≥ k, gk(x) ≤ |fm(x)|, and so gk ∈ Lp(·)(Ω). Further, by definition
{gk} is an increasing sequence and

lim
k→∞

gk(x) = lim inf
m→∞

|fm(x)| = |f(x)|, a.e. x ∈ Ω.

Therefore, by Theorem 2.18,

‖f‖p(·) = lim
k→∞

‖gk‖p(·) ≤ lim
k→∞

(
inf
m≥k
‖fm‖p(·)

)
= lim inf

k→∞
‖fk‖p(·) <∞,

and f ∈ Lp(·)(Ω). �

Unlike the previous two results, to prove a version of the dominated convergence
theorem we need to assume p+ <∞. This result was first proved in [19] The proof
requires a lemma relating convergence in norm to convergence in modular.

Lemma 2.20. Given Ω and p(·) ∈ P(Ω), suppose p+ < ∞. For any sequence
{fk} ⊂ Lp(·)(Ω) and f ∈ Lp(·)(Ω), ‖fk − f‖p(·) → 0 if and only if ρ(f − fk)→ 0.

Proof. Suppose the sequence converges in norm. By Corollary 2.16, for all k
sufficiently large,

ρ(f − fk) ≤ ‖f − fk‖p(·) ≤ 1,

and so ρ(f − fk)→ 0.
To prove the converse, fix λ < 1. By Proposition 2.10,

ρ((f − fk)/λ) ≤
(

1

λ

)p+

ρ(f − fk).

Hence, for all k sufficiently large we have that

ρ

(
f − fk
λ

)
≤ 1.
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Equivalently, for all such k, ‖f − fk‖p(·) ≤ λ. Since λ was arbitrary, fk → f in
norm. �

Theorem 2.21. Given Ω and p(·) ∈ P(Ω), suppose p+ < ∞. If the sequence
{fk} is such that fk → f pointwise a.e., and there exists g ∈ Lp(·)(Ω) such that
|fk(x)| ≤ g(x) a.e., then f ∈ Lp(·)(Ω) and ‖f − fk‖p(·) → 0 as k →∞.

Proof. By Proposition 2.9,

|f(x)− fk(x)|p(x) ≤ 2p(x)−1(|f(x)|p(x) + |fk(x)|p(x))

≤ 2p+ |g(x)|p(x) ∈ L1(Ω).

Then by the dominated convergence theorem on L1, ρ(f − fk)→ 0 as k → 0, and
by Lemma 2.20, ‖f − fk‖p(·) → 0. �

The final convergence result shows that norm convergence yields pointwise con-
vergence on subsequences. The proof depends on showing that norm convergence
implies convergence in measure; see [19] for details.

Theorem 2.22. Given Ω and p(·) ∈ P(Ω), if fk → f in norm in Lp(·)(Ω), then
there exists a subsequence {fkj} that converges pointwise a.e. to f .

Remark 2.23. Convergence in norm is not equivalent to convergence in mod-
ular when p+ = ∞. We can also consider the relationship between these and
convergence in measure. For a careful discussion of all of these ideas, see [18, 19].

We can now prove completeness. We do so by first proving that the Riesz-
Fischer property holds in variable Lebesgue spaces. This proof is from [19]; a very
different proof of completeness appeared in [64].

Theorem 2.24. Given Ω and p(·) ∈ Lp(·)(Ω), let {fk} ⊂ Lp(·)(Ω) be such that
∞∑
k=1

‖fk‖p(·) <∞.

Then there exists f ∈ Lp(·)(Ω) such that

i∑
k=1

fk → f

in norm as i→∞, and

‖f‖p(·) ≤
∞∑
k=1

‖fk‖p(·).

Proof. Define the function F on Ω by

F (x) =

∞∑
k=1

|fk(x)|,

and define the sequence {Fi} by

Fi(x) =

i∑
k=1

|fk(x)|.

Then the sequence {Fi} is non-negative and increases pointwise a.e. to F . Further,
for each i, Fi ∈ Lp(·)(Ω), and its norm is uniformly bounded, since

‖Fi‖p(·) ≤
i∑

k=1

‖fk‖p(·) ≤
∞∑
k=1

‖fk‖p(·) <∞.
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Therefore, by Theorem 2.18, F ∈ Lp(·)(Ω).
In particular, F is finite a.e., so the sequence Fk converges pointwise a.e. Hence,

if we define the sequence of functions {Gi} by

Gi(x) =

i∑
k=1

fk(x),

then this sequence also converges pointwise a.e. since absolute convergence implies
convergence. Denote its sum by f .

Now let G0 = 0; then for fixed j ≥ 0, Gi − Gj → f − Gj pointwise a.e.
Furthermore,

lim inf
i→∞

‖Gi −Gj‖p(·) ≤ lim inf
i→∞

i∑
k=j+1

‖fk‖p(·) =

∞∑
k=j+1

‖fk‖p(·) <∞.

By Theorem 2.19, if we take j = 0, then

‖f‖p(·) ≤ lim inf
i→∞

‖Gi‖p(·) ≤
∞∑
k=1

‖fk‖p(·) <∞.

More generally, for each j the same argument shows that

‖f −Gj‖p(·) ≤ lim inf
i→∞

‖Gi −Gj‖p(·) ≤
∞∑

k=j+1

‖fk‖p(·);

since the sum on the right-hand side tends to 0, we see that Gj → f in norm, which
completes the proof. �

The completeness of Lp(·)(Ω) is a consequence of Theorem 2.24.

Theorem 2.25. Given Ω and p(·) ∈ P(Ω), Lp(·)(Ω) is complete: every Cauchy
sequence in Lp(·)(Ω) converges.

Proof. Let {fk} ⊂ Lp(·)(Ω) be a Cauchy sequence. Choose k1 such that
‖fi − fj‖p(·) < 2−1 for i, j ≥ k1, choose k2 > k1 such that ‖fi − fj‖p(·) < 2−2 for
i, j ≥ k2, and so on. This construction yields a subsequence {fkj}, kj+1 > kj , such
that

‖fkj+1
− fkj‖p(·) < 2−j .

Define the new sequence {gj} by g1 = fk1
and for j > 1, gj = fkj − fkj−1

. Then
for all j we get the telescoping sum

j∑
i=1

gi = fkj ;

further, we have that

∞∑
j=1

‖gj‖p(·) ≤ ‖fk1‖p(·) +

∞∑
j=1

2−j <∞.

Therefore, by Theorem 2.24, there exists f ∈ Lp(·)(Ω) such that fkj → f in norm.
Finally, by the triangle inequality we have that

‖f − fk‖p(·) ≤ ‖f − fkj‖p(·) + ‖fkj − fk‖p(·);

since {fk} is a Cauchy sequence, we can make the right-hand side as small as
desired. Hence, fk → f in norm. �
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2.4. Embeddings and dense subsets

In the classical Lebesgue spaces, if |Ω| < ∞, then Lp(Ω) ⊂ Lq(Ω) whenever
p > q. Similar embeddings holds in the variable Lebesgue spaces.

Theorem 2.26. Given Ω and p(·), q(·) ∈ P(Ω), suppose |Ω| < ∞. Then
Lq(·)(Ω) ⊂ Lp(·)(Ω) provided that p(x) ≤ q(x) almost everywhere. Furthermore, in
this case we have that

(2.1) ‖f‖p(·) ≤ (1 + |Ω|)‖f‖q(·).

Proof. Suppose that p(x) ≤ q(x) a.e. By the homogeneity of the norm, it will

suffice to show that if f ∈ Lq(·)(Ω), ‖f‖q(·) ≤ 1, then ‖f‖p(·) ≤ 1 + |Ω \ Ω
p(·)
∞ |. By

the definition of the norm,

1 ≥ ρq(·)(f) =

∫
Ω\Ωq(·)∞

|f(x)|q(x) dx+ ‖f‖
L∞(Ω

q(·)
∞ )

.

In particular, |f(x)| ≤ 1 a.e. on Ω
q(·)
∞ . Further, since p(x) ≤ q(x), Ω

p(·)
∞ ⊂ Ω

q(·)
∞

up to a set of measure zero. Therefore,

ρp(·)(f) =

∫
Ω\Ωq(·)∞

|f(x)|p(x) dx+

∫
Ω
q(·)
∞ \Ωp(·)

∞

|f(x)|p(x) dx+ ‖f‖
L∞(Ω

p(·)
∞ )

≤ |{x ∈ Ω \ Ωq(·)∞ : |f(x)| ≤ 1}|+
∫

Ω\Ωq(·)∞
|f(x)|q(x) dx

+ |Ωq(·)∞ \ Ωp(·)∞ |+ ‖f‖L∞(Ω
q(·)
∞ )

≤ |Ω|+ ρq(·)(f)

≤ |Ω|+ 1.

Hence, by the convexity of the modular,

ρp(·)

(
f

|Ω|+ 1

)
≤
ρp(·)(f)

|Ω|+ 1
≤ 1,

and so ‖f‖p(·) ≤ |Ω|+ 1. �

As an immediate corollary we get the following embedding relationship between
the variable and classical Lebesgue spaces.

Corollary 2.27. Given Ω and p(·) ∈ P(Ω), suppose |Ω| < ∞. Then there
exist constants c1, c2 > 0 such that

c1‖f‖p− ≤ ‖f‖p(·) ≤ c2‖f‖p+
.

In particular, given any Ω, if f ∈ Lp(·)(Ω), then f is locally integrable.

Unlike the classical case, when Ω is unbounded it is possible to get a non-trivial
embedding—for instance, as we noted in the Introduction it is possible to embed
L∞ in Lp(·)(Ω). The precise conditions required are given in the following theorem.
For a proof, see [19, 30].

Theorem 2.28. Given Ω and p(·), q(·) ∈ P(Ω), then Lq(·)(Ω) ⊂ Lp(·)(Ω) and
there exists K > 1 such that for all f ∈ Lq(·)(Ω), ‖f‖p(·) ≤ K‖f‖q(·), if and only if:

(1) p(x) ≤ q(x) for almost every x ∈ Ω;
(2) there exists λ > 1 such that

(2.2)

∫
D

λ−r(x) dx <∞,
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where D = {x ∈ Ω : p(x) < q(x)} and r(·) is the defect exponent defined
by

1

p(x)
=

1

q(x)
+

1

r(x)
.

It is possible to decompose a function f ∈ Lp(·)(Ω) so that the pieces are
contained in Classical Lebesgue spaces. This decomposition complements Corol-
lary 2.27 and is very useful in applications.

Theorem 2.29. Given Ω and p(·) ∈ P(Ω), if f ∈ Lp(·)(Ω), then we can write
f = f1 + f2 where f1 ∈ Lp+(Ω) ∩ Lp(·)(Ω) and f2 ∈ Lp−(Ω) ∩ Lp(·)(Ω).

Proof. By the linearity of the norms we may assume without loss of generality
that ‖f‖p(·) = 1. This implies that ‖f‖L∞(Ω∞) ≤ 1. Decompose f as f1 +f2, where

f1 = fχ{x∈Ω:|f(x)|≤1}

f2 = fχ{x∈Ω\Ω∞:|f(x)|>1}.

Clearly, f1, f2 ∈ Lp(·)(Ω). If p+ <∞, |Ω∞| = 0, so by Corollary 2.16,∫
Ω

|f1(x)|p+ dx ≤
∫

Ω\Ω∞
|f(x)|p(x) dx ≤ ‖f‖p(·) = 1,∫

Ω

|f2(x)|p− dx ≤
∫

Ω\Ω∞
|f(x)|p(x) dx ≤ ‖f‖p(·) = 1.

Hence,
‖f1‖p+ , ‖f2‖p− ≤ 1 = ‖f‖p(·).

If p+ = ∞, then we argue as before for f2 and for f1 we note that ‖f1‖∞ ≤
1 = ‖f‖p(·). �

We now consider the problem of dense subsets in Lp(·)(Ω). A good understand-
ing of dense subsets only exists when p+ <∞. For the case p+ =∞, see [19].

Theorem 2.30. Given an open set Ω and p(·) ∈ P(Ω), suppose p+ <∞. Then
the set of bounded functions with compact support with supp(f) ⊂ Ω is dense in
Lp(·)(Ω). Moreover, the set C∞c (Ω) of smooth functions with compact support is
dense in Lp(·)(Ω).

Proof. Fix f ∈ Lp(·)(Ω). Let Kk be a nested sequence of compact subsets of Ω

such that Ω =
⋃
kKk. (For instance, let Kk = {x ∈ Ω : dist(x, ∂Ω) ≥ 1/k}∩Bk(0).)

Define the sequence {fk} by

fk(x) =


k fk(x) > k

f(x) −k ≤ f(x) ≤ k
−k fk(x) < −k,

and let gk(x) = fk(x)χKk(x). Since f is finite a.e., gk → f pointwise a.e.; since
f ∈ Lp(·)(Ω) and |gk(x)| ≤ |f(x)|, gk ∈ Lp(·)(Ω). Since p+ <∞, by Theorem 2.21,
gk → f in norm.

To show that C∞c (Ω) is dense, fix ε > 0; we will find a function h ∈ C∞c (Ω)
such that ‖f − h‖p(·) < ε. By the above argument there exists a bounded function
of compact support, g, such that ‖f − g‖p(·) < ε/2. Let supp(g) ⊂ B ∩ Ω for some
open ball B. Since p+ <∞, C∞c (B ∩ Ω) is dense in Lp+(B ∩ Ω); thus there exists
h ∈ C∞c (B ∩ Ω) ⊂ C∞c (Ω) such that

‖g − h‖Lp+ (Ω) = ‖g − h‖Lp+ (B∩Ω) <
ε

2(1 + |B ∩ Ω|)
.
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Therefore, by Theorem 2.26,

‖g − h‖Lp(·)(Ω) = ‖g − h‖Lp(·)(B∩Ω)

≤ (1 + |B ∩ Ω|)‖g − h‖Lp+ (B∩Ω) < ε/2,

and so
‖f − h‖p(·) ≤ ‖f − g‖p(·) + ‖g − h‖p(·) < ε. �

If p+ < ∞, Lp+ is separable, so the proof of Theorem 2.30 can be readily
modified to yield the separability of Lp(·) in this case. This is false when p+ =∞;
see [19].

Theorem 2.31. Given an open set Ω and p(·) ∈ P(Ω), if p+ < ∞, then
Lp(·)(Ω) is separable.

2.5. Hölder’s inequality, the associate norm and duality

In this section we show that the variable Lebesgue space norm satisfies a gen-
eralization of Hölder’s inequality, and then use this to define an equivalent norm,
the associate norm, on Lp(·)(Ω). Based on this we will be able to characterize the
dual space when p+ <∞.

Theorem 2.32. Given Ω and p(·) ∈ P(Ω), for all f ∈ Lp(·)(Ω) and g ∈
Lp
′(·)(Ω), fg ∈ L1(Ω) and∫

Ω

|f(x)g(x)| dx ≤ Kp(·)‖f‖p(·)‖g‖p′(·),

where

Kp(·) =
1

p−
− 1

p+
+ ‖χΩ∞‖∞ + ‖χΩ1

‖∞ + ‖χΩ∗‖∞.

Proof. Our proof is adapted from [64]. If ‖f‖p(·) = 0 or ‖g‖p′(·) = 0, then
fg ≡ 0 so there is nothing to prove. Therefore, we may assume that ‖f‖p(·), ‖g‖p′(·)
> 0.

We consider the integral of |fg| on the disjoint sets Ω∞, Ω1 and Ω∗. If x ∈ Ω∞,
then p(x) =∞ and p′(x) = 1, so∫

Ω∞

|f(x)g(x)| dx ≤ ‖fχΩ∞‖∞‖gχΩ∞‖1

= ‖fχΩ∞‖p(·)‖gχΩ∞‖p′(·) ≤ ‖f‖p(·)‖g‖p′(·).

Similarly, if we reverse the roles of p(·) and p′(·), we have that∫
Ω1

|f(x)g(x)| dx ≤ ‖f‖p(·)‖g‖p′(·).

To estimate the integral on Ω∗ we use Young’s inequality:∫
Ω∗

|f(x)g(x)|
‖f‖p(·)‖g‖p′(·)

dx ≤
∫

Ω∗

1

p(x)

(
|f(x)|
‖f‖p(·)

)p(x)

dx+
1

p′(x)

(
|g(x)|
‖g‖p′(·)

)p′(x)

dx

≤ 1

p−
ρp(·)(f/‖f‖p(·)) +

1

p′(·)−
ρp′(·)(g/‖g‖p′(·)).

Since
1

p′(·)−
=

1

(p+)′
= 1− 1

p+
,

and by Proposition 2.15, ρp(·)(f/‖f‖p(·)) ≤ 1 and a similar inequality holds for g,
we have that ∫

Ω∗

|f(x)g(x)|
‖f‖p(·)‖g‖p′(·)

dx ≤ 1

p−
+ 1− 1

p+
.
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Combining the above terms, and using the fact that each is needed precisely
when the L∞ norm of the corresponding characteristic function equals 1, we have
that∫

Ω

|f(x)g(x)| dx ≤
(
‖χΩ∞‖∞ + ‖χΩ1‖∞ +

1

p−
− 1

p+
+ ‖χΩ∗‖∞

)
‖f‖p(·)‖g‖p′(·),

which is the desired inequality. �

As a corollary we get a generalization of Hölder’s inequality. For a proof, see
Diening [28] and Samko [91, 92].

Corollary 2.33. Given Ω and exponent functions r(·), q(·) ∈ P(Ω) define
p(·) ∈ P(Ω) by

1

p(x)
=

1

q(x)
+

1

r(x)
.

Then there exists a constant K such that for all f ∈ Lq(·)(Ω) and g ∈ Lr(·)(Ω),
fg ∈ Lp(·)(Ω) and

‖fg‖p(·) ≤ K‖f‖q(·)‖g‖r(·).

Using Hölder’s inequality we can define an alternative norm on Lp(·), the so-
called associate norm.

Definition 2.34. Given Ω and p(·) ∈ P(Ω), and given a measurable function
f , define

(2.3) ‖f‖′p(·) = sup

∫
Ω

f(x)g(x) dx,

where the supremum is taken over all g ∈ Lp′(·)(Ω) with ‖g‖p′(·) ≤ 1.

