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ABSTRACT
Many sound-related applications use Mel-Frequency Cep-
stral Coefficients (MFCC) to describe audio timbral content.
Most of the research efforts dealing with MFCCs have been
focused on the study of different classification and clustering
algorithms, the use of complementary audio descriptors, or
the effect of different distance measures. The goal of this
paper is to focus on the statistical properties of the MFCC
descriptor itself. For that purpose, we use a simple encoding
process that maps a short-time MFCC vector to a dictio-
nary of binary code-words. We study and characterize the
rank-frequency distribution of such MFCC code-words, con-
sidering speech, music, and environmental sound sources.
We show that, regardless of the sound source, MFCC code-
words follow a shifted power-law distribution. This implies
that there are a few code-words that occur very frequently
and many that happen rarely. We also observe that the inner
structure of the most frequent code-words has characteris-
tic patterns. For instance, close MFCC coefficients tend to
have similar quantization values in the case of music signals.
Finally, we study the rank-frequency distributions of individ-
ual music recordings and show that they present the same
type of heavy-tailed distribution as found in the large-scale
databases. This fact is exploited in two supervised semantic
inference tasks: genre and instrument classification. In par-
ticular, we obtain similar classification results as the ones
obtained by considering all frames in the recordings by just
using 50 (properly selected) frames. Beyond this particular
example, we believe that the fact that MFCC frames follow
a power-law distribution could potentially have important
implications for future audio-based applications.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.5.5 [Information Interfaces and
Presentation]: Sound and Music Computing—Methodolo-
gies and techniques
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1. INTRODUCTION
Many technological applications dealing with audio sig-

nals use Mel-Frequency Cepstral Coefficients (MFCC) [11]
as main timbral descriptor [30, 21, 6, 27]. It is common
practice to compute such MFCC values from consecutive
short-time audio frames (usually with lengths below 100 ms).
Later on, these frame-based descriptors can be used in a
bottom-up audio processing strategy [6]. For instance, in
automatic classification tasks, the content of several min-
utes of audio can be aggregated in a real-valued vector con-
taining the mean values of all MFCC coefficients (and of-
ten their variances and covariances). In audio similarity
tasks, one can estimate the similarity between two sounds by
computing a distance measure between MFCC vectors [21],
e.g. by simply using the Euclidean distance or by compar-
ing Gaussian mixture models [2]. Evidently, these types
of procedures assume a certain homogeneity in the MFCC
vector space (i.e. the multidimensional space of MFCC coef-
ficients should not have small areas that are extremely pop-
ulated and, at the same time, extensive areas being low-
populated). Otherwise, the results obtained from comput-
ing statistical moments or some distance measures will be
highly biased towards the values of those extremely popu-
lated areas (i.e. those extremely frequent MFCC vectors).

In other research areas such as natural language process-
ing [26] and Web mining [23], the distribution of words and
hyperlinks has shown to be heavy-tailed, implying that there
are few extremely frequent words/hyperlinks and many rare
ones. Knowing the presence of such heavy-tailed distribu-
tions has lead to major improvements in technological appli-
cations in those areas. For instance, to Web search engines
that use the word probability distributions to determine the
relevance of a text to a given query [3]. Recently, these type
of text categorization techniques have been applied with suc-
cess in image retrieval [20]. Unfortunately, there is a lack
of research in the sound retrieval community with regard to
the study of the statistical distribution of sound descriptors.
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This could be partially substantiated by the fact that low-
level descriptors do not form discrete units or symbols that
can be easily characterized by their frequency of use, as it is
the case with text.

In this paper we study and characterize the probability
distribution of encoded (or discretized) MFCC descriptors
extracted on a frame-by-frame basis. For that, we employ a
simple encoding process which maps a given MFCC frame
to a dictionary of more than 4 million binary code-words.
We analyze a large-scale corpus of audio signals consisting
of 740 hours of sound coming from disparate sources such
as Speech, Western Music, non-Western Music, and Envi-
ronmental sounds. We perform a rank-frequency analysis
and show that encoded MFCC frequencies follow a shifted
power-law distribution, a particular type of heavy-tailed dis-
tribution. This distribution is found independently of sound
source and frame size. Furthermore, we analyze the in-
ner structure of the most (and least) frequent code-words,
and provide evidence that a heavy-tailed distribution is also
present when analyzing individual music recordings. Finally,
we perform two automatic classification tasks that add fur-
ther evidence to support this last claim.

