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Abstract

The Heat Balance Integral Method (HBIM) is generally applied to one-dimensional Cartesian

heat �ow and Stefan problems. The main reason for this being that solutions in spherical and

cylindrical coordinates are less accurate than in Cartesian. Consequently, in this paper we examine

the application of the HBIM to Stefan problems in spherical and cylindrical coordinates, with the

aim of improving accuracy. The standard version as well as one designed to minimise errors will

be applied on the original and transformed systems. Results are compared against numerical and

perturbation solutions. It is shown that for the spherical case it is possible to obtain highly accurate

approximate solutions (more accurate than the �rst order perturbation for realistic values of the

Stefan number). For the cylindrical problem the results are signi�cantly less accurate.

Keywords Heat balance integral method · Stefan problem · spherical coordinates · cylindrical
coordinates · phase change

1 Introduction

The Heat Balance Integral Method (HBIM) is an approximate solution method primarily applied to

thermal and phase change problems. It has become popular largely due to its simplicity. For example,

when solving a single heat equation the method permits the governing partial di�erential equation to

be transformed to a �rst order ordinary di�erential equation, which may often be solved analytically. It

is particularly useful in solving Stefan problems, where there exist very few practically useful solutions

and generally numerical methods are required.

The HBIM was developed for thermal problems by Goodman [1] and is most commonly applied

to problems in a Cartesian geometry. However, there exist many situations where an approximate
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solution method in cylindrical or spherical coordinates is required. Spherical Stefan problems are

described in the context of the Earth cooling in [2], they are also important in industrial applications

such as paint pigments, polishing materials and laser cladding [3, 4]. Recently there has been great

interest in the melting process at the nanoscale. Studies on spherical nanoparticle melting are often

motivated by the development of new materials, although there are many important applications in

medicine and drug delivery, see [6, 7, 8]. Phase change in cylindrical geometries is of interest in

everyday applications such as icicle growth and melting, and certain thermal storage systems [10].

At the microscale solidi�cation in a cylindrical geometry has been studied in the context of phase

change microvalves and cryopreservation [11, 12]. At the nanoscale there exists great interest in the

formation or melting of nanowires, see [6, 13, 40]. Consequently, there is a clear need to develop

solution techniques to complement this interest in thermal and melting problems in spherical and

cylindrical geometries.

The Cartesian version of the HBIM is described in detail in a number of texts [14, 15, 16, 17],

while there are less published works dealing with the spherical or cylindrical versions [18, 19, 20]. Hill

[21] summarizes techniques for analytical and series solutions for one-dimensional Stefan problems,

including that of the HBIM in cylindrical and spherical coordinates. Ren [14] studies Cartesian and

spherical geometries subject to a speci�ed solidi�cation front velocity and compares results for both

one and two phase problems against numerics. In [38] a modi�ed form of HBIM is applied to a

spherically symmetric domain to determine the thermal conductivity of a nano�uid.

Various authors use the HBIM as the basis for a numerical scheme. In a series of papers Bell

looked into subdividing the spatial and dependent variables in planar and cylindrical geometries, see

[22, 23]. This is analogous to a numerical marching scheme on the heat balance equations whose

accuracy increases with increased number of subdivisions. Caldwell and Chiu [26] extended this

method, working with cylindrical and spherical geometries. Their solution shows some inaccuracies

for small Stefan numbers and has non-physical oscillations for coarse grids. In a separate paper they

detail the necessary starting solution for their scheme. In [24, 25] linear pro�les are employed in the

subdivision. This requires an increase in the number of subregions to improve accuracy. Mitchell

[23] uses a boundary immobilisation technique together with a standard HBIM pro�le. This leads to

highly accurate solutions with a very small number of subregions. The method does not require a

separate small time solution and can be applied to realistic boundary conditions, rather than the �xed

temperature condition used in most studies.