Temporarily denote by Mp(·)(Ω) the set of all measurable functions f such that
‖f‖′p(·) < ∞. We will show that Mp(·) and Lp(·) are the same space, and ‖ · ‖p(·)
and ‖ · ‖′p(·) are equivalent norms.

Proposition 2.35. Given Ω and p(·) ∈ P(Ω), the set Mp(·)(Ω) is a normed
vector space with respect to the norm ‖ · ‖′p(·). Furthermore, the norm is order

preserving: given f, g ∈Mp(·)(Ω) such that |f | ≤ |g|, then ‖f‖′p(·) ≤ ‖g‖
′
p(·).

Proof. It is immediate that Mp(·)(Ω) is a vector space. The fact that ‖ · ‖′p(·)
is an order preserving norm is an consequence of the properties of integrals and
supremums and the following equivalent characterization of ‖ ·‖′p(·). First note that

it is immediate from this definition that for all measurable functions f ,

‖f‖′p(·) ≤ sup
‖g‖p′(·)≤1

∣∣∣∣∫
Ω

f(x)g(x) dx

∣∣∣∣ ≤ sup
‖g‖p′(·)≤1

∫
Ω

|f(x)g(x)| dx,

but in fact all of these are equal. To see this, note that for any g ∈ Lp
′(·)(Ω),

‖g‖p′(·) ≤ 1, |f(x)g(x)| = f(x)h(x), where h(x) = sgn f(x)|g(x)| and ‖h‖p′(·) ≤
‖g‖p′(·) ≤ 1; hence,∫

Ω

|f(x)g(x)| dx =

∫
Ω

f(x)h(x) dx ≤ ‖f‖′p(·). �

Theorem 2.36. Given Ω, p(·) ∈ P(Ω), and a measurable f , then f ∈ Lp(·)(Ω)
if and only if f ∈Mp(·)(Ω); furthermore,

kp(·)‖f‖p(·) ≤ ‖f‖′p(·) ≤ Kp(·)‖f‖p(·),
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where

Kp(·) =
1

p−
− 1

p+
+ ‖χΩ∞‖∞ + ‖χΩ1

‖∞ + ‖χΩ∗‖∞,

1

kp(·)
= ‖χΩ∞‖∞ + ‖χΩ1‖∞ + ‖χΩ∗‖∞.

To motivate the proof of Theorem 2.36, recall the proof of (2.3) if 1 < p <∞.
By Hölder’s inequality, ‖f‖′p ≤ ‖f‖p. To prove the reverse inequality, let

g(x) =

(
|f(x)|
‖f‖p

)p/p′
sgn f(x).

Then ‖g‖p′ = 1, and ∫
Ω

f(x)g(x) dx = ‖f‖p,

and so in fact the supremum is attained.

Lemma 2.37. Given Ω and p(·) ∈ P(Ω), if ‖fχΩ∗‖′p(·) ≤ 1 and ρ(fχΩ∗) < ∞,

then ρ(fχΩ∗) ≤ 1.

Proof. Suppose to the contrary that ρ(fχΩ∗) > 1. Then by the continuity of
the modular (Proposition 2.7, (6)) there exists λ > 1 such that ρ(fχΩ∗/λ) = 1. Let

g(x) =

(
|f(x)|
λ

)p(x)−1

sgn f(x)χΩ∗(x).

Then ρp′(·)(g) = ρp(·)(fχΩ∗/λ) = 1, so ‖g‖p′(·) ≤ 1. Therefore, by the definition of
the associate norm,

‖fχΩ∗‖′p(·) ≥
∫

Ω

f(x)χΩ∗(x)g(x)

= λ

∫
Ω∗

(
|f(x)|
λ

)p(x)

dx = λρ(fχΩ∗/λ) > 1.

This contradicts our hypothesis on f , so the desired inequality holds. �

Proof of Theorem 2.36. One implication is immediate: by Theorem 2.32,

‖f‖′p(·) ≤ Kp(·)‖f‖p(·).
To prove the converse, we will assume that

|Ωp(·)∞ |, |Ω
p(·)
1 |, |Ωp(·)∗ | > 0.

If any of these sets has measure 0, then the proof can be readily adapted by omitting
the terms associated with them. Further, by the definition of the norm we may
assume f is non-negative.

We will prove that if ‖f‖′p(·) ≤ 1 and ρp(·)(fχΩ∗) <∞, then

(2.4) ρp(·)(kp(·)f) ≤ 1.

Given this, fix any non-negative f ∈ Mp(·)(Ω); by homogeneity we may assume
that ‖f‖′p(·) = 1. For each k ≥ 1, define the sets

Ek = Bk(0) ∩
(
Ω \ Ω∗ ∪ {x ∈ Ω∗ : p(x) < k}

)
,

and define the functions fk = min(f, k)χEk . Then fk ≤ f , so by Proposition 2.35,
‖fk‖′p(·) ≤ ‖f‖

′
p(·) ≤ 1. Furthermore, the sequence {fk} increases to f pointwise.

Finally, ρ(fkχΩ∗) <∞, and so we can apply (2.4) with f replaced by fk. Therefore,
by Fatou’s lemma on classical Lebesgue spaces and (2.4),

ρp(·)(kp(·)f/‖f‖′p(·)) = ρp(·)(kp(·)f) ≤ lim inf
k→∞

ρp(·)(kp(·)fk) ≤ 1.
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Thus, we have that

‖f‖p(·) ≤ k−1
p(·)‖f‖

′
p(·).

To complete the proof, fix f with ‖f‖′p(·) ≤ 1 and ρ(fχΩ∗) <∞; we will show

that (2.4) holds. First note that by Proposition 2.35, ‖fχ
Ω
p(·)
∗
‖′p(·) ≤ 1. Now fix ε,

0 < ε < 1; then there exists a set Eε ⊂ Ω
p(·)
∞ such that 0 < |Eε| <∞, and for each

x ∈ Eε,
|f(x)| ≥ (1− ε)‖f‖

L∞(Ω
p(·)
∞ )

.

Now define the function gε by

gε(x) =


kp(·)|f(x)|p(x)−1 sgn f(x) x ∈ Ω

p(·)
∗ = Ω

p′(·)
∗ ,

kp(·) sgn f(x) x ∈ Ω
p(·)
1 = Ω

p′(·)
∞ ,

kp(·)|Eε|−1χEε(x) sgn f(x) x ∈ Ω
p(·)
∞ = Ω

p′(·)
1 .

We claim that ρp′(·)(gε) ≤ 1, so ‖gε‖p′(·) ≤ 1. To see this, note that

ρp′(·)(gε/kp(·)) ≤
∫

Ω
p′(·)
∗

|f(x)|p(x) dx+ ‖ sgn f‖
L∞(Ω

p′(·)
∞ )

+ |Eε|−1

∫
Ω
p′(·)
1

χEε(x) dx

=

∫
Ω
p(·)
∗

|f(x)|p(x) dx+ ‖ sgn f‖
L∞(Ω

p(·)
1 )

+ |Eε|−1

∫
Ω
p(·)
∞

χEε(x) dx.

By Lemma 2.37, the first term on the right-hand side is dominated by 1; the second
term equals 0 or 1, and the third term always equals 1. Therefore,

ρp′(·)(gε/kp(·)) ≤ ‖χΩ
p(·)
∗
‖∞ + ‖χ

Ω
p(·)
1
‖∞ + ‖χ

Ω
p(·)
∞
‖∞ =

1

kp(·)
.

Since kp(·) ≤ 1, by the convexity of the modular (Proposition 2.7),

ρp′(·)(gε) ≤ kp(·)ρp′(·)(gε/kp(·)) ≤ 1,

which is what we claimed to be true.
Furthermore, we have that∫

Ω

f(x)gε(x) dx = kp(·)

∫
Ω
p(·)
∗

|f(x)|p(x) dx+ kp(·)

∫
Ω
p(·)
1

|f(x)| dx+ kp(·)−
∫
Eε

|f(x)| dx

≥ kp(·)
∫

Ω\Ω∞
|f(x)|p(x) dx+ (1− ε)kp(·)‖f‖L∞(Ω∞)

≥ (1− ε)kp(·)ρp(·)(f).

Therefore, by the definition of the associate norm, since ‖gε‖p′(·) ≤ 1,

1 ≥ ‖f‖′p(·) ≥
∫

Ω

f(x)gε(x) dx ≥ (1− ε)kp(·)ρp(·)(f).

Since ε > 0 was arbitrary, again by the convexity of the modular we have that

1 ≥ kp(·)ρp(·)(f) ≥ ρp(·)(kp(·)f). �

We digress to prove Minkowski’s integral inequality as a corollary of Theo-
rem 2.36. This was first proved by Samko [91, 92].

Corollary 2.38. Given Ω and p(·) ∈ P(Ω), let f : Ω × Ω → R be a measur-
able function (with respect to product measure) such that for almost every y ∈ Ω,
f(·, y) ∈ Lp(·)(Ω). Then

(2.5)

∥∥∥∥∫
Ω

f(·, y) dy

∥∥∥∥
p(·)
≤ k−1

p(·)Kp(·)

∫
Ω

‖f(·, y)‖p(·) dy.
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Proof. If the right-hand side of (2.5) is infinite, then there is nothing to prove,
so we may assume that this integral is finite. Define the function

g(x) =

∫
Ω

f(x, y) dy,

and take any h ∈ Lp
′(·)(Ω), ‖h‖p′(·) ≤ 1. Then by Fubini’s theorem (see Roy-

den [85]), ∫
Ω

|g(x)h(x)| dx ≤
∫

Ω

∫
Ω

|f(x, y)| dy |h(x)| dx

=

∫
Ω

∫
Ω

|f(x, y)h(x)| dx dy

≤ Kp(·)

∫
Ω

‖f(·, y)‖p(·)‖h‖p′(·) dy

≤ Kp(·)

∫
Ω

‖f(·, y)‖p(·) dy.

Therefore, we have that

‖g‖′p(·) ≤ Kp(·)

∫
Ω

‖f(·, y)‖p(·) dy,

and inequality (2.5) follows by Theorem 2.36. �

We finally turn to the dual space Lp(·)(Ω)∗ of continuous linear functionals
Φ: Lp(·)(Ω)→ R with norm

‖Φ‖ = sup
‖f‖p(·)≤1

|Φ(f)|.

It follows immediately from Theorem 2.36 that given a measurable function g,

Φg(f) =

∫
Ω

f(x)g(x) dx

is a linear functional if and only if g ∈ Lp′(·)(Ω) and

(2.6) kp′(·)‖g‖p′(·) ≤ ‖Φg‖ ≤ Kp′(·)‖g‖p′(·).

When p(·) is bounded, we get every element of the dual space in this way.

Theorem 2.39. Given Ω and p(·) ∈ P(Ω), if p+ <∞, then the map g 7→ Φg is

an isomorphism: given any continuous linear functional Φ ∈ Lp(·)(Ω)∗ there exists

a unique g ∈ Lp′(·)(Ω) such that Φ = Φg and ‖g‖p′(·) ≈ ‖Φ‖. Moreover, if p− > 1,

then Lp(·)(Ω) is reflexive.

Remark 2.40. Our proof is taken from [19] and is adapted from the proof for
classical Lebesgue spaces in Royden [85]. When p+ = ∞ this result is false. This
was proved in [64]; their proof depends on deeper results about Orlicz-Musielak
spaces due to Hudzik [61] and Kozek [65]. In [19] we give a direct proof.

Proof of Theorem 2.39. Since p′(·)+ = (p−)′, reflexivity follows at once
from the first part of the theorem. Therefore, we will concentrate on proving the
equivalence.

Suppose first that p+ < ∞. Fix Φ ∈ Lp(·)(Ω)∗; we will find g ∈ Lp′(·)(Ω) such
that Φ = Φg. Note that by (2.6) we immediately get that ‖g‖p′(·) ≈ ‖Φ‖.
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We initially consider the case when |Ω| < ∞. Define the set function µ by
µ(E) = Φ(χE) for all measurable E ⊂ Ω. Since Φ is linear and χE∪F = χE + χF
if E ∩ F = ∅, µ is additive. To see that it is countably additive, let

E =

∞⋃
j=1

Ej ,

where the sets Ej ⊂ Ω are pairwise disjoint, and let

Fk =

k⋃
j=1

Ej .

Then by Theorem 2.26,

‖χE − χFk‖p(·) ≤ (1 + |Ω|)‖χE − χFk‖p+

= (1 + |Ω|)|E \ Fk|1/p+ .

Since |E| < ∞, the last term tends to 0 as k → ∞; thus χFk → χE in norm.
Therefore, by the continuity of Φ, Φ(χFk)→ Φ(χE); equivalently,

∞∑
j=1

µ(Ej) = µ(E),

and so µ is countably additive.
In other words µ is a measure on Ω. Further, it is absolutely continuous: if

E ⊂ Ω, |E| = 0, then χE ≡ 0, and so

µ(E) = Φ(χE) = 0.

By the Radon-Nikodym theorem (see Royden [85]), absolutely continuous measures
are gotten from L1 functions. More precisely, there exists g ∈ L1(Ω) such that

Φ(χE) = µ(E) =

∫
Ω

χE(x)g(x) dx.

By the linearity of Φ, for every simple function f =
∑
ajχEj , Ej ⊂ Ω,

Φ(f) =

∫
Ω

f(x)g(x) dx.

Arguing as we did in the proof of Theorem 2.30, we have that the simple functions
are dense in Lp(·)(Ω). Hence, Φ and Φg agree on a dense subset. Thus, by continuity

Φ = Φg, and so g ∈ Lp′(·)(Ω).

Finally, to see that g is unique, it is enough to note that if g, g̃ ∈ Lp′(·)(Ω) are
such that Φg = Φg̃, then for all f ∈ Lp(·)(Ω),

(2.7)

∫
Ω

f(x)(g(x)− g̃(x)) dx = 0.

By Corollary 2.27, g− g̃ ∈ Lp′(·)(Ω) ⊂ Lp
′(·)−(Ω) = L(p+)′(Ω), and since (2.7) holds

for all f ∈ Lp+(Ω) ⊂ Lp(·)(Ω), by the duality theorem for the classical Lebesgue
spaces, g − g̃ = 0 a.e.

We now consider the case when |Ω| =∞. Write

Ω =

∞⋃
k=1

Ωk,



2.6. THE LEBESGUE DIFFERENTIATION THEOREM 29

where for each k, |Ωk| <∞ and Ωk ⊂ Ωk+1. Given Φ ∈ Lp(·)(Ω)∗, by restriction Φ
induces a bounded linear functional on Lp(·)(Ωk) for each k. Therefore, by the above

argument, there exists gk ∈ Lp
′(·)(Ωk) such that for all f ∈ Lp(·)(Ω), supp(f) ⊂ Ωk,

Φ(f) =

∫
Ωk

f(x)gk(x) dx.

Further, ‖gk‖p′(·) ≤ k−1
p′(·),Ωk‖Φ‖ ≤ 3‖Φ‖. Since the sets Ωk are nested, we must

have that for all f with support in Ωk,∫
Ωk

f(x)gk(x) dx =

∫
Ωk+1

f(x)gk+1(x) dx.

Since the functions gk are unique, we must have that gk = gk+1χΩk . Therefore, we
can define g by g(x) = gk(x) for all x ∈ Ωk. Since supp(gk) ⊂ Ωk, the sequence |gk|
increases to |g|; hence, by Theorem 2.18,

‖g‖p′(·) = lim
k→∞

‖gk‖p′(·) ≤ 3‖Φ‖ <∞.

Thus g ∈ Lp′(·)(Ω).
Now fix f ∈ Lp(·)(Ω) and let fk = fχΩk . Then |f − fk| ≤ |f |, so by Theo-

rem 2.21, fk → f in norm. Further, fkg → fg pointwise, and by Hölder’s inequality
for variable Lebesgue spaces (Theorem 2.32), |fkg| ≤ |fg| ∈ L1(Ω). Therefore, by
the classical dominated convergence theorem and the continuity of Φ,∫

Ω

f(x)g(x) dx = lim
k→∞

∫
Ωk

fk(x)g(x) dx

= lim
k→∞

∫
Ωk

fk(x)gk(x) dx = lim
k→∞

Φ(fk) = Φ(f).

Finally, since the restriction of g to each Ωk is uniquely determined, g itself is
the the unique element of Lp

′(·)(Ω) with this property. This completes the proof. �

2.6. The Lebesgue differentiation theorem

If f ∈ L1
loc, then for almost every x ∈ Rn,

lim
r→0
−
∫
Br(x)

f(y) dy = f(x).

If f ∈ Lploc(Rn), 1 ≤ p <∞, then a stronger result holds: for almost every x ∈ Rn,

lim
r→0
−
∫
Br(x)

|f(y)− f(x)|p dy = 0.

These results are usually referred to collectively as the Lebesgue differentiation
theorem—see [33, 46]. When p+ <∞ the Lebesgue differentiation theorem holds
in the variable Lebesgue spaces; this is due to Harjulehto and Hästö [49]. A slightly
weaker results holds when p+ =∞: see [19].

Proposition 2.41. Given p(·) ∈ P(Rn) such that p+ <∞, and f ∈ Lp(·)loc (Rn),
then for almost every x ∈ Rn,

(2.8) lim
r→0
−
∫
Br(x)

∣∣(f(y)− f(x)
)∣∣p(y)

dy = 0.

Proof. Since this is a local result, it will suffice to fix a ball B and prove it
for a.e. x ∈ B. Since f ∈ Lp(·)(B), by Proposition 2.9,∫

B

|f(y)|p(y) dy <∞.
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Enumerate the rationals as {qi}; then∫
B

∣∣(f(y)− qi
)∣∣p(y)

dy ≤ 2p+−1

∫
B

(∣∣f(y)
∣∣p(y)

+ |qi|p(y)
)
dy <∞.

Therefore, for each i, by the classical Lebesgue differentiation theorem, for almost
every x ∈ B,

lim
r→0
−
∫
Br(x)

∣∣(f(y)− qi
)∣∣p(y)

dy =
∣∣(f(x)− qi

)∣∣p(x)
.

Since the countable union of sets of measure 0 again has measure 0, this limit holds
for all i and almost every x ∈ B. Fix such an x. Fix ε, 0 < ε < 1, and choose qi
such that ∣∣(f(x)− qi

)∣∣ < ε.