In the next subsection, an overview on heavy-tailed dis-
tributions is given. In Section 2, a description of the used
methodology is presented, including descriptions of the an-
alyzed databases, encoding process, and power-law estima-
tion method. Section 2.3 reports on the MFCC distribu-
tions. In Section 4, the two classification experiments are
presented. Finally, Section 5 concludes the paper.

1.1 Heavy-tailed distributions
When studying the statistical properties of data coming

from several scientific disciplines, researchers often report
heavy-tailed distributions [1, 4, 24, 28, 36]. This means
that the measured data points are spread over an extremely
wide range of possible values and that there is no typical
value around which these measurements are centered [28].
It also implies that the majority of data points do not occur
frequently (i.e. the ones in the tail).

A particularly important landmark in the study of heavy-
tailed distributions was the seminal work of Zipf [36], show-
ing a power-law distribution of word-frequency counts with
an exponent α close to 1,

z(r) ∝ r−α, (1)

where r corresponds to the rank number (r = 1 is assigned
to the most frequent word) and z(r) corresponds to the fre-
quency value of the word with rank r. Such power-law be-
haviour implies that a few words occur very frequently and
many happen rarely, without a characteristic separation be-
tween them. Zipf’s power-law (Eq. 1) also indicates a power-
law probability distribution of word frequencies [1],

P (z) ∝ z−β, (2)

where P (z) is the probability mass function of z and β =
1 + 1/α.

Pioneering also the study of the statistical properties of
music-related data, Zipf himself reported power-law distri-
butions in melodic intervals and distances between note rep-
etitions from a reduced set of music scores [36]. In the
last decades, other researchers have reported heavy-tailed
distributions of data extracted from music scores [18, 19]
and MIDI files [5, 25, 35]. Regarding audio-based descrip-

tors, few works can be found showing heavy-tailed distribu-
tions. These works have mainly focused on sound ampli-
tudes of music, speech, and crackling noise signals [22, 31,
34]. Nonetheless, we recently found evidence for a power-
law (Zipfian) distribution of encoded short-time spectral en-
velopes [17], where the spectral envelopes were character-
ized by the energy found in Bark-bands of the power spec-
trum [37]. Since, as mentioned, MFCC descriptors are the
primary source of information for many audio classification
and retrieval tasks, we now expand and improve our previous
study by focusing on the distribution of this descriptor and
by providing a specific example of one of the consequences
of such distribution.

2. METHODOLOGY

2.1 Databases
In this work we analyze 740 hours of real-world sounds.

These sounds are grouped into four databases: Speech, West-
ern Music, non-Western Music, and Sounds of the Elements
(i.e. sounds of natural phenomena such as rain, wind, and
fire). The Speech database contains 130 hours of recordings
of English speakers from the Timit database [15] (about
5.4 hours), the Library of Congress podcasts1 (about 5.1
hours), and 119.5 hours from Nature podcasts2 from 2005
to April 7th 2011 (the first and last 2 minutes of sound
were removed to skip potential musical contents). TheWest-
ern Music database contains 282 hours of music (3,481 full
tracks) extracted from commercial CDs accounting for more
than 20 musical genres, including rock, pop, jazz, blues, elec-
tronic, classical, hip-hop, and soul. The non-Western Mu-
sic database contains 280 hours (3,249 full tracks) of tra-
ditional music from Africa, Asia, and Australia extracted
from commercial CDs. Finally, we gathered 48 hours of
sounds produced by natural inanimate processes such as
water (rain, streams, waves, melting snow, waterfalls), fire,
thunders, wind, and earth (rocks, avalanches, eruptions).
This Sounds of the Elements database was assembled using
files downloaded from The Freesound Project3. The differ-
ences in size among databases try to account for differences
in timbral variations (e.g. the sounds of the elements are
less varied, timbrically speaking, than speech and musical
sounds; therefore we can properly represent them with a
smaller database).