Various modi�cations of the HBIM have appeared in the literature, with the aim of improving the

approximation. Sadoun [41] introduced the Re�ned Integral Method (RIM) which involves integrating

the heat equation twice and simplifying the resultant integral via the standard HBIM integral. An

alternative approach to the RIM, termed the ARIM, is mentioned in [42] where they point out that

the resultant integral form may be simpler to deal with, especially when combined with a zero �ux

boundary condition. Mitchell and Myers [29, 30] proposed the Combined Integral Method (CIM)

which combines both HBIM and RIM. In [31] this is applied to Stefan problems with a prescribed
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�ux or convective boundary condition. Layeni and Johnson [32] provide an excellent study on various

forms of HBIM and suggest a hybrid version would improve accuracy. Bollti et al [33] investigate

previous quadratic forms of approximating function and apply these to the convective boundary con-

dition, they also present a new quadratic form. However (for standard boundary conditions) the most

accurate formulation comes through the opTimal Integral Method (henceforth termed the TIM), which

involves minimising the least squares error when the approximating function is substituted into the

heat equation [27, 28]. They show that quadratic forms are inaccurate for the convective boundary

condition.

In the following section we will specify the basic one-dimensional, one-phase Stefan problem, to

be used in the remainder of the paper. Studying the one-phase problem reduces the length of the

expressions and so simpli�es the analysis, making the exposition of the method clearer. We note that

the one-phase formulation is known to lose energy when the phase change temperature is variable

(such as with melting at the nanoscale or with supercooled �uids [9, 34]). In the following we will

avoid this issue by only dealing with �xed phase change temperature but the method could easily

be extended to a variable temperature. In �3 we analyse phase change due to a �xed temperature

boundary condition since this is the basic condition studied in the majority of papers. However, in

reality the �xed temperature boundary condition is physically unrealistic so, in Section 4, we study

the case of a Newton cooling condition.

2 Mathematical modelling

Consider a solid sphere or cylinder of initial radius R = R0 which is at the melt temperature, Tm. At

t = 0 the outer boundary temperature is increased such that melting begins and progresses inwards

until the whole particle has turned to liquid. The liquid occupies the region R(t) < r < R, where

R(t) denotes the position of the melting front, and has initial condition R(0) = R0. The problem is

described by the standard one-phase formulation

ρc
∂T

∂t
=

k

rp
∂

∂r

(
rp
∂T

∂r

)
, R(t) < r < R0, (1)

where ρ, c and k denote the density, speci�c heat and conductivity, respectively. We assume ρ is

constant and equal in the solid and liquid phases throughout the melt process (this is not necessary

for the analysis, but again we choose this to make the mathematics clearer). The choice p = 2 describes

the heat equation in spherical coordinates. We may also examine Cartesian and cylindrical geometries

by setting p = 0, 1, respectively. The position of the interface is determined by the Stefan condition

ρLm
dR

dt
= −k∂T

∂r

∣∣∣∣
r=R

, (2)
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where Lm denotes the latent heat. These equations are subject to the following boundary and initial

conditions

T (R, t) = Tm, T (r, 0) = Tm, R(0) = R0,

(a) T (R0, t) = TH , or (b) − k∂T
∂r

∣∣∣∣
r=R0

= h(T (1, t)− TH),
(3)

where at the outer boundary we will impose either a �xed temperature or Newton cooling condition.

Introducing the nondimensional variables

t̂ =
k

ρcR2
0

t, T̂ =
T − Tm

∆T
, r̂ =

r

R0
, R̂ =

R

R0
, (4)

where ∆T = TH − Tm, the problem (1)-(3) may be written (dropping the hat notation) as

∂T

∂t
=

1

rp
∂

∂r

(
rp
∂T

∂r

)
, R(t) < r < 1, (5)

subject to

T (R, t) = 0, T (r, 0) = 0, R(0) = 1,

(a) T (1, t) = 1, or (b)
∂T

∂r

∣∣∣∣
r=1

= Nu(1− T (1, t)),
(6)

where Nu = (R0h)/k is the Nusselt number. The Stefan condition becomes

β
dR

dt
= −∂T

∂r

∣∣∣∣
r=R

, R(0) = 1 , (7)

where β = Lm/(c∆T ) is the Stefan number.