Then we have that

lim sup
r→0

−
∫
Br(x)

∣∣(f(y)− f(x)
)∣∣p(y)

dy ≤ 2p+−1 lim sup
r→0

(
−
∫
Br(x)

∣∣(f(y)− qi
)∣∣p(y)

dy

+−
∫
Br(x)

∣∣(f(x)− qi
)∣∣ dy)

= 2p+−1
(∣∣(f(x)− qi)

)∣∣p(x)
+
∣∣(f(x)− qi)

)∣∣)
< 2p+ε.

The limit (2.8) follows at once. �



CHAPTER 3

The Hardy-Littlewood Maximal Operator

In this chapter we turn to the study of harmonic analysis on the variable
Lebesgue spaces. Our goal is to establish sufficient conditions for the Hardy-
Littlewood maximal operator to be bounded on Lp(·); in the next chapter we will
show how this can be used to prove norm inequalities on Lp(·) for the other clas-
sical operators of harmonic analysis. We begin with a brief review of the maximal
operator on the classical Lebesgue spaces and introduce our principal tool, the
Calderón-Zygmund decomposition.

3.1. Basic properties

The results on the maximal operator in this section are well-known; see for
example, [33, 44, 46].

Definition 3.1. Given a function f ∈L1
loc(Rn), thenMf , the Hardy-Littlewood

maximal function of f , is defined for any x ∈ Rn by

Mf(x) = sup
Q3x
−
∫
Q

|f(y)| dy,

where the supremum is taken over all cubes Q ⊂ Rn that contain x and whose sides
are parallel to the coordinate axes.

There are several variant definitions of the maximal operator, all of them point-
wise equivalent. We could restrict the supremum to cubes centered at x; this
is referred to as the centered maximal operator and is denoted by M c. Clearly,
M cf(x) ≤ Mf(x). On the other hand, given any cube Q containing x, there

exists a cube Q̃ centered at x and containing Q such that |Q̃| ≤ 3n|Q|. Hence,
Mf(x) ≤ 3nM cf(x). Similarly, the supremum could be taken over all cubes and
not just those whose sides are parallel to the coordinate axes; again, this definition
is pointwise equivalent to Definition 3.1. Alternatively we could define the maximal
operator by taking the supremum over all balls that contain x, or even over balls
centered at x. Again, these two operators are equivalent pointwise to one another
and to the maximal operator defined with respect to cubes.

The maximal operator is very difficult to compute exactly for most functions,
but in certain cases it can be approximated easily. The following example and vari-
ations of it occur repeatedly in practice; the proof is a straightforward computation.

Example 3.2. In Rn, let f(x) = |x|−a, 0 < a < n. Then

Mf(x) ≈ |x|−a.

We record some elementary properties of the maximal operator that follow at
once from the definition.

Proposition 3.3. The Hardy-Littlewood maximal operator has the following
properties:

31
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(1) M is sublinear: M(f + g)(x) ≤ Mf(x) + Mg(x), and for all α ∈ R,
M(αf)(x) = |α|Mf(x).

(2) If f is not identically zero, then on any bounded set Ω there exists ε > 0
such that Mf(x) ≥ ε, x ∈ Ω.

(3) If f is not equal to 0 a.e., then Mf 6∈ L1(Rn).
(4) If f ∈ L∞(Rn), then Mf ∈ L∞(Rn) and ‖Mf‖∞ = ‖f‖∞.

A deeper property of the maximal operator is a consequence of the Lebesgue
differentiation theorem, which in turn can be proved using the weak (1, 1) inequality
proved below.

Proposition 3.4. Given a locally integrable function f , then for a. e. x ∈ Rn,
|f(x)| ≤Mf(x).

3.2. The maximal operator on Lp, 1 ≤ p <∞

In this section we prove the classical norm inequalities for the Hardy-Littlewood
maximal operator. We will need these results, and the tools used to prove them, to
control the maximal operator on the variable Lebesgue spaces. Further, it is useful
to recall these proofs to compare them to the more complicated argument needed
in Lp(·). In this section we follow the presentation in [33, 44].

Theorem 3.5. Given f ∈ Lp(Rn), 1 ≤ p <∞, for every t > 0,

(3.1) |{x ∈ Rn : Mf(x) > t}| ≤ 3n4np

tp

∫
Rn
|f(x)|p dx.

Further, if 1 < p ≤ ∞, then

(3.2) ‖Mf‖Lp(Rn) ≤ C(n)(p′)1/p‖f‖Lp(Rn).

Remark 3.6. The weak (p, p) inequality (3.1) can be rewritten in terms of Lp

norms:

(3.3) t‖χ{x∈Rn:Mf(x)>t}‖p ≤ C(n, p)‖f‖p.

This is the form which we will generalize to Lp(·).

We will prove Theorem 3.5 using the Calderón-Zygmund decomposition, one
of the most versatile tools in harmonic analysis.

Definition 3.7. Let Q0 = [0, 1)n, and let ∆0 be the set of all translates
of Q0 whose vertices are on the lattice Zn. More generally, for each k ∈ Z, let
Qk = 2−kQ0 = [0, 2−k)n, and let ∆k be the set of all translates of Qk whose
vertices are on the lattice 2−kZn. Define the set of dyadic cubes ∆ by

∆ =
⋃
z∈Z

∆k.

The dyadic cubes have the following properties which are immediate conse-
quences of the definition.

Proposition 3.8.

(1) For each k ∈ Z, if Q ∈ ∆k, then `(Q) = 2−k.
(2) For each x ∈ Rn and k ∈ Z, there exists a unique cube Q ∈ ∆k such that

x ∈ Q.
(3) Given any two cubes Q1, Q2 ∈ ∆, either Q1 ∩ Q2 = ∅, Q1 ⊂ Q2, or

Q2 ⊂ Q1.

(4) For each k ∈ Z, if Q ∈ ∆k, then there exists a unique cube Q̃ ∈ ∆k−1

such that Q ⊂ Q̃. Q̃ is referred to as the dyadic parent of Q.
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(5) For each k ∈ Z, if Q ∈ ∆k, then there exist 2n cubes Pi ∈ ∆k+1 such that
Pi ⊂ Q.

Associated with the dyadic cubes is a corresponding maximal operator.

Definition 3.9. Given a function f ∈ L1
loc(Rn), define the dyadic maximal

operator Md by

Mdf(x) = sup
Q3x
Q∈∆

−
∫
Q

|f(y)| dy.

Somewhat surprisingly, even though the dyadic maximal operator is pointwise
smaller than the maximal operator, we can use it to control the maximal operator.

Lemma 3.10. If f ∈ L1
loc(Rn) is such that −

∫
Q
|f(y)| dy → 0 as |Q| → ∞, then

for all t > 0 there exists a (possibly empty) set of disjoint dyadic cubes {Qj} such
that

Edt = {x ∈ Rn : Mdf(x) > t} =
⋃
j

Qj

and

(3.4) t < −
∫
Qj

|f(x)| dx ≤ 2nt.

Further, for a.e. x ∈ Rn \
⋃
j Qj, |f(x)| ≤ t.

The cubes {Qj} are referred to as the Calderón-Zygmund cubes of f at height t.
As part of the proof we get that the Qj are the largest dyadic cubes with the
property that −

∫
Q
|f(y)| dy > t, and any other dyadic cube with this property is

contained in one of the Qj . We refer to this property as the maximality of the
Calderón-Zygmund cubes.

By Hölder’s inequality, the condition that −
∫
Q
|f(y)| dy → 0 as |Q| → ∞ is

satisfied if, for example, f ∈ Lp(Rn), 1 ≤ p <∞.

Proof. Fix t > 0; if Edt is empty, then there are no dyadic cubes Q such that
−
∫
Q
|f(y)| dy > t so we will let the collection {Qj} be the empty set. Otherwise, take

x ∈ Edt . By the definition of the dyadic maximal operator, there exists Q ∈ ∆ such
that x ∈ Q and

−
∫
Q

|f(y)| dy > t.

Since −
∫
Q
|f(y)| dy → 0 as the size of Q increases, if there is more than one dyadic

cube with this property, then there must be a largest such cube. Denote it by Qx.
Since we can do this for every such x,

(3.5) Edt ⊂
⋃
x∈Edt

Qx.

Conversely, given any other point x′ ∈ Qx,

Mdf(x′) ≥ −
∫
Qx

|f(y)| dy > t,

and so x′ ∈ Edt . Therefore, Qx ⊂ Edt and equality holds in (3.5).
Since ∆ is countable, the set {Qx : x ∈ Edt } is at most countable. Re-index this

set as {Qj}. The cubes Qj are pairwise disjoint; for if there exist two different cubes
that intersect, then by Proposition 3.8 one is contained in the other. However, this
contradicts the way in which these cubes were chosen since each was supposed to
be the largest such cube.
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The left-hand inequality in (3.4) follows from our choice of the Qj ; furthermore,
since each Qj was chosen to be the largest cube containing a point x with this

property, if we let Q̃j be its dyadic parent,

t ≥ −
∫
Q̃j

|f(y)| dy ≥ 2−n−
∫
Qj

|f(y)| dy.

Finally, for every x ∈ Rn \ Edt , Mdf(x) ≤ t. Therefore, for a.e. such x, by the
Lebesgue differentiation theorem,

|f(x)| = lim
x∈Q∈∆
|Q|→0

∣∣∣∣−∫
Q

f(y) dy

∣∣∣∣ ≤Mdf(x) ≤ t. �

Lemma 3.11. Let f ∈ L1
loc(Rn) be such that −

∫
Q
|f(y)| dy → 0 as |Q| → ∞.

Then for any t > 0, if {Qj} is the set of Calderón-Zygmund cubes of f at height
t/4n,

Et = {x ∈ Rn : Mf(x) > t} ⊂
⋃
j

3Qj .

Proof. Fix x ∈ Et; then there exists a cube Q containing x such that

−
∫
Q

|f(y)| dy > t.

Let k ∈ Z be such that 2−k−1 ≤ `(Q) < 2−k. Then Q intersects at most M ≤ 2n

dyadic cubes in ∆k; denote them by P1, . . . , PM . Since `(Pi) = 2−k ≤ 2`(Q), we
have that

t < −
∫
Q

|f(y)| dy ≤ |Q|−1
M∑
i=1

∫
Pi

|f(y)| dy ≤ 2n
M∑
i=1

−
∫
Pi

|f(y)| dy.

Therefore, there must exist at least one index i such that

−
∫
Pi

|f(y)| dy > t

2nM
≥ t

4n
.

In particular, Pi ⊂ Edt/4n ; since it is a dyadic cube, by the maximality of the

Calderón-Zygmund cubes, Pi ⊂ Qj for some j. Further, Pi and Q intersect, so x ∈
Q ⊂ 3Pi ⊂ 3Qj . This is true for every x ∈ Et, so we get the desired inclusion. �

Proof of Theorem 3.5. We will first prove inequality (3.1) and then prove
(3.2) for 1 < p <∞. We have already shown that the maximal operator is bounded
on L∞: by Proposition 3.3 we have that ‖Mf‖∞ = ‖f‖∞.

Fix p, 1 ≤ p <∞, and f ∈ Lp(Rn). For any t > 0, by Lemma 3.10, there exist
the disjoint Calderón-Zygmund cubes {Qj} of f at height t/4n. By Lemma 3.11
and Hölder’s inequality (when p > 1),

|{x ∈ Rn : Mf(x) > t}| ≤
∣∣∣∣⋃
j

3Qj

∣∣∣∣
≤
∞∑
j=1

|3Qj | ≤
∞∑
j=1

3n|Qj |

(
4n

t
−
∫
Qj

|f(x)| dx

)p

≤
∞∑
j=1

3n|Qj |
4np

tp
−
∫
Qj

|f(x)|p dx ≤ 3n4np

tp

∫
Rn
|f(x)| dx.

Now fix p, 1 < p <∞, and f ∈ Lp(Rn). The heart of the proof is an appeal to
Marcinkiewicz interpolation: see [33]. To make clear why the proof will not extend
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to variable Lebesgue spaces, we include instead adapt the proof of interpolation to
this particular problem.

For each t > 0 we can decompose f as f t0 + f t1, where

f t0 = fχ{x∈Rn:|f(x)|>t/2}, f t1 = fχ{x∈Rn:|f(x)|≤t/2}.

Since ‖f t1‖∞ ≤ t/2, we have by Proposition 3.3 that

Mf(x) ≤Mf t0(x) +Mf t1(x) ≤Mf t0(x) + t/2.

Given a function h ∈ Lp(Rn),

(3.6) ‖h‖pp = p

∫ ∞
0

tp−1|{x ∈ Rn : |h(x)| > t}| dt.

(See [71, 86].) Therefore, by the weak (1, 1) inequality and Fubini’s theorem,∫
Rn
Mf(x)p dx = p

∫ ∞
0

tp−1|{x ∈ Rn : Mf(x) > t}| dt

≤ p
∫ ∞

0

tp−1|{x ∈ Rn : Mf t0(x) > t/2}| dt

≤ 2p · 12n
∫ ∞

0

tp−2

∫
Rn
|f t0(x)| dx dt

= 2p · 12n
∫ ∞

0

tp−2

∫
{x∈Rn:|f(x)|>t/2}

|f(x)| dx dt

= 2p · 12n
∫
Rn
|f(x)|

∫ 2|f(x)|

0

tp−2 dt dx

= 2p′ · 12n
∫
Rn
|f(x)|p dx. �

Remark 3.12. This proof will fail in the variable Lebesgue spaces because (3.6)
does not hold: this inequality reflects in a fundamental way the fact that the Lp

spaces are rearrangement invariant. The variable Lebesgue spaces do not have this
property: in fact, they are not even translation invariant: see Theorem 4.5 below.

3.3. The maximal operator on variable Lebesgue spaces

The maximal operator is well-defined on any variable Lebesgue space. The
easiest way to see this is by using the embedding theorems in Section 2.4. If
f ∈ Lp(·)(Rn), then by Theorem 2.26 f is locally integrable, so Mf is defined.
Moreover, by Theorem 2.29, f = f1 + f2 where f1 ∈ Lp− and f2 ∈ Lp+ . Then
Mf ≤Mf1 +Mf2, and by Theorem 3.5 the right-hand side is finite a.e.

The central result of this chapter is that log-Hölder continuity is sufficient for
the maximal operator to be bounded.

Theorem 3.13. Given p(·) ∈ P(Rn), if 1/p(·) ∈ LH(Rn), then

(3.7) ‖tχ{x:Mf(x)>t}‖Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn).

If in addition p− > 1, then

(3.8) ‖Mf‖Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn).

In both inequalities the constant depends on the dimension n, the log-Hölder con-
stants of 1/p(·), p−, and p∞ (if this value is finite).

Theorem 3.13 is due to a number of people. It was first proved by Diening [25]
when p+ < ∞ and p(·) is constant outside a large ball. The full result, including
the LH∞ condition, but again when p+ < ∞, was proved in [22]. Independently,
Nekvinda [79] proved it with a slightly different condition at infinity: see below.
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The case p+ = ∞ is due to Diening [28]; see also [29]. The proof given here is
adapted from [15].

We will only prove the strong-type inequality (3.8) in the special case 1 < p− ≤
p+ <∞. This proof reveals the essential ideas of what is going on without getting
obscured by technical details. The weak-type inequality when p− = 1 is gotten by
modifying this proof. For the complete proof when p+ =∞, see [15, 19].

For the proof we need three lemmas. The first is a geometric characterization
of local log-Hölder continuity due to Diening [25].

Lemma 3.14. Given p(·) : Rn → [0,∞) such that p+ < ∞, the following are
equivalent:

(1) p(·) ∈ LH0(Rn);
(2) there exists a constant C depending on n such that given any cube Q and

x ∈ Q,

|Q|p(x)−p+(Q) ≤ C and |Q|p−(Q)−p(x) ≤ C.

Proof. Suppose p(·) ∈ LH0(Rn). We will prove the first inequality in (2); the
proof of the second is identical. If `(Q) ≥ (2

√
n)−1, then

|Q|p(x)−p+(Q) ≤ (2
√
n)n(p+−p−) = C(n, p(·)).

If `(Q) < (2
√
n)−1, then for all y ∈ Q, |x − y| < 1/2. In particular, since p(·) is

continuous, there exists y ∈ Q such that p(y) = p+(Q). Therefore, by the definition
of LH0,

|Q|p(x)−p+(Q) ≤
(
n−1/2|x− y|

)−n|p(x)−p(y)|

≤ exp

(
C0(log(n1/2)− log |x− y|)

− log |x− y|

)
≤ C(n, p(·)).

Now suppose that (2) holds. Fix x, y ∈ Rn such that |x− y| < 1/2; then there
exists a cube Q such that x, y ∈ Q and `(Q) ≤ |x−y| (and so |Q| < 1). Combining
the two inequalities in (2) we have that

C ≥ |Q|p−(Q)−p+(Q) ≥ |Q|−|p(x)−p(y)|

≥ |x− y|−n|p(x)−p(y)| = exp
(
− n|p(x)− p(y)| log(|x− y|)

)
.

If we take the logarithm we get that

|p(x)− p(y)| ≤ C

− log(|x− y|)
,

where C does not depend on x, y. Hence p(·) ∈ LH0(Rn). �

The second lemma shows that given log-Hölder continuity at infinity, we can
work with modular inequalities by replacing the variable exponent with a constant
one at the price of an error term. Versions of this inequality appeared in [12, 15,
22].

Lemma 3.15. Let p(·) : Rn → [0,∞) be such that p(·) ∈ LH∞(Rn) and 0 <
p∞ <∞, and let R(x) = (e+ |x|)−N , N > n/p∞. Then there exists a constant C
depending on n, N and the LH∞ constant of p(·) such that given any set E and
any function F with 0 ≤ F (y) ≤ 1 for y ∈ E,∫

E

F (y)p(y) dy ≤ C
∫
E

F (y)p∞ dy + C

∫
E

R(y)p∞ dy,(3.9) ∫
E

F (y)p∞ dy ≤ C
∫
E

F (y)p(y) dy + C

∫
E

R(y)p∞ dy.(3.10)
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Proof. We will prove (3.9); the proof of the second inequality is essentially
the same. By the LH∞ condition,

R(y)−|p(y)−p∞| = exp
(
N log(e+ |y|)|p(y)− p∞|

)
≤ exp(NC∞).