2.2 Encoding process
A block-diagram of the encoding process can be seen in

Fig. 1. Starting from the raw audio signal (44,100 Hz, 16
bits) we first apply an equal-loudness filter consisting of
an inverted approximation of the equal-loudness curves de-
scribed by Fletcher and Munson [12]. Then, we cut the audio
signal into non-overlapping temporal frames (Fig. 1a). In
this study we consider three perceptually motivated frame
sizes, namely 46, 186, and 1,000 ms. The 46 ms frame size is
extensively used in audio processing algorithms [6, 27]. The
186 ms frame corresponds to a perceptual measure of sound
grouping called “temporal window integration” [29], usually
described between 170 and 200 ms. Finally, we study a

1“Music and the brain” podcasts: http://www.loc.gov/
podcasts/musicandthebrain/index.html
2http://www.nature.com/nature/podcast/archive.html
3http://www.freesound.org
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Figure 1: Block diagram of the encoding process. a) The audio signal is segmented into non-overlapping
frames. b) The power spectrum of each frame is obtained. c) MFCC coefficients (blue squares) are computed
and each coefficient is binary-quantized by comparing its value against a pre-computed threshold (red line).
d) Each quantized MFCC vector forms an MFCC code-word.

relatively long temporal frame (1 s) that exceeds the usual
duration of musical notes and speech phonemes.

After frame cutting, the signal of each frame is converted
to the frequency domain by taking its Fourier transform us-
ing a Blackman-Harris window. From the output of the
Fourier transform we compute its power spectrum, taking
the square of the magnitude values (Fig. 1b). The MFCC de-
scriptor is obtained by mapping the short-time power spec-
trum to the Mel scale [33]. The Mel-energy values are then
computed using triangular band-pass filters centered on ev-
ery Mel. The logarithm of every Mel-energy value is taken
and the discrete cosine transform (DCT) of the Mel-log pow-
ers is computed. The MFCC descriptor corresponds to a
real-valued vector of amplitude coefficients of the resulting
DCT spectrum. Here, we use the Auditory toolbox MFCC
implementation [32] with 22 coefficients (skipping the DC
coefficient). By selecting 22 MFCC coefficients we obtain
a good trade-off between the detail of the spectral-envelope
description and the computational load of our experiments.

In order to be able to account for the rank-frequency dis-
tribution of MFCC frames we first need to discretize the
multidimensional MFCC vector space in such way that sim-
ilar regions are assigned to the same discrete point (or code-
word). Since we are dealing with a 22 dimensional vector
space, discretizing each dimension into just two values al-
ready produces millions of possible code-words. Thus, we
opt for the simple, unsupervised equal-frequency discretiza-
tion approach [7] that allows us to work with such big dic-
tionaries. It is worth noting here that the use of more elabo-
rated coding techniques, like vector quantization [30], would
rely on predefined distance measures, and would require a
high computational load to infer millions of code-words.

To obtain an MFCC code-word, we quantize each MFCC
coefficient by assigning all values below a stored threshold
to 0 and those being equal or higher than the threshold to
1 (Fig. 1c). These quantization thresholds are different for
each MFCC coefficient and correspond to the median values

found in a representative dataset (i.e. the value that splits
the distribution of the coefficient into two equally populated
groups). The representative dataset we used to compute the
median values contained all MFCC frames from the Sounds
of the Elements database plus a random sample of MFCC
frames from the Speech database that match in number the
ones from the Sounds of the Elements. It also included ran-
dom selections of Western Music and non-Western Music
matching half of the length of Sounds of the Elements each.
Thus, the dataset had its MFCC frames distributed as one
third coming from Sounds of the Elements, one third from
Speech and one third from Music. We constructed 10 of such
datasets per frame size and stored the mean of the median
values as the quantization threshold. After this binary en-
coding process, every audio frame is mapped into one of the
222 = 4, 194, 304 possible MFCC code-words (Fig. 1d).

2.3 Power-Law Estimation
To evaluate if a power-law distribution fits our data we

take the frequency count of each MFCC code-word (i.e. the
number of times each code-word is used) as a random vari-
able and apply state-of-the-art methods of fitting and testing
goodness-of-fit to this variable [8, 9]. We now give a brief
overview of the process. For more details we refer to the
references above or to [17].