3 Fixed temperature boundary condition

The most commonly used boundary condition in the mathematical study of Stefan problems is that

of a �xed temperature, T (R0, t) = TH > Tm. Hence in this section we will always apply equation (3a)

at the boundary. Physically it is unrealistic since it requires an in�nite �ux at the beginning of the

melting process, however the mathematics involved is relatively simple so we begin our analysis with

this case and subsequently move on to the more realistic case of a cooling condition.

3.1 Spherical Stefan problem

We begin our analysis with a study of the spherical problem in the original coordinate system, de�ned

by equations (5)-(7) with p = 2, and subsequently a transformed system. Results are then compared

with a numerical solution.
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3.1.1 HBIM formulation

All heat balance methods involve choosing a simple function (usually a polynomial) to approximate

the temperature over a �nite region [42]. We choose a standard form

T (r, t) = a(t)

(
r −R
1−R

)
+ b(t)

(
r −R
1−R

)n
+ c(t). (8)

To follow the original HBIM we now assume n = 2. The boundary conditions indicate c = 0 and

b = 1− a. In the Cartesian case a is a constant, in spherical co-ordinates it turns out to be a function

of time. Hence the expression for T involves two unknown functions, a(t) and R(t). The �rst of the

two equations to determine these unknowns is found by substitution of T into the Stefan condition

(7). This leads to an ordinary di�erential equation

β
dR

dt
= − a

1−R
. (9)

A second equation, termed the Heat Balance Integral (HBI), comes from integrating the heat equation

(5) over the region r ∈ [R, 1],∫ 1

R
r2
∂T

∂t
dr =

∫ 1

R

∂

∂r

(
r2
∂T

∂r

)
dr ⇒ d

dt

∫ 1

R
r2T (r, t) dr =

∂T

∂r

∣∣∣∣
r=1

−R2∂T

∂r

∣∣∣∣
r=R

. (10)

Upon substituting the approximating function (8) into this expression we obtain

d

dt

[
(1−R)

((
24 +

(
n3 + 6n2 + 11n− 18

)
a
)
R2 + 2 (1 + n)

(
12 +

(
n2 + 5n− 6

)
a
)
R
)

(2 + n) (3 + n) (1 + n)

(1−R) (3 (4 + (n− 1) a) (1 + n) (2 + n))

(2 + n) (3 + n) (1 + n)

]
= − aR4

(1−R)
.

(11)

Since n = 2 is constant we may write (11) as

d

dt

[
1

20
(1−R)

((
2

3
+ a

)
R2 +

(
4a

3
+ 2

)
R+ 4 + a

)]
= − aR4

(1−R)
. (12)

The initial condition for the melt front R(0) = 1 is known, but the condition for a is not. The

classical Neumann solution for Cartesian phase change driven by a constant temperature boundary

condition shows R ∼
√
t. The current problem, which describes spherical melting, (5)-(7), reduces

to the Neumann problem provided the melt region is small compared to the radius. Hence, for small

times, we may approximate the moving boundary position as

R ≈ 1− 2λt1/2, (13)

where λ is an unknown constant. For the spherical problem this form has been used in [5]. Substituting

this, and the derivative of T into the Stefan condition (9) determines

a ≈ βλ2

2
(1− 2λt1/2), (14)
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hence,

a(0) =
βλ2

2
. (15)

To �nd the value for λ we substitute the small time solutions (13), (15) into the heat balance (11),

which in the limit t→ 0 gives a quadratic for λ2

2β(n− 1)λ4 + (2βn+ 2 + 2βn2)λ2 − n2 − n = 0 . (16)

The standard HBIM solution to the Stefan problem is now described by equations (9), (11) with n = 2.

The numerical solution of (9), (11), subject to R(0) = 1, a(0) = βλ2/2 can easily be found using the

ODE solver ode45 in MATLAB.