Write the set E as E1 ∪E2, where E1 = {x ∈ E : F (y) ≤ R(y)} and E2 = {x ∈ E :
R(y) < F (y)}. Then∫

E1

F (y)p(y) dy ≤
∫
E1

R(y)p(y) dy

≤
∫
E1

R(y)p∞R(y)−|p(y)−p∞| dy ≤ exp(NC∞)

∫
E1

R(y)p∞ dy.

Similarly, since F (y) ≤ 1,∫
E2

F (y)p(y) dy ≤
∫
E2

F (y)p∞F (y)−|p(y)−p∞| dy

≤
∫
E2

F (y)p∞R(y)−|p(y)−p∞| dy ≤ exp(NC∞)

∫
E2

F (y)p∞ dy.

�

Our third lemma allows us to apply the Calderón-Zygmund decomposition to
functions in Lp(·)(Rn). This result is from [19].

Lemma 3.16. Given p(·)∈P(Rn), suppose p+<∞. Then for all f ∈Lp(·)(Rn),
−
∫
Q
|f(y)| dy → 0 as |Q| → ∞. In particular, the conclusion of Lemma 3.10 holds.

Proof. Fix f ∈ Lp(·)(Rn) and a cube Q with |Q| > 2. Then by Theorem 2.32,

−
∫
Q

|f(y)| dy ≤ Kp(·)|Q|−1‖χQ‖p′(·)‖f‖p(·).

We will show that |Q|−1‖χQ‖p′(·) → 0. By the definition of the norm, since |Q| > 2,

‖χQ‖p′(·) = inf{λ > 0 :

∫
Q\Ωp

′(·)
∞

λ−p
′(x) dx+ λ−1‖χQ‖L∞(Ω

p′(·)
∞ )

≤ 1}

≤ inf{λ > 1 :

∫
Q\Ωp

′(·)
∞

λ−p
′(x) dx+ λ−1 ≤ 1}

≤ inf{λ > 1 : λ−p
′(·)− |Q|+ λ−1 ≤ 1}

≤ inf{λ > 21/p′(·)− : λ−p
′(·)− |Q|+ λ−1 ≤ 1}.

The last infimum is obtained when λ satisfies λ−p
′(·)− |Q|+λ−1 = 1. Fix this value

of λ. Then 1 < λ−p
′(·)− |Q|+ 2−1/p′(·)− , and so

λ <
|Q|1/p

′(·)−

(1− 2−1/p′(·)−)1/p′(·)−
.

Hence,

|Q|−1‖χQ‖p′(·) ≤ |Q|−1λ <
|Q|1/p

′(·)−−1

(1− 2−1/p′(·)−)1/p′(·)−
.

Since p+ <∞, p′(·)− > 1, and so the right-hand term tends to 0 as |Q| → ∞. �

Remark 3.17. As an alternative to using this lemma, we can prove norm
inequalities by first proving them for bounded functions of compact support, and
then use an approximation argument with the monotone convergence theorem and
the density of such functions (Theorems 2.18 and 2.30). This is the approach used
in [15].
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Proof of inequality (3.8). We begin the proof with some reductions. First,
without loss of generality we may assume f is non-negative. Second, given the
assumption that p+ <∞, then 1/p(·) ∈ LH0 is equivalent to assuming p(·) ∈ LH0,
since ∣∣∣∣p(x)− p(y)

(p+)2

∣∣∣∣ ≤ ∣∣∣∣ 1

p(x)
− 1

p(y)

∣∣∣∣ ≤ ∣∣∣∣p(x)− p(y)

(p−)2

∣∣∣∣ .
The same computation with p∞ in place of p(y) shows that 1/p(·) ∈ LH∞ is
equivalent to p(·) ∈ LH∞.

Third, to prove (3.8) we will need to pass between a norm inequality and a
modular inequality. In the classical Lebesgue spaces this is trivial, since norm
and modular inequalities are equivalent. This is no longer the case in the vari-
able Lebesgue spaces: in fact, as we will see below in Theorem 3.36, the modular
inequality ∫

Rn
Mf(x)p(x) dx ≤ C

∫
Rn
|f(x)|p(x) dx

is always false unless p(·) is constant.
To avoid this, we will use the following approach that can be adapted to many

other operators. By homogeneity, it is enough to prove (3.8) with the additional
assumption that ‖f‖p(·) = 1; in this case, Corollary 2.16 implies that∫

Rn
|f(x)|p(x) dx ≤ 1.

Then by Theorem 2.9 it will suffice to prove that∫
Rn
Mf(x)p(x) dx ≤ C,

since then we have that

‖Mf‖p(·) ≤ C = C‖f‖p(·).

We now argue as follows. Decompose f as f1 + f2, where

f1 = fχ{x:f(x)>1}, f2 = fχ{x:f(x)≤1};

then ρ(fi) ≤ ‖fi‖p(·) ≤ 1. Further, since Mf ≤Mf1 +Mf2, it will suffice to show
that for i = 1, 2, that ‖Mfi‖p(·) ≤ C(n, p(·)); since p+ <∞, as we argued above it
will in turn suffice to show that∫

Rn
Mfi(x)p(x) dx ≤ C.

The estimate for f1. Let A = 4n, and for each k ∈ Z let

Ωk = {x ∈ Rn : Mf1(x) > Ak}.
Since f1 ∈ Lp(·)(Rn), as we noted at the beginning of Section 3.3, Mf1(x) < ∞
almost everywhere; similarly, without loss of generality we may assume f1 is non-
zero on a set of positive measure, and so by Proposition 3.3, Mf(x) > 0 for all x.
Therefore, up to a set of measure 0, Rn =

⋃
k Ωk \ Ωk+1. Further, by Lemma 3.16

for each k we can apply Lemma 3.10 to form the Calderón-Zygmund decomposition
of f at height Ak−1: pairwise disjoint cubes {Qkj }j such that

Ωk ⊂
⋃
j

3Qkj and −
∫
Qkj

f1(y) dy > Ak−1.

From the second inequality we get that

−
∫

3Qkj

f1(y) dy > 3−nAk−1.
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Define the sets Ekj inductively: Ek1 = (Ωk \Ωk+1)∩3Qk1 , Ek2 = ((Ωk \Ωk+1)∩3Qk2)\
Ek1 , Ek3 = ((Ωk \ Ωk+1) ∩ 3Qk3) \ (Ek1 ∪ Ek2 ), etc. Then the sets Ekj are pairwise

disjoint for all j and k and Ωk \ Ωk+1 =
⋃
j E

k
j .

We now estimate as follows:∫
Rn
Mf1(x)p(x) dx =

∑
k

∫
Ωk\Ωk+1

Mf1(x)p(x) dx

≤
∑
k

∫
Ωk\Ωk+1

[Ak+1]p(x) dx

≤ A2p+3np+

∑
k,j

∫
Ekj

(
−
∫

3Qkj

f1(y) dy

)p(x)

dx.

To estimate the last sum, note that since f1(x) = 0 or f1(x) ≥ 1 a.e., if we let
pjk = p−(3Qkj ),

(3.11)

∫
3Qkj

f1(y)p(y)/pjk dy ≤
∫

3Qkj

f1(y)p(y) dy ≤ 1.

Further, since p(·) ∈ LH0(Rn) and p+ <∞, by Lemma 3.14 there exists a constant
C depending on p(·) and n such that for x ∈ 3Qkj ,

(3.12) |3Qkj |−p(x) ≤ C|3Qkj |−pjk .

Therefore, since for x ∈ Ekj ⊂ 3Qkj , p(x) ≥ pjk ≥ p−, by (3.11), (3.12) and Hölder’s
inequality with exponent pjk/p−,

∑
k,j

∫
Ekj

(
−
∫

3Qkj

f1(y) dy

)p(x)

dx ≤
∑
k,j

∫
Ekj

|3Qkj |−p(x)

(∫
3Qkj

f1(y)p(y)/pjk dy

)p(x)

dx

≤ C
∑
k,j

∫
Ekj

|3Qkj |−pjk
(∫

3Qkj

f1(y)p(y)/pjk dy

)pjk
dx

≤ C
∑
k,j

∫
Ekj

(
−
∫

3Qkj

f1(y)p(y)/pjk dy

)pjk
dx

≤ C
∑
k,j

∫
Ekj

(
−
∫

3Qkj

f1(y)p(y)/p− dy

)p−
dx

≤ C
∑
k,j

∫
Ekj

M(f1(·)p(·)/p−)(x)p− dx

≤ C
∫
Rn
M(f1(·)p(·)/p−)(x)p− dx.

Since p− > 1, by Theorem 3.5 the maximal operator is bounded on Lp−(Rn).
Hence, ∫

Rn
M(f1(·)p(·)/p−)(x)p− dx ≤ C

∫
Rn
f1(x)p(x) dx ≤ C.

If we combine the above inequalities we get the desired result.

The estimate for f2 Since 0 ≤ f2(x) ≤ 1, we have that 0 ≤ Mf2(x) ≤ 1.
Since 1 < p∞ <∞, if we set R(x) = (e+ |x|)−n, then by inequality (3.9),∫

Rn
Mf2(x)p(x) dx ≤ C

∫
Rn
Mf2(x)p∞ dx+ C

∫
Rn
R(x)p∞ dx.
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The second integral is a constant depending only on n and p∞. To bound the first
integral, note that since p∞ ≥ p− > 1, by Theorem 3.5 and (3.10),∫

Rn
Mf2(x)p∞ dx ≤ C

∫
Rn
f2(x)p∞ dx

≤ C
∫
Rn
f2(x)p(x) dx+ C

∫
Rn
R(x)p∞ dx ≤ C.

Combining these two inequalities we get the desired estimate for f2. This completes
the proof. �

3.4. The necessity of the hypotheses in Theorem 3.13

Since in the classical case the maximal operator is bounded on Lp for both p
finite and p =∞, it is makes sense that Theorem 3.13 includes the case p+ =∞. At
the other end of the scale of Lebesgue spaces, by Proposition 3.3 the maximal oper-
ator is not bounded on L1. Initially it was conjectured that if p(x) > 1 everywhere
and is “far” from 1 except on a small set—for example, if p(x) = 1 + | log(x)|−1

near the origin—then the maximal operator could be bounded on Lp(·). However,
this is never the case. The following result first appeared in [22] with the addi-
tional assumption that p(·) is upper semicontinuous; this hypothesis was removed
by Diening [28]; see also [19, 30].

Theorem 3.18. Given p(·) ∈ P(Rn), if p− = 1, then the maximal operator is
not bounded on Lp(·)(Rn).

Proof. For each k ∈ N, choose sk such that

1 < sk < n

(
n− 1

k + 1

)−1

.

Then for each k, since p− = 1 the set

Ek = {x : p(x) < sk}

has positive measure. By the Lebesgue differentiation theorem, for each function
χEk there exists a point xk ∈ Ek such that

lim
r→0+

|Br(xk) ∩ Ek|
|Br(xk)|

= 1.

In particular, there exists Rk, 0 < Rk < 1, such that if 0 < r ≤ Rk, then

(3.13)
|Br(xk) ∩ Ek|
|Br(xk)|

> 1− 2−n(k+1).

Let Bk = BRk(xk) and define

fk(x) = |x− xk|−n+ 1
k+1χBk∩Ek(x).

We now must prove that fk ∈ Lp(·)(Rn), and that

‖Mfk‖p(·) ≥ c(n)(k + 1)‖fk‖p(·).

To see the first, note that since Rk < 1 and −n+ 1
k+1 < 0,

ρ(fk) =

∫
Bk∩Ek

|x− xk|(−n+ 1
k+1 )p(x) dx

≤
∫
Bk∩Ek

|x− xk|(−n+ 1
k+1 )sk dx <∞.
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For the second, we will use the equivalent definition of the maximal operator
and consider averages over balls. Fix x ∈ Bk ∩Ek and let r = |x− xk| ≤ Rk. Then

Mfk(x) ≥ 1

|Br(xk)|

∫
Br(xk)∩Ek

|y − xk|−n+ 1
k+1 dy.

Let δk = 2−(k+1); then

|{y : δkr < |y − xk| < r}| = (1− 2−n(k+1))|Br(xk)|.

Therefore, since |x − xk|−n+ 1
k+1 is radially decreasing and since by (3.13)

|Br(xk) ∩ Ek| ≥ (1− 2−n(k+1))|Br(xk)|, we have that

Mfk(x) ≥ 1

|Br(xk)|

∫
Br(xk)∩Ek

|y − xk|−n+ 1
k+1 dy

≥ c(n)r−n
∫
{δkr<|y−xk|<r}

|y − xk|−n+ 1
k+1 dy

= c(n)(k + 1)(1− δ
1
k+1

k )|x− xk|−n+ 1
k+1

≥ c(n)(k + 1)fk(x).

Trivially, this inequality also holds if x 6∈Bk∩Ek; hence, ‖Mfk‖p(·) ≥ c(n)(k + 1)
‖fk‖p(·), and this completes the proof. �

We now turn to the regularity assumption in Theorem 3.13. The next example
shows that a simple jump discontinuity will cause the maximal operator to be
unbounded. We first saw this example in the Introduction.

Example 3.19. Let Ω = R, and let

p(x) =

{
2 x ≤ 0

4 x > 0.

Let f(x) = |x|−2/5χ(−1,0)(x). Since |x|−4/5χ(−1,0) ∈ L1(R), by Proposition 2.9,

f ∈ Lp(·)(R). On the other hand, Mf 6∈ Lp(·)(R): if 0 < x < 1, then

Mf(x) ≥ 1

2x

∫ x

−x
|f(y)| dy =

1

2x

∫ x

0

y−2/5 dy =
5

6
x−2/5 6∈ L4((0, 1));

hence ρ(Mf) =∞, so again by Proposition 2.9, Mf 6∈ Lp(·)(Ω). Further, from this
inequality we get that for any t > 0,

t4|{x ∈ R : Mf(x) > t}| ≥ t4
(

5

6t

)5/2

;

hence, for t large, by Corollary 2.17 we have that

‖tχ{x:Mf(x)>t}‖p(·) ≥ ρ
(
tχ{x:Mf(x)>t}

)1/4 ≥ t( 5

6t

)5/8

.

Since the right-hand side is unbounded as t→∞, (3.7) does not hold.

The next example shows that local regularity is also not sufficient: there must
be some control at infinity.

Example 3.20. Let p(x) = 3 + sin(x). Then the maximal operator is un-
bounded on Lp(·)(R).
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Proof. For all k ∈ N, define the sets

Ak =

[
π

4
+ 2kπ,

3π

4
+ 2kπ

]
,

Bk =

[
5π

4
+ 2kπ,

7π

4
+ 2kπ

]
.

If we let a = 3 +
√

2/2 and b = 3−
√

2/2, then if x ∈ Ak, p(x) ≥ a and if x ∈ Bk,
p(x) ≤ b.

We now define the function

f(x) =

∞∑
k=1

|x|−1/3χAk(x).

Since a/3 > 1,

ρ(f) =

∞∑
k=1

∫
Ak

|x|−p(x)/3 dx ≤
∫ ∞
π/4+2π

|x|−a/3 dx <∞,

so by Proposition 2.9, f ∈ Lp(·)(R). On the other hand, given x ∈ [2kπ, 2(k+ 1)π],

Mf(x) ≥ 1

2π

∫ 2(k+1)π

2kπ

f(y) dy ≥ c|x|−1/3.

Therefore, since b/3 < 1,

ρ(Mf) ≥
∞∑
k=1

c

∫
Bk

|x|−p(x)/3 dx

≥
∞∑
k=1

c

∫
Bk

|x|−b/3 dx ≥ c
∞∑
k=1

(
7π

4
+ 2kπ

)−b/3
=∞,

and so again by Proposition 2.9, Mf 6∈ Lp(·)(R). �

As we will see in Section 3.5, the log-Hölder continuity conditions are not
necessary. However, as the next two results show, they are sharp in the sense that
if we replace the right-hand side by any larger modulus of continuity, we can find
an exponent function p(·) such that the maximal operator is not bounded. The
following two examples are from [22] and [82].

Example 3.21. Fix p∞, 1 < p∞ <∞, and let φ : [0,∞)→ [0, 1) be such that
φ(0+) = 0, φ+ < p∞ − 1, φ is decreasing on [1,∞), φ(x)→ 0 as x→∞, and

(3.14) lim
x→∞

φ(x) log(x) =∞.

Define p(·) ∈ P(R) by

p(x) =

{
p∞ x ≤ 0

p∞ − φ(x) x > 0.

Then p(·) 6∈ LH∞(R) and the maximal operator is not bounded on Lp(·)(R).

Remark 3.22. A family of functions that satisfy the hypotheses of Exam-
ple 3.21 is

p(x) =


p0 x ∈ (−∞, 0]

p0 − x
log(e+1)a x ∈ (0, 1)

p0 − 1
log(e+x)a x ∈ [1,∞),

where p0 > 2 and 0 < a < 1.
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Proof. It is immediate from (3.14) that p(·) does not satisfy the LH∞(R)
condition, so we only have to construct a function f such that f ∈ Lp(·)(R) but
Mf 6∈ Lp(·)(R). By inequality (3.14) we have that

lim
x→∞

(
1− p∞

p(2x)

)
log(x) = −∞,

which in turn implies that

lim
x→∞

x1−p∞/p(2x) = 0.

Hence, we can form a sequence {cn} ⊂ (−∞,−1) such that cn+1 < 2cn and

|cn|1−p∞/p(2|cn|) ≤ 2−n.

Let dn = 2cn and define the function f by

f(x) =

∞∑
n=1

|cn|−1/p(|dn|)χ(dn,cn)(x).

Since p+ < ∞, by Proposition 2.9 it will suffice to show that ρ(f) < ∞ and
ρ(Mf) =∞. First,

ρ(f) =

∞∑
n=1

∫ cn

dn

|cn|−p(x)/p(|dn|) dx =

∞∑
n=1

∫ cn

dn

|cn|−p∞/p(|dn|) dx

=

∞∑
n=1

|cn|1−p∞/p(|dn|) ≤
∞∑
n=1

2−n = 1.

On the other hand, if x ∈ (|cn|, |dn|), then

Mf(x) ≥ 1

2|dn|

∫ |dn|
dn

f(y) dy

≥ 1

2|dn|

∫ cn

dn

|cn|−1/p(|dn|) dy =
1

4
|cn|−1/p(|dn|).