The procedure consists of finding the minimum frequency
zmin for which an acceptable power-law fit is obtained. First,
arbitrary values for the lower cutoff zmin are selected and the
power-law exponent β is obtained by maximum-likelihood
estimation of the distribution of frequencies. Next, the Kol-
mogorov-Smirnov test quantifies the separation between the
resulting fit and the data. The goodness of the fit is eval-
uated by comparing this separation with the one obtained
from synthetic simulated data (with the same range and ex-
ponent) to which the same procedure of maximum-likelihood
estimation plus Kolmogorov-Smirnov test is applied. This
goodness of the fit yields a p-value as a final result. Fi-
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Figure 2: a) Rank-frequency distribution of MFCC code-words per database (frame size = 186 ms). b)
Probability distribution of frequencies for the same code-words (the black lines correspond to the fitted
distribution).

nally, the procedure selects the value of zmin which yields
the largest power-law range (i.e., the smallest zmin) provided
that the p-value is above a certain threshold (for instance
20%). We apply this fitting procedure to 10 random sam-
ples of 300,000 code-words per database and frame size.

3. DISTRIBUTION RESULTS
Following the methodology described in the previous sec-

tion we encode every audio frame into its corresponding
code-word. Next, for each database and frame size, we count
the frequency of use of each MFCC code-word (i.e. the num-
ber of times a code-word appeared in the database) and we
sort them by decreasing order of frequency. As it can be
seen in Fig. 2a, when plotting these rank-frequency counts
we observe heavy-tailed distributions for all the analyzed
databases. These distributions imply that a few MFCC
code-words are very frequent while most of them are very
unusual [28].

Next, in order to evaluate if the found heavy-tailed dis-
tributions specifically correspond to power-law distributions
we apply the previously described estimation procedure
which, instead of working directly with the rank-frequency
plots, it focuses on the equivalent description in terms of the
distribution of the frequency (Fig. 2b). The obtained results
reveal that for all analyzed databases and frame sizes, the
best fit corresponds to a shifted (discrete) power-law

P (z) ∝ (z + c)−β , (3)

where c is a constant value. By adding this constant value
to Eq. 2 we obtain better fittings, specially in the low z
region, whereas for the high z region the distribution tends
to a pure power law (see Table 1 for a complete list of the
fitted parameters).

From the fitting results of Table 1 we observe that not only
all analyzed databases correspond to the same distribution
type, but also their exponents are somewhat similar (i.e. all
the α exponents lie between 0.45 and 0.81). Regarding the
effect of the frame size in the distribution exponent we can
see that, for Speech, increasing the frame size seems to de-
crease the rank-frequency exponent α. The opposite effect is
observed for Sounds of the Elements. Notably, in the case of
Western and non-Western Music, changing the frame size
has practically no effect in the distribution exponent. This
high stability is quite surprising given the fact that we are
changing the frame size by almost one and a half orders of
magnitude (from 46 to 1,000 ms) and seems to be a unique
feature of music-derived code-words.

To explore the differences between the most and least fre-
quent MFCC code-words we select from each rank-frequency
distribution the 200 most frequent and a random sample
of 200 of the less frequent code-words per database (note
that due to the heavy-tailed distribution there are thou-
sands of code-words with frequency one; see Fig. 2a). Since
each code-word corresponds to a 22-dimensional vector of ze-
ros and ones, we can easily visualize them by assigning the
white color to those values equal to zero and the black color
to those quantized as one (Fig. 3). From this exploratory
analysis we can clearly see that the most frequent code-
words present characteristic structures while the least fre-
quent ones show no detectable patterns. In particular, the
most frequent code-words in Speech present a very distinc-
tive structure, with some MFCC coefficients mostly quan-
tized as zero (e.g. coefficients 2, 6, 8, and 17) and some others
mostly quantized as one (e.g. coefficients 1, 4, 7, and 10).
This distinctive pattern in Speech is particularly intriguing,
specially given the fact that the MFCC descriptor was orig-
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Table 1: Fitting results. Average values from 10 random samples of 300,000 code-words per database and
frame size are reported (standard deviation in parenthesis).
Database/frame size zmin β c α
Speech
46 ms 3.20 (1.93) 2.23 (0.01) 0.76 (0.07) 0.81 (0.01)
186 ms 29.40 (23.43) 2.41 (0.22) 12.98 (12.07) 0.73 (0.12)
1,000 ms 32.00 (0.00) 3.22 (0.00) 36.90 (0.00) 0.45 (0.00)
Western Music
46 ms 29.90 (21.63) 2.78 (0.08) 8.67 (3.26) 0.56 (0.03)
186 ms 7.50 (4.12) 2.64 (0.06) 1.90 (0.73) 0.61 (0.02)
1,000 ms 4.20 (0.63) 2.61 (0.02) 0.30 (0.10) 0.62 (0.01)
non-Western Music
46 ms 82.20 (58.94) 2.76 (0.18) 27.85 (35.20) 0.57 (0.05)
186 ms 18.60 (2.95) 2.67 (0.05) 5.38 (1.25) 0.60 (0.02)
1,000 ms 8.50 (6.08) 2.66 (0.13) 1.65 (1.42) 0.61 (0.05)
Sounds of the Elements
46 ms 8.10 (3.51) 2.70 (0.04) 2.35 (0.49) 0.59 (0.01)
186 ms 3.40 (0.97) 2.42 (0.02) 0.40 (0.07) 0.70 (0.01)
1,000 ms 4.20 (0.63) 2.29 (0.01) 0.15 (0.09) 0.78 (0.01)