3.1.2 TIM formulation

The standard HBIM of Goodman [1] simply imposed n = 2, as in the previous section, although

there are many other possibilities, often chosen through knowledge of an exact solution, see [29]. The

opTimal Integral Method (TIM) was developed so that n is chosen to improve the accuracy of the

standard method without the need for an exact or numerical solution [27, 28]. This involves minimising

a least-squares error. Thus a third equation is introduced

En(r, t) =

∫ 1

R

(
∂T

∂t
− 2

r

∂T

∂r
− ∂2T

∂r2

)2

dr. (17)

This approach has a number of advantages, the most obvious is that it signi�cantly improves accuracy,

for certain boundary conditions by orders of magnitude [27, 28]. It also provides a measure of the

error without knowledge of an exact solution. The algebra involved in the integral may be complex,

which has been quoted as a drawback [3]. However, it is unnecessary to carry out the algebra every

time the method is used. For standard Cartesian thermal problems in a �xed domain: for a constant

temperature boundary condition the appropriate value is n = 2.235, while for constant �ux and

Newton cooling boundary conditions n = 3.584, see [28]. The Stefan problem with a �xed temperature

boundary condition gives n = 1.79; with constant �ux or a Newton cooling condition, n = 3.48.

The TIM formulation is fully speci�ed by equations (9), (11), (17) for the 3 unknowns a, n, R,

subject to the temperature pro�le (8).

As in the standard HBIM we solve (9) and (11) numerically, but now for a range of n. The error

En is then calculated to determine the minimum value and corresponding value of n. It turns out that

the optimal n varies with β. For β ∈ [1, 10] we �nd n ∈ [1.73, 1.77]. As we will see later, the average

value is accurate over a wide range of β, so e�ectively with a �xed temperature condition the TIM

requires solving the two ODEs (9), (11) with n = 1.75.

3.1.3 Perturbation solution

Perhaps the most popular method for �nding approximate solutions to Stefan problems is via the large

Stefan number perturbation. This involves assuming that β � 1, although this limit is not always of
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practical interest: in [35, Chap 2.1] typical parameter values for the phase change of water, copper,

para�n wax and silicon dioxide are provided, these show β ∈ [2×10−3, 8.3] (note their Stefan number

St = 1/β).

The β � 1 limit corresponds to slow melting and requires time to be rescaled such as τ = εt,

where ε = 1/β. Now the problem statement becomes

ε
∂T

∂τ
=

1

r2
∂

∂r

(
r2
∂2T

∂r2

)
, R(τ) < r < 1, (18)

T (R, τ) = 0, T (1, τ) = 1, (19)

dR

dτ
= −∂T

∂r

∣∣∣∣
r=R

. (20)

We then approximate the solution for T by a power series in the small parameter ε, T (r, τ) = T0 +

εT1 + O
(
ε2
)
. Applying this expansion to the governing equation (18) and grouping terms with the

same power of ε we �nd the leading and �rst order temperatures to be

T0 =
r −R

(1−R)
, (21)

T1 = −(r − 1)(R− 2 + r)(R− r)
6(1−R)2

dR

dτ
. (22)

Substituting the �rst order approximation of T into the Stefan condition (20) gives

dR

dτ
= − 3

(1−R)(3R+ ε)
. (23)

Equation (23) can easily be solved via MATLAB's ode45, with initial condition R(0) = 1. We may

also easily integrate this expression to �nd an implicit solution for R (a cubic equation in R), but

when solving the cubic numerically there is a jump in roots so we prefer to use the ODE solver.