Therefore, since p(·) is an increasing function on (1,∞) and |cn| ≥ 1,

ρ(Mf) ≥
(

1

4

)p+ ∞∑
n=1

∫ |dn|
|cn|

|cn|−p(x)/p(|dn|) dx

≥
(

1

4

)p+ ∞∑
n=1

∫ |dn|
|cn|

|cn|−p(|dn|)/p(|dn|) dx =

(
1

4

)p+ ∞∑
n=1

1 =∞. �

Example 3.23. Fix p0, 1 < p0 <∞, and let φ : [0,∞)→ [0, 1] be such that φ
is increasing, φ(0) = 0, φ(x)→ 0 as x→ 0+, and

(3.15) lim
x→0+

φ(x) log(x) = −∞.

Let Ω = (−1, 1) and define p(·) ∈ P(Ω) by

p(x) =

{
p0 + φ(x) x ≥ 0

p0 x < 0.

Then p(·) 6∈ LH0(Ω) and the maximal operator is not bounded on Lp(·)(Ω).

Remark 3.24. A particular family of exponent functions p(·) that satisfy the
hypotheses of Example 3.23 is

p(x) =

{
2 x ∈ (−1, 0]

2 + 1
log(e/x)a x ∈ (0, 1),

where 0 < a < 1.
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Proof. The construction of this example is very similar to the construction
of Example 3.21. It is immediate from (3.15) that p(·) does not satisfy the LH0(Ω)
condition at the origin, so we only have to construct a function f such that f ∈
Lp(·)(Ω) butMf 6∈ Lp(·)(Ω). Intuitively, we will generalize Example 3.19 by showing
that f(x) = |x|−1/p(|x|)χ(−1,0)(x) is in Lp(·)(Ω) but Mf is not. However, to simplify
the calculations we replace this f by a discrete analog.

By (3.15) we have that

lim
x→0+

(
1− p0

p(x/2)

)
log(x) = −∞;

equivalently,

lim
x→0+

x1− p0
p(x/2) = 0.

Hence, we can form a sequence {an} ⊂ (−1, 0) such that an/2 < an+1 and

|an|1−p0/p(|an|/2) ≤ 2−n.

Let bn = an/2 and define the function f by

f(x) =
∞∑
n=1

|an|−1/p(|bn|)χ(an,bn)(x).

Since p+ < ∞, by Proposition 2.9 it will suffice to show that ρ(f) < ∞ and
ρ(Mf) =∞. First, we have that

ρ(f) =

∞∑
n=1

∫ bn

an

|an|−p0/p(|bn|) dx

=
1

2

∞∑
n=1

|an|1−p0/p(|bn|) ≤
∞∑
n=1

2−n−1 <∞.

On the other hand, if x ∈ (|bn|, |an|), then

Mf(x) ≥ 1

2|an|

∫ |an|
an

f(y) dy

≥ 1

2|an|

∫ bn

an

|an|−1/p(|bn|) dy =
1

4
|an|−1/p(|bn|).

Therefore, since p(·) is an increasing function and |an| ≤ 1,

ρ(Mf) ≥
(

1

4

)p+ ∞∑
n=1

∫ |an|
|bn|

|an|−p(x)/p(|bn|) dx

≥
(

1

4

)p+ ∞∑
n=1

∫ |an|
|bn|

|an|−p(|bn|)/p(|bn|) dx =

(
1

4

)p+ ∞∑
n=1

1

2
=∞. �

3.5. Weakening the hypotheses in Theorem 3.13

While the log-Hölder continuity conditions are sufficient and sharp as pointwise
conditions, they are not necessary. In this section we review some recent work on
weaker sufficient conditions and conclude with a necessary and sufficient condition
due to Diening that has important theoretical implications.

To see that the log-Hölder continuity is not necessary, we give three examples.
Since the details of their proof are quite complicated, we omit them and refer the
reader to the literature. The first example shows that LH∞ is not necessary. For
a proof, see Nekvinda [80].
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Example 3.25. On the real line, if

p(x) = p0 +
1

log(e+ |x|)a
,

p0 > 1 and 0 < a < 1, then M is bounded on Lp(·)(R).

The second shows that the LH0 condition is not necessary. For a proof, see [19].

Example 3.26. Given a, 0 < a < 1, let Ia = (−e−31/a

, e−31/a

) ⊂ R. Then the
exponent p(·) ∈ P(Ia) defined by

1

p(x)
=

1

2
+

1

log(1/|x|)a
,

then M is bounded on Lp(·)(Ia).

If we compare these examples with Examples 3.21 and 3.23, we see that in the
latter examples the proof depends in an essential way on the asymmetry of p(·).
In fact, if we maintain symmetry, then it is possible to construct a discontinuous
exponent such that the maximal operator is bounded. The following remarkable
example is due to Lerner [68].

Example 3.27. Given p0 > 1 and µ ∈ R, define p(·) ∈ P(R) by

p(x) = p0 − µ sin(log log(1 + max(|x|, |x|−1))).

Then for µ sufficiently close to 0, the maximal operator is bounded on Lp(·)(R), but
p(·) does not have a limit at 0 or infinity.

Remark 3.28. The following interesting question is suggested by the previous
examples: does there exist an even, continuous exponent function p(·) on R such
that 1 < p− ≤ p+ <∞ and the maximal operator is not bounded on Lp(·)(R)?

Motivated by these examples, there has been an effort to find weaker sufficient
conditions, both locally and infinity. Much more is known locally. At infinity, the
only known condition that can replace the LH∞ condition is due to Nekvinda [79],
who used it to independently prove Theorem 3.13.

Definition 3.29. Given p(·) ∈ P(Rn), we say that p(·) ∈ N∞(Rn) if there
exist constants Λ∞ > 0 and p∞ ∈ [1,∞] such that∫

Ω+

exp

(
−Λ∞

∣∣∣∣ 1

p(x)
− 1

p∞

∣∣∣∣−1
)
dx <∞,

where

Ω+ =

{
x ∈ Rn :

∣∣∣∣ 1

p(x)
− 1

p∞

∣∣∣∣ > 0

}
.

The N∞ condition implies that the exponent p(·) satisfies the log-Hölder con-
tinuity in some average sense at infinity. In fact, the proof of the strong-type in-
equality above goes through with LH∞ replaced by N∞: a version of Lemma 3.15
is still true. This is essentially Nekvinda’s argument. The N∞ condition, however,
is not necessary; this is shown by Example 3.25 above.

An interesting replacement for local log-Hölder continuity is the K0 condition
introduced by Kopaliani [62].
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Definition 3.30. Given p(·) ∈ P(Rn), then p(·) ∈ K0(Rn) if there exists a
constant CK such that

(3.16) sup
Q
|Q|−1‖χQ‖Lp(·)(Ω)‖χQ‖Lp′(·)(Ω) ≤ CK <∞,

where the supremum is taken over all cubes Q.

The K0 condition is very similar to the Muckenhoupt Ap condition for weighted
norm inequalities: see Chapter 4 below. Furthermore, it is a necessary condition.

Proposition 3.31. Given p(·) ∈ P(Rn), if the maximal operator is bounded
on Lp(·)(Rn), then p(·) ∈ K0(Rn).

The K0 condition is not sufficient: there exist examples due to Kopaliani [63]
and Diening [28] (see also [30]) of exponents p(·) such that p(·) ∈ K0, but the
maximal operator is not bounded on Lp(·). On the other hand, it is a replacement
for the LH0 condition, as the next result due to Kopaliani [62] and Lerner [69]
shows. It is possible to prove this result by adapting the proof of Theorem 3.13
and using some ideas of Lerner: see [19].

Theorem 3.32. Given p(·) ∈ P(Rn), suppose 1 < p− ≤ p+ < ∞ and p(·) ∈
K0(Rn) ∩ LH∞(Rn). Then

(3.17) ‖Mf‖Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn).

We conclude this section with a necessary and sufficient condition due to
Diening [27, 30]. Though not easy to check in practice, it has important theo-
retical implications. To state it, we give two definitions.

Definition 3.33. Let Q = {Qj} be a collection of pairwise disjoint cubes.
Given a locally integrable function f , define the averaging operator AQ by

AQf(x) =
∑
j

AQjf(x)
∑
j

−
∫
Qj

f(y) dyχQj (x).

Definition 3.34. Given p(·) ∈ P(Rn), then p(·) ∈ A if there exists a constant
CA such that given any set Q of disjoint cubes and any function f ∈ Lp(·)(Rn),
‖AQf‖p(·) ≤ CA‖f‖p(·).

Theorem 3.35. Given p(·) ∈ P(Rn), suppose 1 < p− ≤ p+ < ∞. Then the
following are equivalent:

(1) p(·) ∈ A.
(2) The maximal operator is bounded on Lp(·)(Rn).

(3) The maximal operator is bounded on Lp
′(·)(Rn).

(4) There exists s>1 such that the maximal operator is bounded on Lp(·)/s(Rn).

A direct proof of the equivalence of (2) and (4) was given by Lerner and Om-
brosi [70]. As we will see in the next chapter, the equivalence of (2) and (3) plays
a major role in the application of extrapolation in the variable Lebesgue spaces. It
would be very interesting to have a direct proof of this result, even in the case of
the classical Lebesgue spaces.

3.6. Modular inequalities

We close this chapter by considering a different approach to norm inequalities
for the maximal operator. In the classical Lebesgue spaces, norm inequalities are
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equivalent to modular inequalities, so if we consider the particular case when p+<
∞, then corresponding to inequalities (3.7) and (3.8) are the modular inequalities∫

{x:Mf(x)>t}
tp(x) dx ≤ C

∫
Rn
|f(x)|p(x) dx(3.18) ∫

Rn
Mf(x)p(x) dx ≤ C

∫
Rn
|f(x)|p(x) dx(3.19)

By the definition of the norm, these modular inequalities imply the corresponding
norm inequalities, so these inequalities would be stronger results. However, they
are neve true unless p(·) is constant. This was proved by Lerner [67]. His proof
is interesting because it reveals a deep connection between the Muckenhoupt Ap
weights (defined in the next Chapter) and the variable Lebesgue spaces.

Theorem 3.36. Given p(·) ∈ P(Rn), suppose p+ < ∞. Then the modular
inequalities (3.18) and (3.19) are true if and only if there is a constant p0 such that
p(·) = p0 a.e.

There is a weaker formulation of a modular weak-type inequality; somewhat
surprisingly, given the above results, it is true with extremely weak assumptions on
p(·).

Theorem 3.37. Given p(·) ∈ P(Rn), if |Ω∞| = 0, then there exists a constant
C such that for all t > 0 and all f ∈ Lp(·)(Rn),

|{x ∈ Rn : Mf(x) > t}| ≤ C
∫
Rn

(
4|f(x)|

t

)p(x)

dx.

A version of this inequality was first proved in [22] with a much more compli-
cated proof. This version and its elegant proof are due to Aguilar Cañestro and
Ortega Salvador [5].

Proof. Fix f ∈ Lp(·)(Rn) and t > 0. Define

f1 = fχ{x∈Rn:|f(x)|>t/2}, f2 = fχ{x∈Rn:|f(x)|≤t/2},

By Proposition 3.3, Mf2(x) ≤ t/2. Therefore,

|{x ∈ Rn : Mf(x) > t}| ≤ |{x ∈ Rn : Mf1(x) +Mf2(x) > t}|
≤ |{x ∈ Rn : Mf1(x) > t/2}|.

We estimate the last term: since |4t−1f1| ≥ 1, by the weak (p−, p−) inequality for
the maximal operator (Theorem 3.5),

|{x ∈ Rn : Mf1(x) > t/4}| = |{x ∈ Rn : M(4t−1f1)(x) > 1}|

≤ |{x ∈ Rn : M((4t−1f1)p(·)/p−)(x) > 1}|

≤ C
∫
Rn

(
4|f1(x)|

t

)p(x)

dx

≤ C
∫
Rn

(
4|f(x)|

t

)p(x)

dx. �





CHAPTER 4

Extrapolation in Variable Lebesgue Spaces

In this chapter we develop a general theory for proving norm inequalities for the
other classical operators in harmonic analysis. Our main result is a powerful gener-
alization of the Rubio de Francia extrapolation theorem. This approach, developed
in detail in [20, 24], lets us use the theory of weighted norm inequalities to prove
the corresponding estimates on variable Lebesgue spaces. This greatly reduces the
work required since it lets us use the well-developed theory of weights. The under-
lying philosophy might best be described by paraphrasing Antonio Cordoba’s pithy
summary of extrapolation theory [43]:

There are no variable Lebesgue spaces: only weighted L2.

In the first three sections we discuss convolution operators and the convergence
of approximate identities. We begin by reviewing the basic properties of convolu-
tions on the classic Lebesgue spaces. We then show that these properties fail to
extend to the variable setting by proving that variable Lebesgue spaces are not
translation invariant, and, as a consequence, that Young’s inequality fails spectacu-
larly. On the other hand we are able to prove that approximate identities converge
given reasonable assumptions on the exponent functions. These results are of in-
terest in their own right, and the proof provides a motivation for the theory of
extrapolation.

In the final three sections we develop the theory of extrapolation. We first
digress briefly to present some basic facts about the Muckenhoupt Ap weights and
weighted norm inequalities. We then prove the extrapolation theorem, and give
some examples of the kinds of inequalities that can be proved using this theory.
We develop in detail one particular example: convolution type singular integrals.
While not the most general, this example makes clear the technical considerations
that arise when applying the extrapolation theorem.

4.1. Convolution operators and approximate identities

We begin by recalling some basic results about convolutions. For further details
and proofs of these results, see [33, 46, 99].

Definition 4.1. Given two locally integrable functions f and g, their convo-
lution is the function f ∗ g defined by

f ∗ g(x) =

∫
Rn
f(x− y)g(y) dy,

wherever this integral is finite.

It is immediate from the definition that convolutions are linear and commute.
They also satisfy the following norm inequality referred to as Young’s inequality.
Though we omit the details, we recall the fact that the proof of Proposition 4.2
depends in a crucial way on the translation invariance of Lp.

49
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Proposition 4.2. Given measurable functions f and g, and given p, q, r, 1 ≤
p, q, r ≤ ∞, such that

1

r
+ 1 =

1

p
+

1

q
,

if f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ∗ g ∈ Lr(Rn) and

(4.1) ‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

An important application of convolutions is the technique of approximate iden-
tities. Given a function φ ∈ L1, for each t > 0 let φt(x) = t−nφ(x/t). Then
‖φt‖1 = ‖φ‖1. Define the radial majorant of φ to be the function

Φ(x) = sup
|y|≥|x|

|φ(y)|.

The function Φ is radial and decreasing as |x| increases; however, it need not be in
L1 even though φ is. In important cases, e.g. when φ is bounded and has compact
support, Φ is in L1. It follows from the definitions that

(4.2) |φt ∗ f(x)| ≤ (Φt ∗ |f |)(x),

so in practice we can often replace φ by its radial majorant.

Definition 4.3. Given φ ∈ L1(Rn) such that
∫
Rn φ(x) dx = 1, the set {φt} =

{φt : t > 0} is called an approximate identity. If the radial majorant of φ is also in
L1(Rn), {φt} is called a potential type approximate identity.

Theorem 4.4. Given an approximate identity {φt}, then for all p, 1 ≤ p <∞,
if f ∈ Lp(Rn), then ‖φt ∗ f − f‖p → 0 as t→ 0. Further, if {φt} is a potential type
approximate identity, then for all p, 1 ≤ p ≤ ∞, φt ∗ f(x) → f(x) pointwise a.e.
as t→ 0.

4.2. The failure of Young’s inequality in Lp(·)

As we noted previously, Young’s inequality fails to hold on the variable Lebesgue
space: the proof depends fundamentally on the fact that the classical Lebesgue
spaces are translation invariant. More precisely, given a function and h ∈ Rn, de-
fine the translation operator τh by τhf(x) = f(x−h). Then for any p, if f ∈ Lp(Rn)
and h ∈ Rn, τhf ∈ Lp(Rn) and ‖f‖p = ‖τhf‖p. This property is never universally
true on the variable Lebesgue spaces; this was first proved by Kováčik and Rákosńık
[64].

Theorem 4.5. Given p(·) ∈ P(Rn), each of the translation operators τh, h ∈
Rn, is a bounded operator on Lp(·)(Rn) if and only if p(·) is constant. Moreover,
if p(·) is non-constant, there exists f ∈ Lp(·)(Rn) and h ∈ Rn such that τhf 6∈
Lp(·)(Rn).

Proof. If p(·) is constant, then this is immediate. To prove the converse,
suppose that p(·) ∈ P(Rn) is such that for all h, ‖τhf‖p(·) ≤ Ch‖f‖p(·). By a
change of variables we have that ‖τhf‖p(·) = ‖f‖τ−hp(·). More generally, fix h and

a ball B. If f ∈ Lp(·)(B) and f = 0 on Rn \ B, then τhf ∈ Lp(·)(B + h), where
B + h = {x + h : x ∈ B}, and ‖f‖

Lτ−hp(·)(B)
= ‖τhf‖Lp(·)(B−h). Hence, by our

assumption on τh,

‖f‖
Lτ−hp(·)(B)

≤ ‖τhf‖Lp(·)(Rn) ≤ Ch‖f‖Lp(·)(Rn) = Ch‖f‖Lp(·)(B).

Therefore, by Theorem 2.28, τ−hp(x) ≤ p(x) for almost every x ∈ B. If we replace h
by −h and repeat the argument, we get the reverse inequality. Thus, τhp(x) = p(x)
a.e. in B. Since B and h are arbitrary, this implies that p(·) is constant.
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Given a non-constant p(·), to construct the desired function f , fix h ∈ Rn
such that τh is not a bounded operator. Then there exists a sequence of functions
fk ∈ Lp(·)(Rn) such that ‖fk‖p(·) ≤ 1 but ‖τhfk‖p(·) ≥ 4k. If for some k, τhfk 6∈
Lp(·)(Rn), we are done. Otherwise, let

f =

∞∑
k=1

2−k|fk|.

Then

‖f‖p(·) ≤
∞∑
k=1

2−k‖fk‖p(·) ≤ 1,

but for every k, f ≥ 2−k|fk|, and so

‖τhf‖p(·) ≥ 2−k‖τhfk‖p(·) ≥ 2k.