inally designed to describe speech signals. Furthermore, it
turns out that the most frequent code-words of speech are
quite different from the ones in the other type of sounds. We
leave this issue for future research. Notice that in the other
databases the most frequent code-words present a smooth
structure, with close/neighboring MFCC coefficients having
similar quantization values.

We further investigate the rank-frequency distribution of
MFCC code-words for individual songs found in both West-
ern and non-Western Music databases. Noticeably, these
individual songs show a heavy-tailed distribution similar to
that observed in the full databases. Examples of the ob-
tained distributions can be seen in Fig. 4.

4. CLASSIFICATION EXPERIMENTS
In the previous section we have shown that encoded short-

time MFCC vectors follow a shifted power-law distribution,
where the most copied code-words have characteristic pat-
terns. We have also shown that individual music recordings
seem to present the same type of distribution. In this sec-
tion, we provide additional evidence to support the claim
that MFCC vectors from individual music recordings are
also heavy-tailed. Our working hypothesis is the following:
if a set of MFCC vectors presents a heavy-tailed distribution,
then, when computing the mean of such vectors the result-
ing values will be highly biased towards those few extremely
frequent vectors (i.e. those MFCC vectors that belong to
the most frequent code-words within the set). Therefore,
this bias will imply that using just those few highly frequent
MFCC vectors as input for an automatic classification task
will yield similar results as selecting all frames and taking
the mean (i.e. the classic bag-of-frames approach).

We evaluate this hypothesis with two supervised semantic
inference tasks: automatic genre classification and musical
instrument identification. In both tasks we deliberately use
a simple pattern recognition strategy. Specifically, we use
support vector machines (SVM) [10] to classify aggregated
feature vectors of 22 MFCC means per audio file. Our main
goal is to compare the classification results obtained when
using all audio frames versus using a reduced set of selected
frames to compute the mean feature vector. To select these
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Figure 3: Most (left) and least (right) frequent
MFCC code-words per database using a frame size
of 186 ms. For each plot, the horizontal axis cor-
responds to individual code-words and the verti-
cal axis corresponds to quantized MFCC coefficients
(white = 0, black = 1). Every position in the ab-
scissa represents a particular code-word. From top
to bottom we plot code-words for Western Music
(WM), non-Western Music (nWM), Speech (S), and
Sound of the Elements (E) databases.

frames we first encode each audio frame into its correspond-
ing MFCC code-word. Next, for each audio file we count
the frequency of use of each code-word and sort them by de-
creasing order of frequency (i.e. we build the rank-frequency
distribution). Then, we select theN most (or least) frequent
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Figure 4: Example of rank-frequency distributions of MFCC code-words from 10 randomly selected music
recordings per database using a frame size of 46 ms. Each line type corresponds to one recording.

MFCC code-words of the audio file. Finally, we randomly
choose one original MFCC descriptor per code-word. Thus,
at the end of this process we have N selected MFCC vectors
per audio file that are used to compute the mean MFCC
feature vector. Therefore, those selected MFCC vectors be-
long to the most (or least) frequent code-words of the music
recording.