3.1.4 Approximate solutions in the transformed system

The equations for the transformed system come from making the change u = Tr. The problem then

becomes

∂u

∂t
=
∂2u

∂r2
, R < r < 1, (24)

u(R, t) = 0 = u(r, 0), u(1, t) = 1 , R(0) = 1 (25)

βR
dR

dt
= −∂u

∂r

∣∣∣∣
r=R

. (26)

To approximate the temperature over a �nite region we choose the standard form of equation (8),

and replace T by u. The boundary conditions again determine c = 0 and b = 1− a. As before we use
the Stefan condition and the HBI to de�ne equations for R and a. The Stefan condition gives

βR
dR

dt
= − a

1−R
. (27)
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The heat balance integral is∫ 1

R

∂u

∂t
dr =

∫ 1

R

∂2u

∂r2
dr ⇒ d

dt

∫ 1

R
u(r, t) dr =

∂u

∂r

∣∣∣∣
r=1

− ∂u

∂r

∣∣∣∣
r=R

. (28)

Upon substituting the approximating function u into this expression and assuming constant n, we

obtain

(n− 1)(1−R)2
da

dt
− (1−R)[(n− 1)a+ 2]

dR

dt
= 2n(n+ 1)(1− a). (29)

To �nd λ we again let t→ 0 and substitute into the HBIM (28). The solution to the Stefan problem

is now described by equations (27), (29) subject to initial conditions R(0) = 1, a(0) = 2βλ2.

In the transformed system the TIM solution requires �nding the value for n that minimises the

error

En(n, t) =

∫ 1

R

(
∂u

∂t
− ∂2u

∂r2

)2

dr. (30)

As before we simply solve the ODEs (26), (29) numerically for a range of n and then determine the

value that minimises (30). We �nd that for β ∈ [1, 10], n ∈ [1.55, 1.65], so in general we choose

n = 1.6.

The leading and �rst order perturbation solutions are

u0 = rT0, u1 = rT1 (31)

where T0, T1 are given by (21), (22), and the melt front is described by (23). That is, the perturbation

solution in the transformed system is identical to that of the original system.

3.1.5 Numerical solution

To ascertain the accuracy of the various solutions we will now formulate a numerical solution. To

do this, we employ a �nite di�erence scheme, following the work of Font et al. [5]. There are two

key steps: the �rst one consists of changing the temperature variable to u = rT ; the second involves

introducing a new coordinate to immobilise the boundary, η = (r − R)/(1− R). This transforms the

problem to

(1−R)2
∂u

∂t
= (1−R)(1− η)

∂u

∂η
Rt +

∂2u

∂η2
, 0 < r < 1, (32)

u(0, t) = 0, u(1, t) = 1, (33)

βR
dR

dt
= − 1

1−R
∂u

∂η

∣∣∣∣
η=0

. (34)

In the equations above, both R and Rt are evaluated at the n-th time step. We �nd Rnt via equation

(34) and approximate the partial derivative of the temperature at the boundary η = 0 via a three-point

forward di�erence [43]. We use standard �nite di�erences to approximate the temperature derivatives,

∂u

∂t
=
un+1
i − uni

∆t
,

∂u

∂η
=
un+1
i+1 − u

n+1
i−1

2∆η
,

∂2u

∂η2
=
un+1
i+1 − 2un+1

i + un+1
i−1

∆η2
, (35)
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where i = 1, . . . , J and n = 1, . . . , N . Hence we may write

un+1
i = 0, i = 1, (36)

ani u
n+1
i−1 + bni u

n+1
i + cni u

n+1
i+1 = dnuni , i = 2, . . . , J − 1, (37)

un+1
i = 1, i = J, (38)

which allows us to write down a matrix system that we solve at every time step n. We determine the

position of the melt front via the Stefan condition (34) using a three-point backward di�erence for the

partial derivative, and taking the time derivative to be

dR

dt
=
Rn+1 −Rn

∆t
. (39)

Small time analysis

A common di�culty when solving Stefan problems numerically is that the liquid phase does not exist

at t = 0, however a numerical solution demands initial values. To overcome this di�culty we look for

a small time solution to provide an initial guess within the numerical scheme. As stated earlier, at

small times R = 1− 2λt1/2, substituting this into equation (32) and letting t→ 0 gives

∂2u

∂η2
≈ 0. (40)

Applying the boundary condition (33) yields u(η, t) = η. Substituting this expression into the Stefan

condition (34) allows us to �nd λ =
√

1/(2β). So we start our scheme at some time t = t0 � 1, with

u(η, t0) = η and R(t0) = 1−
√

(2t0)/β.