Hence, ‖τhf‖p(·) =∞ and τhf 6∈ Lp(·)(Rn). �

The failure of Young’s inequality is a direct consequence of Theorem 4.5; it was
first proved by Diening [25] in a somewhat different form.

Theorem 4.6. Given p(·) ∈ P(Rn), the inequality

(4.3) ‖f ∗ g‖p(·) ≤ C‖f‖p(·)‖g‖1

is true for every f ∈ Lp(·)(Rn) and g ∈ L1(Rn) if and only if p(·) is constant.

Proof. If p(·) = p is constant, then (4.3) becomes (4.1).
Now suppose that p(·) is not constant but (4.3) holds for all f and g. By

Theorem 4.5 there exists h ∈ Rn and f ∈ Lp(·)(Rn) such that τhf 6∈ Lp(·)(Ω).
If we replace f by |f |/‖f‖p(·) we may assume f is non-negative and ‖f‖p(·) = 1.
For each N > 0, let gN (x) = min(f(x), N)χBN (0). Then ‖gN‖p(·) ≤ ‖f‖p(·) ≤ 1.
Further, since gN is a bounded function of compact support, for each N , and
τhgN ∈ Lp(·)(Rn). Since gN → f pointwise, by Theorem 2.19, ‖τhgN‖p(·) → ∞ as
N → ∞. Therefore, for every k ≥ 1 we can construct a new sequence {fk} such
that fk ∈ Lp(·)(Ω) and ‖fk‖p(·) ≤ 1, but ‖τhfk‖p(·) ≥ 2k.

Let φ be a bounded, non-negative function of compact support such that
‖φ‖1 = 1. For every t > 0, let ψt,h(x) = t−nφ((x − h)/t). Then by a change
of variables,

ψt,h ∗ fk(x) = t−n
∫
Rn
φ

(
x− y − h

t

)
fk(y) dy

= t−n
∫
Rn
φ

(
x− y
t

)
fk(y − h) dy = φt ∗ (τhfk)(x).

By assumption, τhfk ∈ Lp(·)(Rn), so by Theorem 4.9 below, φt ∗ (τhfk) → τhfk
pointwise a.e. Therefore, again by Theorem 2.19 and by (4.3),

2k ≤ ‖τhfk‖p(·) ≤ lim inf
t→0

‖φt ∗ (τhfk)‖p(·)
= lim inf

t→0
‖ψt,h ∗ fk‖p(·) ≤ C‖fk‖p(·)‖ψt,h‖1 ≤ C.

This is impossible for arbitrary k, so we get a contradiction. Hence, inequality (4.3)
holds if and only if p(·) is constant. �

As a consequence of Lemma 4.14 below we can prove a weak version of Young’s
inequality. This was first noted in [17].
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Proposition 4.7. Let p(·) ∈ P(Rn) be such that the maximal operator is
bounded on Lp(·)(Rn). Then for every f ∈ Lp(·)(Rn) and every non-negative, radi-
ally decreasing function g ∈ L1(Rn),

‖f ∗ g‖p(·) ≤ C‖f‖p(·)‖g‖1.

However, even given the restrictive hypotheses of Proposition 4.7, Young’s in-
equality does not hold for general exponents. This example is also from [17].

Example 4.8. Let p(·) ∈ P(R) be a smooth function such that p(x) = 2 if
x ∈ Rn \ [−2, 2], and p(x) = 4 on [−1, 1]. Then p(·) ∈ LH(R), so the maximal
operator is bounded. Define

f(x) = |x− 3|−1/3χ[2,4],

g(x) = |x|−2/3χ[−1,1].

Since f2 ∈ L1(R), by Proposition 2.9, f ∈ Lp(·)(R). Similarly, since p′(x) = 4/3 on

[−1, 1] and g4/3 ∈ L1(R), g ∈ Lp′(·)(R). However, we do not have that

‖f ∗ g‖∞ ≤ C‖f‖p(·)‖g‖p′(·),
since f ∗ g is unbounded in a neighborhood of 3. To show this, let Ex = [2, 4] ∩
[x− 1, x+ 1]. Then by Fatou’s lemma on the classical Lebesgue spaces,

lim inf
x→3

f ∗ g(x) = lim inf
x→3

∫
Rn
|x− y|−2/3|y − 3|−1/3χEx(y) dy

≥
∫
Rn

lim
x→3

(
|x− y|−2/3|y − 3|−1/3χEx(y)

)
dy

=

∫ 4

2

|y − 3|−1 dy =∞.

4.3. Approximate identities on variable Lebesgue spaces

While the failure of Young’s inequality might suggest that no property of con-
volution operators can be salvaged in the variable Lebesgue spaces, the convergence
of approximate identities is preserved if we assume that the exponent function p(·)
has some regularity: in particular, if the maximal operator is bounded.

We consider both pointwise convergence and norm convergence. In the Lp

spaces, the norm convergence of an approximate identity is relatively straightfor-
ward to prove, but pointwise convergence requires a more sophisticated argument
using the maximal operator. For variable Lebesgue spaces the opposite holds:
pointwise convergence is an immediate consequence of the classical result, but norm
convergence requires the boundedness of the maximal operator. The following two
results were proved by Diening [25] assuming that 1 < p− ≤ p+ < ∞ and the
maximal operator is bounded on Lp(·). The general version of Theorem 4.9 was
proved in [17]. Theorem 4.11 was also proved there assuming that p(·) ∈ LH. This
proof depended on a pointwise estimate for approximate identities. The proof of
Theorem 4.11 given here is from [19].

Theorem 4.9. Given p(·) ∈ P(Rn), let f ∈ Lp(·)(Rn). If {φt} is any potential
type approximate identity, then for all t > 0, φt ∗ f is finite a.e., and φt ∗ f → f
pointwise a.e.

Proof. By Theorem 2.29, write f = f1 + f2, where f1 ∈ Lp+(Rn) and f2 ∈
Lp−(Rn). Since φt∗f = φt∗f1+φt∗f2, and φt ∈ L1(Rn), by Young’s inequality (4.1)
each term is finite a.e., and the desired limit follows at once from Theorem 4.4. �
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Remark 4.10. Though a simple application, the proof illustrates the utility
of Theorem 2.29: by decomposing f in this way we can immediately apply known
results in the classical Lp spaces. Thus we do not have to work directly with
functions in Lp(·); we will use this idea repeatedly below.

We now consider the convergence in norm of approximate identities. To achieve
this we need a stronger assumption on p(·).

Theorem 4.11. Given p(·) ∈ P(Rn), suppose p+ < ∞ and the maximal op-

erator is bounded on Lp
′(·)(Rn). If {φt} is a potential type approximate identity,

then

(4.4) sup
t>0
‖φt ∗ f‖p(·) ≤ C‖f‖p(·),

and φt ∗ f → f in norm on Lp(·)(Rn). The constant C in (4.4) depends on n, p(·),
‖M‖B(Lp′(·)(Rn)) and ‖Φ‖1.

Remark 4.12. If we replace Rn by a bounded set Ω, then we can modify the
proof to show that this result remains true if we only assume that p(·) ∈ LH0(Ω).
This fact is often useful in applications: for instance, in proving the density of
smooth functions of compact support in the variable Sobolev spaces. See [19, 30].

Remark 4.13. The assumption p+ <∞ is redundant: if the maximal operator

is bounded on Lp
′(·)(Rn), then p′(·)− > 1, and so p+ = (p′(·)−)′ <∞.

The proof of Theorem 4.11 requires the following lemma which is adapted
from [33].

Lemma 4.14. Let {φt} be a potential type approximate identity and let Φ be
the radial majorant of φ. Then for every locally integrable function f and every x,

sup
t>0
|φt ∗ f(x)| ≤ C(n)‖Φ‖1Mf(x).

Proof. By (4.2) and the discussion in Section 3.1, it will suffice to prove that
given any non-negative f ∈ L1

loc(Rn), for all t > 0,

Φt ∗ f(x) ≤ ‖Φ‖1Mf(x),

where here we take the maximal operator to be the supremum of averages over
balls. For each j, k ≥ 1 let Bkj = Bj2−k(0). Since Φ is radial, we abuse notation
and let Φ(|x|) = Φ(x). Define the function Φk by

Φk(x) =

∞∑
j=1

(
Φ(j2−k)− Φ((j + 1)2−k)

)
χBkj (x) =

∞∑
j=1

akj χBkj (x).

Since Φ is decreasing, akj ≥ 0. Let Akj = Bkj \Bkj−1; then for x ∈ Akj ,

Φk(x) =

∞∑
i=j

(
Φ(i2−k)− Φ((i+ 1)2−k)

)
= Φ(j2−k) ≤ Φ(x).

The middle sum converges since Φ is a non-negative function that decreases to 0
as |x| → ∞. Further, {Φk} increases to Φ pointwise a.e. Hence, by the monotone
convergence theorem on L1(Rn), if f is non-negative, for each t > 0, (Φk)t ∗ f
increases to Φt ∗ f pointwise as k →∞. Therefore, it will suffice to prove that for
all k ≥ 1 and t > 0,

(Φk)t ∗ f(x) ≤ ‖Φ‖1Mf(x).

We first consider the case t = 1. Since for all x,

|Bkj |−1χBkj ∗ f(x) = −
∫
Bkj

f(x− y) dy = −
∫
B
j2−k (x)

f(y) dy ≤Mf(x),
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Φk ∗ f(x) =
∑
j

akj |Bkj | · |Bkj |−1χBkj ∗ f(x) ≤ ‖Φk‖1Mf(x) ≤ ‖Φ‖1Mf(x).

We can now repeat this argument with Φk replaced by (Φk)t; since ‖(Φk)t‖1 =
‖Φk‖1, we get the desired inequality for all t > 0. �

Proof of Theorem 4.11. Fix f ∈ Lp(·)(Rn) and t > 0. Let Φ be the ra-

dial majorant of φ. Then by (4.2) and Theorem 2.36 there exists h ∈ Lp′(·)(Rn),
‖h‖p′(·) = 1, such that

‖φt ∗ f‖p(·) ≤ ‖Φt ∗ |f |‖p(·) ≤ 2k−1
p(·)

∫
Rn

Φt ∗ |f |(x)h(x) dx.

Since Φt is a radial function, by Fubini’s theorem, Theorem 2.32, Lemma 4.14 and
our assumption on p′(·),∫

Rn
(Φt ∗ |f |)(x)h(x) dx =

∫
Rn
|f(x)|Φt ∗ h(x) dx

≤ C(n)‖Φ‖1
∫
Rn
|f(x)|Mh(x) dx

≤ C(n)‖Φ‖1Kp(·)‖f‖p(·)‖Mh‖p′(·)
≤ C‖M‖B(Lp′(·)(Rn))‖f‖p(·)‖h‖p′(·)
= C‖f‖p(·).

Since the constants do not depend on t, inequality (4.4) follows at once.

To prove that φt ∗ f converges to f in norm on Lp(·)(Rn), we use an approxi-
mation argument. Fix ε > 0. By Theorem 2.30 there exists a function g, bounded
with compact support and not identically zero, such that ‖f − g‖p(·) < ε. Then
by (4.4),

‖φt ∗ f − f‖p(·) ≤ ‖φt ∗ (f − g)‖p(·)
+ ‖φt ∗ g − g‖p(·) + ‖f − g‖p(·)

≤ Cε+ ‖φt ∗ g − g‖p(·).

Since ε > 0 is arbitrary, to complete the proof it will suffice to show that

lim
t→0
‖φt ∗ g − g‖p(·) = 0;

since p+ <∞, by Lemma 2.20 it will suffice to show that

lim
t→0

∫
Rn
|φt ∗ g(x)− g(x)|p(x) dx = 0.

Let g0(x) = g(x)/(2‖φ‖1‖g‖∞); since ‖φ‖1 ≥ 1, ‖g0‖∞ ≤ 1/2. Furthermore,

|φt ∗ g0(x)| ≤
∫
Rn
|φt(x− y)||g0(y)| dy ≤ ‖g0‖∞

∫
Rn
|φt(x− y)| dy ≤ 1/2.

Therefore, ‖φt ∗ g0 − g0‖∞ ≤ 1, and so

lim
t→0

∫
Rn
|φt ∗ g(x)− g(x)|p(x) dx

= lim
t→0

∫
Rn

(2‖φ‖1‖g‖∞)p(x)|φt ∗ g0(x)− g0(x)|p(x) dx

≤ (2‖φ‖1‖g‖∞ + 1)p+ lim
t→0

∫
Rn
|φt ∗ g0(x)− g0(x)|p− dx.

Since g0 ∈ Lp−(Rn) and 1 ≤ p− <∞, by Theorem 4.4 the last term equals 0. This
completes the proof. �
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In the proof of Theorem 4.11 we actually only need the hypothesis that p+ <∞
to prove norm convergence; inequality (4.4) remains true if we assume p+ = ∞,
p− > 1 and M is bounded on Lp(·). In fact, slightly weaker hypotheses suffice:
see [30]. However, to prove norm convergence this hypothesis is necessary. For an
example, see [19].

We conclude this section by showing that the classical solutions to the Laplacian
and the heat equation extend to the variable Lebesgue spaces. The Poisson and
Gauss-Weierstrass kernels are defined as follows: for t > 0 and x ∈ Rn, let

Pt(x) =
Γ
(
n+1

2

)
π
n+1

2

t

(t2 + |x|2)
n+1

2

, Wt(x) = t−ne−π|x|
2/t2 .

Clearly, {Pt} and {Wt} are potential type approximate identities.

Proposition 4.15. Given p(·) ∈ P(Rn), suppose that p+ <∞ and the maximal

operator is bounded on Lp
′(·)(Rn). If f ∈ Lp(·)(Rn), then u(x, t) = Pt ∗ f(x) is the

solution of the boundary value problem{
4u(x, t) = 0, (x, t) ∈ Rn+1

+ ,

u(x, 0) = f(x), x ∈ Rn,

where the second equality is understood in the sense that u(x, t) converges to f(x)
as t→ 0 pointwise a.e. and in Lp(·)(Rn) norm.

Proposition 4.16. Given p(·) ∈ P(Rn), suppose that p+ <∞ and the maximal

operator is bounded on Lp
′(·)(Rn). Given f ∈ Lp(·)(Rn), define w(x, t) = Wt ∗ f(x)

and w̄(x, t) = w(x,
√

4πt). Then w̄ is the solution of the initial value problem{
∂w̄
∂t (w, t)−4w̄(x, t) = 0, (x, t) ∈ Rn+1

+ ,

w̄(x, 0) = f(x), x ∈ Rn,

where the second equality is understood in the sense that w̄(x, t) converges to f(x)
as t→ 0 pointwise a.e. and in Lp(·)(Rn) norm.

Propositions 4.15 and 4.16 were first proved in [17]. Sharapudinov [97] proved
similar results on the unit circle.

Proof. We sketch the proof of Proposition 4.15; the proof of Proposition 4.16
is identical. First, we show that u is a solution. By Theorem 2.29 write f = f1 +f2

with f1 ∈ Lp−(Rn) and f2 ∈ Lp+(Rn). By the classical theory (see [45]), u1 = Pt∗f1

and u2 = Pt ∗ f2 are solutions, and so u = u1 + u2 is also a solution. The identity
u(x, 0) = f(x) follows from Theorems 4.9 and 4.11 since {Pt} is a potential type
approximate identity. �

4.4. Muckenhoupt weights and weighted norm inequalities

In this section we give some basic definitions and state without proof some
fundamental results from the theory of weighted norm inequalities. For further
information and proofs of all the results, see the books by Duoandikoetxea [33],
Garćıa-Cuerva and Rubio de Francia [44] and Grafakos [47].

Hereafter, by a weight we mean a non-negative, locally integrable function such
that 0 < w(x) < ∞ a.e. For 1 < p < ∞, a weight w is in the Muckenhoupt class
Ap—or simply, w ∈ Ap—if

(4.5) [w]Ap = sup
Q

(
−
∫
Q

w(x) dx

)(
−
∫
Q

w(x)1−p′ dx

)p−1

<∞,
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where the supremum is taken over all cubes with sides parallel to the coordinate
axes. For p = 1, we say that w ∈ A1 if

(4.6) [w]A1 = ess sup
x∈Rn

Mw(x)

w(x)
<∞,

where M is the Hardy-Littlewood maximal operator. It follows from this definition
that if w ∈ A1, then for almost every x,

(4.7) Mw(x) ≤ [w]A1
w(x).

In turn, this implies that for every cube Q,

(4.8) −
∫
Q

w(y) dy ≤ [w]A1
ess inf
x∈Q

w(x).

The collection of all the Ap weights is denoted by A∞:

A∞ =
⋃
p≥1

Ap.

Lemma 4.17. The Ap classes are nested: given p, q, 1 ≤ p < q <∞, Ap ⊂ Aq.

Remark 4.18. In the definition of Ap weights we can substitute balls for cubes.
In Section 3.1 we showed that the maximal operator can be defined using either balls
or cubes, and the same reasoning applies here: given any ball B, there exist two
cubes Q1, Q2 with the same center such that Q1 ⊂ B ⊂ Q2 and |Q2|/|Q1| = nn/2,
and a similar relationship holds with the roles of balls and cubes reversed.

The theory of extrapolation requires that we construct A1 weights using arbi-
trary functions in Lp(·). We do so using an iteration technique referred to as the
Rubio de Francia iteration algorithm.

Lemma 4.19. Given p(·) such that M is bounded on Lp(·)(Rn), for each h ∈
Lp(·)(Rn) define

Rh(x) =

∞∑
k=0

Mkh(x)

2k‖M‖kB(Lp(·)(Rn))

,

where for k ≥ 1, Mk = M ◦M ◦· · ·◦M denotes k iterations of the maximal operator
and M0f = |f |. Then

(a) for all x ∈ Rn, |h(x)| ≤ Rh(x);
(b) R is bounded on Lp(·)(Rn) and ‖Rh‖p(·) ≤ 2‖h‖p(·);
(c) Rh ∈ A1 and [Rh]A1

≤ 2‖M‖B(Lp(·)(Rn)).

Proof. Property (a) follows immediately from the definition. Property (b)
follows from the subadditivity of the norm:

‖Rh‖p(·) ≤
∞∑
k=0

‖Mkh‖p(·)
2k‖M‖kB(Lp(·)(Rn))

≤ ‖h‖p(·)
∞∑
k=0

2−k = 2‖h‖p(·).