The audio files used in these experiments do not form part
of the databases described in Section 2. For the genre clas-
sification task we use an in-house collection of 400 full songs
extracted from radio recordings. The songs are equally dis-
tributed among 8 genres: hip-hop, rhythm & blues, jazz,
dance, rock, classical, pop, and speech4. The average length
of these audio files is 4 min 18 s (9,853 frames). This dataset
was defined by musicologists and previously used in [16]. For
the musical instrument identification task we use an in-house
dataset of 2,355 audio excerpts extracted from commercial
CDs [14]. These excerpts are labeled with one out of 11
possible instrument labels. Each label corresponds to the
most salient instrument in the polyphonic audio segment.
The audio excerpts are distributed as follows: piano (262),
cello (141), flute (162), clarinet (189), violin (182), trumpet
(207), saxophone (233), voice (265), organ (239), acoustic
guitar (221), and electric guitar (254). The average length
for these excerpts is 19 s (828 frames). In both tasks, for
the extraction of MFCC descriptors we use a frame size of
46 ms with 50% overlap. We select the best F-measure5 clas-
sification result after evaluating four SVM kernels with de-
fault parameters6 (i.e. rbf, linear, and polynomial of degree 2
and 3). Notice that according to each label distribution the
F-measure results for a random classification baseline are
2.77 % and 1.83 % for the genre and instrument datasets
respectively.

The obtained F-measures can be seen in Table 2. In
both classification tasks we confirm our working hypothesis,
i.e. we obtain nearly the same classification results by select-
ing very few properly selected MFCC vectors than using all
frames. In particular, by taking only 50 frames belonging
to the 50 most frequent code-words we obtain classification

4The speech audio files consist of radio speaker recordings
with and without background music.
5Where F-measure=2*Precision*Recall/(Precision+Recall).
6We use the LibSVM implementation: http://www.csie.
ntu.edu.tw/~cjlin/libsvm/

accuracies that are similar to those obtained when using all
the frames in the audio file. Importantly, we should notice
that 50 frames correspond to just 0.5 % of the average song
length of the genre dataset and 6 % of the average sound
length of the instrument dataset. The obtained results also
show that, in both tasks, selecting the N least frequent code-
words delivers systematically poorer results than selecting
the N most frequent ones. In particular, the difference be-
tween both selection strategies is considerably large in the
genre classification task where we obtain, on average, 28.2 %
worst results when selecting the least frequent code-words.
In the case of instrument identification we obtain, on aver-
age, 8.6 % worst results when using this strategy. Notice
that in this case we are working with short audio excerpts,
which could indicate that the heavy-tailed distribution is not
as pronounced as when working with bigger audio segments
(e.g. full songs).

5. CONCLUSION AND FUTURE WORK
In the present work we have analyzed the rank-frequency

distribution of encoded MFCC vectors. We study a large
database of sounds coming from disparate sources such as
speech, music, and environmental sounds. This database
represents a large portion of the timbral variability perceiv-
able in the world. We have found that the corresponding fre-
quency distributions can be described by a shifted power-law
with similar exponents. This distribution is found regardless
of the analyzed sound source and frame size, and suggests
that it is a general property of the MFCC descriptor (and
possibly of the underlying sound generation process or the
musical facet the MFCC accounts for). Noticeably, the fit-
ting results have shown almost identical exponents for both
Western and non-Western Music databases and across dif-
ferent frame sizes. A further study of the inner structure of
MFCC code-words reveals that the most copied code-words
have characteristic patterns in all analyzed sound sources. In
particular, the most frequent code-words in Western Music,
non-Western Music, and Sounds of the Elements present
a smooth structure where close/neighboring MFCC coeffi-
cients tend to have similar quantization values. In the case
of Speech, we observe a different pattern where some coeffi-
cients of the most copied code-words tend to be quantized
as zero while other coefficients tend to be quantized as one.

Motivated by the extreme stability of the shifted power-
law in both music databases we have also analyzed the rank-
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Table 2: Genre and instrument F-measure classification results (%). We compare two frame selection strate-
gies: taking N MFCC vectors that belong to either the most or less frequent code-words of each audio file.
In the last column we include the classification result obtained when using all the frames of the recording.
The differences between both classification strategies are also shown.

Number of selected frames (N)
Task / Strategy 2 5 10 20 50 All
Genre
Most Frequent Code-Words 48.49 55.44 58.59 61.65 62.75 66,42
Least Frequent Code-Words 26.36 27.28 26.43 29.81 35.96 66,42
Difference 22.14 28.15 32.16 31.83 26.79 0.00
Instrument
Most Frequent Code-Words 36.81 38.09 38.85 39.93 42.22 44,87
Least Frequent Code-Words 24.38 27.02 29.12 34.14 38.14 44,87
Difference 12.43 11.07 9.73 5.80 4.08 0.00

frequency distributions of individual music recordings. By
visualizing several randomly selected recordings of both mu-
sic databases we discovered that in most of the cases their
distributions were also power-law shaped. Finally, we pre-
sented two supervised semantic inference tasks providing ev-
idence that MFCC code-words from individual recordings
have the same type of heavy-tailed distribution as found in
the large-scale databases. Such heavy-tailed distributions
allow us to obtain similar classification results when work-
ing with just 50 selected frames per audio file as when using
all frames in the file (e.g. reducing the total number of pro-
cessed frames to 0.5% in the case of full songs).

Since current technological applications do not take into
account that the MFCC descriptor follows a shifted power-
law distribution, the implications of the results presented
here for future applications should be thoughtfully consid-
ered and go beyond the scope of this paper. In the near
future we plan to further explore these implications. For in-
stance, as shown in our experiments, taking very few highly-
frequent MFCC vectors provides similar classification results
as compared to taking all vectors in a song. Moreover,
assuming a descriptor’s power-law distribution, one could
speculate that when taking X random frames from a bag-of-
frames (using uniform distribution) there is a very high prob-
ability that those selected frames belong to the most copied
MFCC code-words (because those code-words are very fre-
quent). Therefore, high classification results should be also
achieved using just this random selection strategy. Impor-
tantly, this could lead to faster classification algorithms that
work well with big datasets.

Another area where the presented results could have a
major impact is in audio similarity tasks. Here, the highly
frequent MFCCs should have a tremendous impact in some
distance measures and could be the underlying cause of hub-
songs (i.e. songs that appear similar to most of the other
songs in a database without having any meaningful percep-
tual similarity) [13]. Since audio similarity is at the core
of audio-based recommender systems, improving the former
will also benefit the latter.

Finally, the relationship between global (i.e. database-
level) and local (i.e. recording-level) distributions should be
further considered. For that purpose, we can use the huge
amount of mining techniques developed by the text retrieval
community. For instance, we could try to remove the highly
frequent code-words as found in the global distribution, since
these code-words could be considered as analogous to stop

words in text processing. We could also try to apply different
weights to every frame by using an adaptation of the tf-idf
weighting scheme commonly used in text mining tasks [3].
Later on, these weighted MFCC frames could be used in
classification or audio similarity tasks.

6. ACKNOWLEDGMENTS
This work has been supported by the following projects:

FIS2009-09508, 2009SGR-164, the European Commission,
FP7 (Seventh Framework Programme), ICT-2011.1.5 Net-
worked Media and Search Systems, grant agreement No
287711, JAEDOC069/2010 from Consejo Superior de Inves-
tigaciones Cient́ıficas and 2009-SGR-1434 from Generalitat
de Catalunya.

7. REFERENCES
[1] L. A. Adamic and B. A. Huberman. Zipf’s law and the

Internet. Glottometrics, 3:143–150, 2002.

[2] J. Aucouturier and F. Pachet. Music similarity
measures: What’s the use? In Proceedings of the 3rd
International Symposium on Music Information
Retrieval, pages 157–163, Paris, France, 2002.

[3] R. Baeza-Yates. Modern information retrieval. ACM
Press, Addison-Wesley,New York, 1999.

[4] P. Bak. How nature works: the science of
self-organized criticality. Copernicus, New York, 1996.

[5] M. Beltrán del Rı́o, G. Cocho, and G. G. Naumis.
Universality in the tail of musical note rank
distribution. Physica A, 387(22):5552–5560, 2008.

[6] M. A. Casey, R. Veltkamp, M. Goto, M. Leman,
C. Rhodes, and M. Slaney. Content-based music
information retrieval: current directions and future
challenges. Proceedings of the IEEE, 96(4):668–696,
2008.

[7] K. Cios, W. Pedrycz, R. W. Swiniarski, and L. A.
Kurgan. Data mining: a knowledge discovery
approach. Springer, New York, 2007.

[8] A. Clauset, C. R. Shalizi, and M. E. J. Newman.
Power-law distributions in empirical data. SIAM
Review, 51(4):661, 2009.

[9] A. Corral, F. Font, and J. Camacho. Non-
characteristic half-lives in radioactive decay. Phys Rev
E, 83:066103, 2011.

[10] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, Sept. 1995.