Property (c) follows by the subadditivity and homogeneity of the maximal operator:

M(Rh)(x) ≤
∞∑
k=0

Mk+1h(x)

2k‖M‖kB(Lp(·)(Rn))

≤ 2‖M‖B(Lp(·)(Rn))

∞∑
k=0

Mk+1h(x)

2k+1‖M‖k+1
B(Lp(·)(Rn))

≤2‖M‖B(Lp(·)(Rn))Rh(x).�
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Remark 4.20. The iteration algorithm is an extremely powerful tool. For
example, it can be used to give an elementary proof of Diening’s result (see Theo-
rem 3.35) that if M is bounded on Lp(·), there exists s > 1 such that M is bounded
on Lp(·)/s. For a proof, see Lerner and Ombrosi [70].

There is a close connection between Muckenhoupt Ap weights and the maxi-
mal operator: the following result is fundamental in the study of weighted norm
inequalities.

Theorem 4.21. Given p, 1 ≤ p < ∞, then w ∈ Ap if and only if for every
f ∈ Lp(w) and every t > 0,

(4.9) w({x ∈ Rn : Mf(x) > t}) ≤
C(n, p, [w]Ap)

tp

∫
Rn
|f(x)|pw(x) dx.

Furthermore, if p > 1, then w ∈ Ap if and only if

(4.10)

∫
Rn
Mf(x)pw(x) dx ≤ C(n, p, [w]Ap)

∫
Rn
|f(x)|pw(x) dx.

We end this section by briefly describing a generalization of Ap weights to
variable Lebesgue spaces. To motivate our definition we need to recast the definition
of Ap weights. In (4.5) if we replace w by wp we can rewrite the definition of Ap as

sup
Q
|Q|−1‖wχQ‖p‖w−1χQ‖p′ <∞.

Then inequality (4.10) becomes

‖(Mf)w‖p ≤ C‖fw‖p.

In this formulation, we treat w not as a measure (i.e., as w dx) but as a multiplier.
The advantage of this reformulation is that it extends immediately to the vari-

able Lebesgue spaces. We say that a weight w ∈ Ap(·) if

sup
Q
|Q|−1‖wχQ‖p(·)‖w−1χQ‖p′(·) <∞.

Further, we have the following result, which was discovered by the authors and
Neugebauer [21] and independently by Diening and Hästö [31]. (Another proof
was given in [16].)

Theorem 4.22. Given p(·) ∈ P(Rn) such that 1 < p− ≤ p+ < ∞ and p(·) ∈
LH(Rn), then w ∈ Ap(·) if and only if

‖(Mf)w‖p(·) ≤ C‖fw‖p(·).

4.5. Rubio de Francia extrapolation

The theory of extrapolation is an extremely powerful tool in the study of
weighted norm inequalities. Our treatment in this section is derived from [24]
which gives a comprehensive development of the theory. To put our main result
in context, we first state the classical result, albeit in a recent formulation. While
a tool for proving weighted norm inequalities for operators, a surprising feature of
the proof is that the properties of the operator play no role. Therefore, we will
work with pairs (F,G) of non-negative, measurable functions. This may seem a
superfluous generalization, but it allows the theory of extrapolation to be extended
to prove a much wider class of results.
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Hereafter, let F denote a family of pairs of non-negative, measurable functions;
given p, q, 1 ≤ p, q <∞, if for some w ∈ Aq we write

(4.11)

∫
Rn
F (x)pw(x) dx ≤ C0

∫
Rn
G(x)pw(x) dx, (F,G) ∈ F ,

then we mean that this inequality holds for all pairs (F,G) ∈ F such that the
left-hand side is finite, and that the constant may depend on n, p, and [w]Aq but
not on w.

Theorem 4.23. Suppose that for some p0, 1 ≤ p0 < ∞, the family F is such
that for all w ∈ Ap0 ,

(4.12)

∫
Rn
F (x)p0w(x) dx ≤ Cp0

∫
Rn
G(x)p0w(x) dx, (F,G) ∈ F .

Then for every p, 1 < p <∞, and every w ∈ Ap,

(4.13)

∫
Rn
F (x)pw(x) dx ≤ Cp

∫
Rn
G(x)pw(x) dx, (F,G) ∈ F .

The utility of the more abstract approach comes from ability to choose the
family of pairs. To apply the theorem to prove norm inequalities for an operator
T , we would consider a family of pairs of the form (|Tf |, |f |), where f ranges over
some appropriate collection of functions. We can also use extrapolation to prove
Coifman-Fefferman type inequalities of the form∫

Rn
|Tf(x)|pw(x) dx ≤ C

∫
Rn
Sf(x)pw(x) dx,

where T is (usually) some more singular operator and S is some positive operator
such as a maximal operator or square function. Here we would apply extrapolation
to a family of pairs (|Tf |, Sf). We can also use extrapolation to prove weak-type
inequalities of the form

w({x ∈ Rn : |Tf(x)| > t}) ≤ C

tp

∫
Rn
|f(x)|pw(x) dx;

in this case we would apply extrapolation to the family of pairs

(tχ{x∈Rn:|Tf(x)|>t}, |f |);
see Corollary 4.28 below. In all of these applications, some care must be exercised
in constructing the family F so that the left-hand sides of the inequalities (4.12)
and (4.13) are finite, and so that the desired norm inequality can be shown to hold
for all functions in the space. We will consider this question further in the next
section when we discuss applications of extrapolation.

To state our version of Rubio de Francia extrapolation for variable Lebesgue
spaces, we extend our convention for the family F as follows: if we write

(4.14) ‖F‖Lp(·)(Rn) ≤ Cp(·)‖G‖Lp(·)(Rn), (F,G) ∈ F ,
then we mean that this inequality holds for all pairs such that the left-hand side is
finite and the constant may depend on n and p(·).

Theorem 4.24. Suppose that for some p0 > 0 the family F is such that for all
w ∈ A1,

(4.15)

∫
Rn
F (x)p0w(x) dx ≤ C0

∫
Rn
G(x)p0w(x) dx, (F,G) ∈ F .

Given p(·) ∈ P(Rn), if p0 ≤ p− ≤ p+ < ∞ and the maximal operator is bounded

on L(p(·)/p0)′(Rn), then

‖F‖p(·) ≤ Cp(·)‖G‖p(·), (F,G) ∈ F .
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Remark 4.25. As was the case for Theorem 4.11, the hypothesis p+ < ∞ is
redundant: if p+ =∞, then ((p(·)/p0)′)− = 1 and the maximal operator cannot be

bounded on L(p(·)/p0)′(Rn). We include it for clarity.

Remark 4.26. If p0 ≤ 1, then the hypothesis p0 ≤ p− automatically holds.
However, this result can be extended to variable Lebesgue spaces defined for expo-
nents p(·) such that p− < 1; these are quasi-Banach function spaces. For details,
see [20].

To motivate the proof of Theorem 4.24, we first reconsider the proof of Theo-
rem 4.11. Given a potential-type approximate identity {φt}, the heart of the proof
is a duality argument that yields

(4.16)

∫
Rn

(Φt ∗ |f |)(x)h(x) dx ≤ C‖Φ‖1
∫
Rn
|f(x)|Mh(x) dx.

Suppose for the moment that h ∈ A1. Then we would have thatMh(x) ≤ [h]A1h(x),
and so we could rewrite (4.16) as

(4.17)

∫
Rn

(Φt ∗ |f |)(x)h(x) dx ≤ C‖Φ‖1[h]A1

∫
Rn
|f(x)|h(x) dx.

At this point, the proof would continue as before. In other words: the weighted
norm inequality (4.17) would imply that the convolution operators Φt ∗ f are uni-
formly bounded on Lp(·)(Rn).

The problem with this argument is obvious: in general h is not an A1 weight.
In the actual proof we overcame this by keeping Mh and using the norm inequalities
for M after we applied Hölder’s inequality. A more flexible approach is to use the
iteration algorithm of Rubio de Francia and replace h by Rh. In this case we have
that Rh is an A1 weight, and we can use the theory of weighted norm inequalities.

For the proof we need one lemma on the variable Lebesgue space norm.

Lemma 4.27. Given Rn and p(·) ∈ P(Rn) such that |Rn∞| = 0, then for all s,
1/p− ≤ s <∞,

‖|f |s‖p(·) = ‖f‖ssp(·).

Proof. This follows at once from the definition of the norm: since |Rn∞| = 0,
if we let µ = λ1/s,

‖|f |s‖p(·) = inf

{
λ > 0 :

∫
Rn

(
|f(x)|s

λ

)p(x)

dx ≤ 1

}

= inf

{
µs > 0 :

∫
Rn

(
|f(x)|
µ

)sp(x)

dx ≤ 1

}
= ‖f‖ssp(·). �

Proof of Theorem 4.24. Fix p(·) ∈ P(Rn) as in the hypotheses, and let

p̄(x) = p(x)/p0. By assumption the maximal operator is bounded on Lp̄
′(·)(Rn).

As in Lemma 4.19, define the iteration algorithm R on Lp̄
′(·)(Rn) by

Rh(x) =

∞∑
k=0

Mkh(x)

2k‖M‖kB(Lp̄′(·)(Rn))

.

Then we have that

(a) for all x ∈ Rn, |h(x)| ≤ Rh(x);

(b) R is bounded on Lp̄
′(·)(Rn) and ‖Rh‖p̄′(·) ≤ 2‖h‖p̄′(·);

(c) Rh ∈ A1 and [Rh]A1 ≤ 2‖M‖B(Lp̄′(·)(Rn)).
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Fix a pair (F,G) ∈ F such that F ∈ Lp(·)(Rn) (i.e., so that the left-hand side
of (4.33) is finite). By Proposition 4.27 and Theorem 2.36,

‖F‖p0

p(·) = ‖F p0‖p̄(·) ≤ C sup

∫
Rn
F (x)p0h(x) dx,

where the supremum is taken over all non-negative h ∈ Lp̄′(·)(Rn) with ‖h‖p̄′(·) = 1.
Fix any such function h; we will show that∫

Rn
F (x)p0h(x) dx ≤ C‖G‖p0

p(·)

with the constant C independent of h. First note that by Property (a) we have
that

(4.18)

∫
Rn
F (x)p0 h(x) dx ≤

∫
Rn
F (x)p0 Rh(x) dx.

We want to apply our hypothesis (4.31) to the right-hand term in (4.18). To do so we
have to show that it is finite: by the generalized Hölder’s inequality (Theorem 2.32),
Property (b) and Proposition 4.27,∫

Rn
F (x)p0Rh(x) dx ≤ Kp(·)‖F p0‖p̄(·)‖Rh‖p̄′(·)

≤ 2Kp(·)‖F‖p0

p(·)‖h‖p̄′(·) <∞.

Therefore, by Property (c), (4.31) holds with w = Rh. Further, the constant C0

only depends on [Rh]A1 and so is independent of h. Hence, by (4.31) and again by
Theorem 2.32 and Proposition 4.27 we get∫

Rn
F (x)p0Rh(x) dx ≤ C0

∫
Rn
G(x)p0Rh(x) dx

≤ C0‖Gp0‖p̄(·)‖Rh‖p̄′(·)
= C0‖G‖p0

p(·)‖Rh‖p̄′(·)
Finally, we need to show that ‖(Rh)‖p̄′(·) is bounded by a constant independent of
h. But by Property (b),

‖Rh‖p̄′(·) ≤ 2‖h‖p̄′(·) = 2.

This completes our proof. �

Theorem 4.41 has two corollaries, both of which further illustrate the value of
defining extrapolation for arbitrary pairs of functions. The first yields weak type
inequalities and the second vector-valued inequalities.

Corollary 4.28. Given Rn, suppose that for some p0 ≥ 1, the family F is
such that for all w ∈ A1,

w({x ∈ Rn : F (x) > t}) ≤ C0
1

tp0

∫
Rn
G(x)p0w(x) dx (F,G) ∈ F .(4.19)

Given p(·) ∈ P(Rn) such that p0 ≤ p− ≤ p+ < ∞, if the maximal operator is

bounded on L(p(·)/p0)′(Rn), then for all t > 0,

(4.20) ‖tχ{x∈Rn:F (x)>t}‖p(·) ≤ Cp(·)‖G‖p(·), (F,G) ∈ F .

Proof. Define a new family F̃ consisting of the pairs

(Ft, G) = (tχ{x∈Rn:F (x)>t}, G), (F,G) ∈ F , t > 0.

Then we can restate (4.19) as follows: for every w ∈ A1,

‖Ft‖Lp0 (w) = tw({x ∈ Rn : F (x) > t})1/p0 ≤ C1/p0

0 ‖G‖Lp0 (w), (Ft, G) ∈ F̃ .
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Therefore, we can apply Theorem 4.41 to the family F̃ to conclude that (4.33) holds

for the pairs (Ft, G) ∈ F̃ , which in turn immediately implies (4.20). �

Corollary 4.29. Given Rn, suppose that for some p0 ≥ 1 the family F is
such that for all w ∈ Ap0

,

(4.21)

∫
Rn
F (x)p0w(x) dx ≤ C0

∫
Rn
G(x)p0w(x) dx, (F,G) ∈ F .

Given p(·) ∈ P(Rn), if p0 ≤ p− ≤ p+ < ∞ and the maximal operator is bounded

on L(p(·)/p0)′(Rn), then for every r, 1 < r <∞, and sequence {(Fi, Gi)} ⊂ F ,

(4.22)
∥∥∥(∑

i

F ri

)1/r∥∥∥
p(·)
≤ Cp(·)

∥∥∥(∑
i

Gri

)1/r∥∥∥
p(·)

.

Corollary 4.29 requires a more restrictive hypothesis than Theorem 4.41 or
Corollary 4.28 since it requires (4.21) to hold for a larger class of weights. In
practice, however, this restriction is only a problem if the operator T is very “rough”
or “singular”. Most of the classical operators in harmonic analysis satisfy weighted
Lp norm inequalities with weights in Ap.

Proof. Fix r, 1 < r < ∞. We first reduce the proof to the special case of
finite sums. For if this case holds, given any sequence {(Fi, Gi)} ⊂ F , by Fatou’s
lemma for variable Lebesgue spaces (Theorem 2.19),∥∥∥(∑

i

F ri

)1/r∥∥∥
p(·)
≤ lim inf

N→∞

∥∥∥( N∑
i=1

F ri

)1/r∥∥∥
p(·)

≤ Cp(·) lim inf
N→∞

∥∥∥( N∑
i=1

Gri

)1/r∥∥∥
p(·)
≤ Cp(·)

∥∥∥(∑
i

Gri

)1/r∥∥∥
p(·)

.

Now form a new family Fr that consists of the pairs of functions (Fr,N , Gr,N )
defined by

Fr,N (x) =

(
N∑
i=1

Fi(x)r

)1/r

, Gr,N (x) =

(
N∑
i=1

Gi(x)r

)1/r

,

where N > 1 and {(Fi, Gi)}Ni=1 ⊂ F . We first apply the classical extrapolation
theorem: given (4.21), by Theorem 4.23 applied to the family F we have that for
all w ∈ Ar, ∫

Rn
F (x)rw(x) dx ≤ C0

∫
Rn
G(x)rw(x) dx, (F,G) ∈ F .

Hence, for any w ∈ A1 ⊂ Ar and (Fr,N , Gr,N ) ∈ Fr,∫
Rn
Fr,N (x)rw(x) dx =

N∑
i=1

∫
Rn
Fi(x)rw(x) dx

≤ C0

N∑
i=1

∫
Rn
G(x)rw(x) dx = C0

∫
Rn
Fr,N (x)rw(x) dx.

Therefore, we can apply Theorem 4.24 to the family Fr and get

‖Fr,N‖p(·) ≤ Cp(·)‖Gr,N‖p(·), (Fr,N , Gr,N ) ∈ Fr.

But this is (4.22) for all finite sums, which is what we needed to prove. �
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4.6. Applications of extrapolation

In this section we apply Theorem 4.24 to prove Lp(·) estimates for three opera-
tors. We will concentrate on singular integrals, as these provide a good illustration
of the technicalities involved in using extrapolation. Following this we will discuss
more briefly the sharp maximal operator and the Riesz potentials.

Singular integrals. We begin with a definition.

Definition 4.30. Given a tempered distribution K suppose that the Fourier

transform K̂ ∈ L∞ and on L1
loc(Rn \ {0}), K coincides with a locally integral

function that satisfies

|K(x)| ≤ C0

|x|n
and

|K(x+ h)−K(x)| ≤ C0
|h|
|x|n+1

, |x| > 2|h| > 0.

Define the singular integral operator Tf = K ∗ f , where f is a Schwartz function.

The basic properties of singular integrals are recorded in the following result.

Theorem 4.31. Given a singular integral with kernel K, if f ∈ L1(Rn), then
for all t > 0,

|{x ∈ Rn : |Tf(x)| > t}| ≤ C

t

∫
Rn
|f(x)| dx.

If f ∈ Lp(Rn), 1 < p <∞, then

‖Tf‖p ≤ C‖f‖p.
Furthermore, for f ∈ Lp, 1 ≤ p <∞, Tf is defined pointwise a.e. by

(4.23) Tf(x) = p.v.

∫
Rn
K(x− y)f(y) dy = lim

ε→0

∫
{|x−y|>ε}

K(x− y)f(y) dy.

The classical examples of singular integral operators are the Hilbert transform
on the real line,

Hf(x) = p.v.
1

π

∫
R

f(y)

x− y
dy = lim

ε→0

1

π

∫
{|x−y|>ε}

f(y)

x− y
dy,

and in higher dimensions the Riesz transforms Rj , 1 ≤ j ≤ n,

Rjf(x) = lim
ε→0

Γ(n+1
2 )

π
n+1

2

∫
{|x−y|>ε}

xj − yj

|x− y|n+1
f(y) dy.

Theorem 4.31 holds for a more general class of operators, referred to as Calderón-
Zygmund operators, that are not (singular) convolution operators. With appropri-
ate assumptions, everything we say below extends to this larger class, but we restrict
ourselves to singular integrals for simplicity. See [33, 46] for more information.

We can extend Theorem 4.31 to the variable Lebesgue spaces. This result was
proved by another method by Diening and Růžička [32]; the extrapolation proof is
from [20].

Theorem 4.32. Let T be a singular integral operator with kernel K. Given
p(·) ∈ P(Rn) such that 1 < p− ≤ p+ <∞, if M is bounded on Lp(·)(Rn), then

(4.24) ‖Tf‖p(·) ≤ C‖f‖p(·).

If p− = 1 and M is bounded on Lp
′(·)(Rn), then for all t > 0,

(4.25) ‖tχ{x:|Tf(x)|>t‖‖p(·) ≤ C‖f‖p(·).
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To use extrapolation, we need a weighted norm inequality for singular integrals.
For a proof of the following result, see [33, 44, 46].

Theorem 4.33. Given a singular integral T with kernel K, if w ∈ A1, then for
all t > 0,

(4.26) w({x ∈ Rn : |Tf(x)| > t}) ≤ C

t

∫
Rn
|f(x)|w(x) dx.

Further, if 1 < p <∞ and w ∈ Ap, then

(4.27)

∫
Rn
|Tf(x)|pw(x) dx ≤ C

∫
Rn
|f(x)|pw(x) dx.

Remark 4.34. Part of the proof of Theorem 4.33 is showing that if f ∈ Lp(w),
then Tf is well-defined, since Definition 4.30 only defines Tf for f in the unweighted
spaces Lp(Rn). However, if f is a bounded function of compact support it is in Lp

for all p < ∞, and if w ∈ Ap, then f ∈ Lp(w). Since such functions are dense in
Lp(w), Tf can be defined on the whole space by an approximation argument.

Proof of Theorem 4.32. We will prove the strong-type inequality when
p− > 1; the weak-type inequality is proved in essentially the same way. Since the
maximal operator is bounded on Lp(·)(Rn), by Theorem 3.35 there exists p0 > 1

such that M is bounded on Lp(·)/p0(Rn) and so on L(p(·)/p0)′(Rn). Define the family
F to be all pairs (|Tf |, |f |) with f a bounded function of compact support. By
Lemma 4.17, if w ∈ A1, then w ∈ Ap0

. Hence, by Theorem 4.33, T is bounded on
Lp0(w). In particular, for all such f , ‖Tf‖Lp0 (w) <∞. Therefore, by Theorem 4.24,

‖Tf‖p(·) ≤ C‖f‖p(·)
for every bounded function of compact support such that the left-hand side is finite.
But this is the case for every such f . Fix f and let B be a ball centered at the origin
such that supp(f) ⊂ B, and let 2B be the ball with the same center and twice the
radius. Then for x ∈ Rn \ 2B and y ∈ B, we have that |x − y| ≥ |x| − |y| ≥ 1

2 |x|,
and so

|Tf(x)| =
∣∣∣∣∫
B

K(x− y)f(y) dy

∣∣∣∣
≤ C

∫
B

|f(y)|
|x− y|n

dy ≤ C(n)−
∫
B|x|(0)

|f(y)| dy ≤ C(n)Mf(x).

Since M is bounded on Lp(·)(Rn),

‖Tf‖Lp(·)(Rn\2B) ≤ C‖Mf‖p(·) ≤ C‖f‖p(·) <∞,

and by Theorems 2.26 and 4.31,

‖Tf‖Lp(·)(2B) ≤ (1 + |2B|)‖Tf‖Lp+ (2B) ≤ C‖f‖Lp+ (B) <∞.

This proves inequality (4.24) for bounded functions of compact support.

To complete the proof, fix f ∈ Lp(·)(Rn); we need to define Tf and show
that (4.24) holds. By Theorem 2.29 we can write f = f1+f2, where f1 ∈ Lp−(Rn)∩
Lp(·)(Rn) and f2 ∈ Lp+(Rn) ∩ Lp(·)(Rn). Since p+ < ∞, by Theorem 4.31 we can
define

Tf(x) = Tf1(x) + Tf2(x).

Again since p+ < ∞, by Theorem 2.30 there exist sequences {f ji }∞j=1, i = 1, 2,

of bounded functions of compact support that converge to fi in Lp± and in Lp(·).
(This simultaneous convergences follows from the construction.) Therefore, since

T is bounded on Lp± , the sequence Tf ji converges to Tfi in Lp± norm; by passing
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to a subsequence we may assume it also converges pointwise a.e. But then by
Theorem 2.19,

‖Tf‖p(·) ≤ ‖Tf1‖p(·) + ‖Tf2‖p(·)
≤ lim inf

j→∞

(
‖Tf j1‖p(·) + ‖Tf j2‖p(·)

)
≤ C lim inf

j→∞

(
‖f j1‖p(·) + ‖f j2‖p(·)

)
= C(‖f1‖p(·) + ‖f2‖p(·))
≤ C‖f‖p(·).

The final inequality follows by the definition of the fi. This completes the proof. �

By Corollary 4.29 we also have vector-valued inequalities.

Theorem 4.35. Let T be a singular integral operator with kernel K. Given
p(·) ∈ P(Rn) such that 1 < p− ≤ p+ < ∞, if M is bounded on Lp(·)(Rn), then T
satisfies a vector-valued inequality on Lp(·)(Rn): for each r, 1 < r <∞,

(4.28)

∥∥∥∥( ∞∑
i=1

|Tfi|r
)1/r∥∥∥∥

p(·)
≤ C

∥∥∥∥( ∞∑
i=1

|fi|r
)1/r∥∥∥∥

p(·)
.

Proof. Fix r and define the family F to consist of all pairs of functions (F,G)
such that

F (x) =

(
N∑
i=1

|Tfi(x)|r
)1/r

, G(x) =

(
N∑
i=1

|fi(x)|r
)1/r

,

where N is any positive integer and each fi is a bounded function of compact
support. If we now argue as in the proof of Theorem 4.32, we get (4.28) for all pairs
in F . By Theorem 2.19, inequality (4.28) extends to any sequence of functions in
Lp(·)(Rn). �

We conclude with two results that suggest that our hypotheses are in fact
necessary. For a proof of both, see [19].

Theorem 4.36. Given p(·) ∈ P(Rn), if the Riesz transforms Rj, 1 ≤ j ≤ n,

are bounded on Lp(·)(Rn), then 1 < p− ≤ p+ <∞.

We conjecture that if the Riesz transforms are all bounded on Lp(·), then the
maximal function is as well. We cannot prove this, but we have the following
slightly weaker result.

Theorem 4.37. Given p(·) ∈ P(Rn), suppose that all the Riesz transforms
satisfy the weak type inequality (4.25). Then p(·) ∈ K0(Rn).

4.6.1. Sharp maximal function estimates. Given a locally integrable func-
tion f , define the sharp maximal function by

M#f(x) = sup
Q
−
∫
Q

|f(y)− fQ| dy,

where fQ = −
∫
Q
f(y) dy and the supremum is taken over all cubes Q with sides

parallel to the coordinate axes. The sharp maximal function was introduced by
C. Fefferman and Stein [41] and can be used (for instance) to define BMO. Its
importance comes from the fact that it controls the oscillation of functions by the
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Hardy-Littlewood maximal. For example, if T is a singular integral operator and
0 < δ < 1, then

M#
δ (Tf)(x) = M#(|Tf |δ)(x)1/δ ≤ CδMf(x).

(This is due to Álvarez and Pérez [6]; see also [24].)
Given a function f , f and M#f are comparable in Lp norm: for all p, 0 <

p < ∞,
‖f‖p ≤ ‖Mf‖p ≤ C‖M#f‖p;

indeed, this is true if the Lp norm is replaced by the Lp(w) norm for any w ∈ A∞
(Again see [24, 33].) The same inequality also holds in the variable Lebesgue
spaces.

Theorem 4.38. Given p(·) ∈ P(Rn), 1 < p− ≤ p+ < ∞, if the maximal
operator is bounded on Lp(·)(Rn),

‖Mf‖p(·) ≤ C‖M#f‖p(·).

This follows from extrapolation applied to the family F of pairs (Mf,M#f),
where f is runs over all bounded functions of compact support. Note that in this
case the left-hand expressions ‖Mf‖Lp(w) and ‖Mf‖p(·) are automatically finite.

A weaker version of Theorem 4.38, with ‖f‖p(·) on the left-hand side, was
proved by Diening and Růžička [32] (see also [30]). The full result was proved via
extrapolation in [20].

Theorem 4.38 is an example of a Coifman-Fefferman type inequality; many
such inequalities can be proved using extrapolation: see [24] for details.

Riesz potentials. The Riesz potentials, sometimes referred to as fractional
integrals, play an important role in PDEs and Sobolev space theory.

Definition 4.39. Given α, 0 < α < n, define the Riesz potential Iα, also
referred to as the fractional integral operator with index α, to be the convolution
operator

Iαf(x) = γ(α, n)

∫
Rn

f(y)

|x− y|n−α
dy,

where

γ(α, n) =
Γ
(
n
2 −

α
2

)
πn/22αΓ

(
α
2

) .
The constant γ(α, n) is chosen so that if f is a Schwartz function, then the

Fourier transform of the Riesz potential is

Îαf(ξ) = (2π|ξ|)−αf̂(ξ).

(See Stein [99].) The Riesz potentials are not bounded on Lp(Rn), but satisfy
off-diagonal inequalities: ‖Iαf‖q ≤ C‖f‖p provided 1 < p < n/α, and q satisfies
1/p− 1/q = α/n.

The Riesz potentials are well defined on the variable Lebesgue spaces. If p+ <
n/α and f ∈ Lp(·)(Rn), then Iαf(x) converges for every x. To see this, apply
Theorem 2.29 and let f = f1 + f2, where f1 ∈ Lp−(Rn) and f2 ∈ Lp+(Rn). Then it
is straightforward to show that Iαf(x) = Iαf1(x) + Iαf2(x) converges absolutely.

We can use extrapolation to prove norm inequalities for the Riesz potentials on
the variable Lebesgue spaces. This result was proved independently by Diening [26]
and the authors and Capone [12] using other means. Our proof using extrapolation
is from [20].
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Theorem 4.40. Fix α, 0 < α < n. Given p(·) ∈ P(Rn) such that 1 < p− ≤
p+ < n/α, define q(·) by

1

p(x)
− 1

q(x)
=
α

n
.

If there exists q0 >
n

n−α such that M is bounded on L(q(·)/q0)′(Rn), then

(4.29) ‖Iαf‖q(·) ≤ C‖f‖p(·).

If p− = 1 and if M is bounded on L(q(·)/q0)′(Rn) when q0 = n
n−α , then for every

t > 0,

(4.30) ‖tχ{x∈Rn:|Iαf(x)|>t}‖q(·) ≤ C‖f‖p(·).

The proof of Theorem 4.40 is very similar to the proof of Theorem 4.32 and
requires two ingredients: an extended version of Theorem 4.24 that yields off-
diagonal inequalities and the appropriate weighted norm inequalities. We will state
these results but omit the details of the proof itself.

The necessary extrapolation result was proved in [20] (see also [19]); the proof
is a straightforward modification of the proof of Theorem 4.24.

Theorem 4.41. Suppose that for some p0, q0, 1 ≤ p0 ≤ q0, the family F is
such that for all w ∈ A1,

(∫
Rn
F (x)q0w(x) dx

)1/q0

≤ C0

(∫
Rn
G(x)p0w(x)p0/q0 dx

)1/p0

, (F,G) ∈ F .

(4.31)

Given p(·) ∈ P(Rn) such that p0 ≤ p− ≤ p+ < p0q0
q0−p0

, define q(·) by

(4.32)
1

p(x)
− 1

q(x)
=

1

p0
− 1

q0
.

If the maximal operator is bounded on L(q(·)/q0)′(Rn), then

(4.33) ‖F‖q(·) ≤ Cp(·)‖G‖p(·), (F,G) ∈ F .

The requisite weighted norm inequalities are due to Muckenhoupt and Whee-
den [75]. Our version of the necessary inequalities is non-standard, but can be
easily derived from their results.

Definition 4.42. Given α, 0 < α < n, and p, 1 < p < n/α, define q by

1

p
− 1

q
=
α

n
.

Then a weight w satisfies the Ap,q condition (denoted by w ∈ Ap,q) if

[w]Ap,q = sup
Q

(
−
∫
Q

w(x) dx

)(
−
∫
Q

w(x)−p
′/q dx

)q/p′
<∞.

When p = 1, let A1,q = A1.

The connection between Ap,q and the Muckenhoupt Ap classes is an immediate
consequence of Definition 4.42.

Lemma 4.43. Given α, 0 < α < n, and p, 1 < p < n/α, a weight w ∈ Ap,q if
and only if w ∈ Ar, r = 1 + q/p′.
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Theorem 4.44. Given α, 0 < α < n, and p, 1 ≤ p < n/α, define q by
1/p− 1/q = α/n and let w ∈ Ap,q. If p = 1, then for every t > 0,

w({x ∈ Rn : |Iαf(x)| > t}) ≤ C
(

1

t

∫
Rn
|f(x)|w(x)1/q dx

)q
.

If p > 1, then(∫
Rn
|Iαf(x)|qw(x) dx

)1/q

≤ C
(∫

Rn
|f(x)|pw(x)p/q dx

)1/p

.

We conclude this section with an application of Theorem 4.41 to variable
Sobolev spaces: we prove the Sobolev embedding theorem. When p− > 1 this re-
sult follows from the strong type norm inequalities for the Riesz potential: see [12]
for details and references. When p− = 1 the proof is more difficult. It was proved
by Harjulehto and Hästö [50] for bounded domains and extended to all of Rn by
Hästö [52]. The proof we give here is from [24]; see also [19].

The variable Sobolev space W 1,p(·)(Rn) is the set functions f such that f, ∇f ∈
Lp(·)(Rn), where ∇f is the distributional gradient. The norm is ‖f‖W 1,p(·) =
‖f‖p(·) + ‖∇f‖p(·). If p+ < n, define the Sobolev exponent p∗(·) by

1

p(·)
− 1

p∗(·)
=

1

n
.

Theorem 4.45. Given p(·) ∈ P(Rn) such that 1 ≤ p− ≤ p+ < n and p(·) ∈
LH(Rn), then W 1,p(·)(Rn) ⊂ Lp∗(·)(Rn); in fact,

‖f‖p∗(·) ≤ C‖∇f‖p(·).

Remark 4.46. They hypothesis that p(·) is log-Hölder continuous can be weak-
ened; see [19]. For simplicity we consider this simpler case here.

To prove Theorem 4.45 using extrapolation we need the corresponding weighted
norm inequality. This estimate was implicit in [42] and its proof is based on an
argument due to Long and Nie [72] which in turn uses an idea from Maz’ja [73].

Lemma 4.47. For all p, 1 ≤ p < n, w ∈ A1, and f ∈ C∞c ,(∫
Rn
|f(x)|p

∗
w(x) dx

)1/p∗

≤ C
(∫

Rn
|∇f(x)|pw(x)p/p∗ dx

)1/p

.

Proof. Fix f ∈ C∞c . For each j ∈ Z, define

Ωj = {x ∈ Rn : 2j < |f(x)| ≤ 2j+1},
and the function fj by

fj(x) =


|f(x)| − 2j x ∈ Ωj ,

2j x ∈ Ωi, i > j,

0 otherwise.

It follows immediately that |∇fj(x)| = |∇f(x)|χΩj . Further, by a standard in-
equality (see [100]) we have that if x ∈ Ωj , then

(4.34) cnI1(|∇fj−1|)(x) ≥ |fj−1(x)| ≥ 2j−1,

where I1 is the Riesz potential. Since w ∈ A1 ⊂ A1+p∗/p′ , w
1/p∗ ∈ Ap,p∗ . Therefore,

the Riesz potential satisfies the weak-type inequality in Theorem 4.44, so we can
estimate as follows:∫

Rn
|f(x)|p

∗
w(x) dx =

∑
j

∫
Ωj

|f(x)|p
∗
w(x) dx
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≤
∑
j

∫
Ωj

2(j+1)p∗w(x) dx

= 4p
∗
cp
∗

n

∑
j

∫
Ωj

[
c−1
n 2j−1

]p∗
w(x) dx

d ≤ C
∑
j

∫
{x∈Rn:I1(|∇fj−1|)(x)>c−1

n 2j−1}

[
c−1
n 2j−1

]p∗
w(x) dx

≤ C
∑
j

(∫
Rn
|∇fj−1(x)|pw(x)p/p∗ dx

)p∗/p

≤ C

∑
j

∫
Ωj−1

|∇f(x)|pw(x)p/p∗ dx

p∗/p

≤ C
(∫

Rn
|∇f(x)|pw(x)p/p∗ dx

)p∗/p
. �

Proof of Theorem 4.45. Let p0 = 1 and q0 = 1∗ = n/(n − 1). Then
p+ < n = p0q0/(q0 − p0), and 1/p(x) − 1/p∗(x) = 1/p0 − 1/q0. Define the family
F to consist of the pairs (|f |, |∇f |), where f ∈ C∞c . Since p(·) ∈ LH(Rn) we have
that the maximal operator satisfies the necessary norm inequalities. Therefore, by
Theorem 4.41, for all f ∈ C∞c , ‖f‖p∗(·) ≤ C‖∇f‖p(·). (Note that the left-hand side
is automatically finite.)

Now fix f ∈W 1,p(·). Since p(·) ∈ LH(Rn), C∞c is dense in W 1,p(·)(Rn) (see [17,
19]), so there exists a sequence {fk} ⊂ C∞c such that fk → f in W 1,p(·)(Rn). By
Theorem 2.22, if we pass to a subsequence, we may assume that fk → f pointwise
a.e. Hence, by Theorem 2.19 and the above estimate,

‖f‖p∗(·) ≤ lim inf
k→∞

‖fk‖p∗(·) ≤ C lim inf
k→∞

‖∇fk‖p(·) ≤ C‖∇f‖p(·).

�
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de Francia. Birkhäuser, Basel, 2011.

[25] L. Diening. Maximal function on generalized Lebesgue spaces Lp(·). Math. Inequal. Appl.,
7(2):245–253, 2004.

[26] L. Diening. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev

spaces Lp(·) and Wk,p(·). Math. Nachr., 268:31–43, 2004.
[27] L. Diening. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.

Bull. Sci. Math., 129(8):657–700, 2005.

[28] L. Diening. Lebesgue and Sobolev spaces with variable exponent. Habilitation, Universität
Freiburg, 2007.
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[34] D. E. Edmunds and J. Rákosńık. Density of smooth functions in Wk,p(x)(Ω). Proc. Roy.

Soc. London Ser. A, 437(1899):229–236, 1992.
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