WWW 2012 – AdMIRe'12 Workshop April 16–20, 2012, Lyon, France

901



[11] S. Davis and P. Mermelstein. Comparison of
parametric representations for monosyllabic word
recognition in continuously spoken sentences. IEEE
Transactions on Acoustics, Speech and Signal
Processing, 28(4):357– 366, 1980.

[12] H. Fletcher and W. A. Munson. Loudness, its
definition, measurement and calculation. J Acoust Soc
Am, 5(2):82, 1933.

[13] A. Flexer, D. Schnitzer, M. Gasser, and T. Pohle.
Combining features reduces hubness in audio
similarity. In ISMIR, pages 171–176, 2010.

[14] F. Fuhrmann. Automatic musical instrument
recognition from polyphonic music audio signals. PhD
thesis, Universitat Pompeu Fabra, 2012.

[15] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G.
Fiscus, D. S. Pallett, N. L. Dahlgren, and V. Zue.
TIMIT acoustic-phonetic continuous speech corpus.
Linguistic data consortium, Philadelphia, 1993.

[16] E. Guaus. Audio content processing for automatic
music genre classification: descriptors, databases, and
classifiers. PhD thesis, Universitat Pompeu Fabra,
2009.
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[19] K. J. Hsü and A. J. Hsü. Self-similarity of the ”1/f
noise” called music. Proc Natl Acad Sci USA,
88(8):3507 –3509, 1991.

[20] Y. Jiang, J. Yang, C. Ngo, and A. Hauptmann.
Representations of Keypoint-Based semantic concept
detection: A comprehensive study. IEEE Transactions
on Multimedia, 12(1):42–53, Jan. 2010.

[21] A. Klapuri and M. Davy, editors. Signal Processing
Methods for Music Transcription. Springer, New York,
1 edition, 2006.

[22] E. M. Kramer and A. E. Lobkovsky. Universal power
law in the noise from a crumpled elastic sheet. Phys
Rev E, 53(2):1465, 1996.

[23] B. Liu. Web data mining : exploring hyperlinks,
contents, and usage data. Springer, New York, 2nd
edition, 2011.

[24] B. D. Malamud. Tails of natural hazards. Phys World,
17 (8):31–35, 2004.

[25] B. Manaris, J. Romero, P. Machado, D. Krehbiel,
T. Hirzel, W. Pharr, and R. B. Davis. Zipf’s law,
music classification, and aesthetics. Computer Music
Journal, 29:55–69, 2005.

[26] C. D. Manning and H. Schütze. Foundations of
statistical natural language processing. The MIT Press,
1 edition, 1999.

[27] M. Müller, D. P. W. Ellis, A. Klapuri, and G. Richard.
Signal processing for music analysis. Selected Topics in
Signal Processing, IEEE Journal of, 5(6):1088 –1110,
2011.

[28] M. E. J. Newman. Power laws, Pareto distributions
and Zipf’s law. Contemporary Physics, 46(5):323, 2005.

[29] A. Oceák, I. Winkler, and E. Sussman. Units of sound
representation and temporal integration: A mismatch
negativity study. Neurosci Lett, 436(1):85 – 89, 2008.

[30] T. F. Quatieri. Discrete-time speech signal processing:
principles and practice. Prentice Hall, New Jersey, 1
edition, 2001.

[31] J. P. Sethna, K. A. Dahmen, and C. R. Myers.
Crackling noise. Nature, 410(6825):242–250, 2001.

[32] M. Slaney. Auditory toolbox v2. Technical Report
1998-010, 1998.

[33] S. S. Stevens, J. Volkmann, and E. B. Newman. A
scale for the measurement of the psychological
magnitude pitch. J Acoust Soc Am, 8(3):185–190,
1937.

[34] R. F. Voss and J. Clarke. 1/f noise in music and
speech. Nature, 258(5533):317–318, 1975.

[35] D. H. Zanette. Zipf’s law and the creation of musical
context. Musicae Scientiae, 10(1):3–18, 2006.

[36] G. K. Zipf. Human behavior and the principle of least
effort. Addison-Wesley, Cambridge, 1949.

[37] E. Zwicker and E. Terhardt. Analytical expressions for
critical-band rate and critical bandwidth as a function
of frequency. J Acoust Soc Am, 68(5):1523, 1980.

WWW 2012 – AdMIRe'12 Workshop April 16–20, 2012, Lyon, France

902