3.1.6 Comparison of results

The most important variable in the Stefan problem is the position of the melt front R(t): the main

reason for solving the heat equation is to �nd the temperature gradient which then drives the phase

change. Consequently, in Figure 1 we show a comparison of the melt front predictions of the numerical

solution (solid line) and the approximate solutions in the original domain for β = 1, 10. The TIM,

the HBIM with n = 2 and perturbation solutions are shown as dashed, dash-dotted and dotted lines,

respectively. For β = 1 all solutions are inaccurate. When β = 10 the perturbation solution is

very close to the numerical solution while the other solutions are again inaccurate. In Figure 2 we

show the equivalent results, but now calculated in the transformed system. For β = 1 the TIM shows

reasonable agreement, with a �nal melt time some 7% larger than the numerical prediction. The HBIM

and perturbation solutions are highly inaccurate. For β = 10 we expect the large β perturbation to

be accurate, and indeed it is much closer to the numerical solution now. However, as is clear from the

inset, the TIM is signi�cantly more accurate. This is in keeping with the results of [30] where it is

shown that for β ∈ [0.1, 10] their heat balance method is more accurate than the second order small

and large β perturbation solutions. For β > 10 both their heat balance solution and the perturbation
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are highly accurate, with errors below 0.01%. From these two �gures we can conclude that in spherical

co-ordinates the most accurate solution is generally obtained via the TIM, that is with n = 1.6, in the

transformed system.

In Figure 3(a) we show temperature pro�les for di�erent times as a function of r for β = 1 for

the di�erent methods presented, in the transformed system. We observe that for early times the

temperatures for all di�erent methods are very similar, but as time increases the agreement diminishes

considerably. There are two main factors that contribute to this. The �rst one, of course, is the

di�erence in the expressions that de�ne the temperatures. But the most important factor is the

fact that at later times, as can be seen in Figure 2(a), the di�erence in R increases, and thus the

temperature pro�les diverge. To illustrate this, in Figure 3(b) we plot the temperature pro�les for the

di�erent methods using the same value (from the numerical solution) for R at the di�erent times. We

see that despite the fact there are still some di�erences they have decreased substantially.
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(a) β = 1.
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Figure 1: Melting front evolution of a spherical particle in the original system for HBIM (dash-dotted), TIM

(dashed), perturbation (dotted) and numerical (solid) solutions for β = 1, 10.

3.2 Cylindrical Stefan problem

In this section we focus on the cylindrical Stefan problem. We will follow the methods outlined in the

previous section and so will omit much of the detail. Again we �rst solve the problem in the original

system, equations (5)-(7) taking p = 1, and later on provide approximate solutions for a transformed

system.
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Figure 2: Melting front evolution of a spherical particle in the transformed system for HBIM (dash-dotted),

TIM (dashed), perturbation (dotted) and numerical (solid) solutions for various β.

0 0.2 0.4 0.6 0.8 1

r

450

500

550

600

650

700

750

T

6.179e-9 s

1.522e-8 s

(a) Using the corresponding R values for each method.
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Figure 3: Temperature pro�le of a spherical particle using the solutions in the transformed system for HBIM

(dash-dotted), TIM (dashed), perturbation (dotted) and numerical (solid) solutions. β = 1.

3.2.1 Approximate solutions in the original cylindrical coordinates

We assume a temperature pro�le of the form (8) where c = 0 and b = 1−a. The heat balance integral
may now be expressed as

d

dt

∫ 1

R
rT dr =

∂T

∂r

∣∣∣∣
r=1

−R∂T
∂r

∣∣∣∣
r=R

. (41)
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Substituting for T leads to a rather long expression for the ODE, similar to (11), so we omit it in this

section.

We close the system by inserting the assumed temperature pro�le (8) into the Stefan condition

(7), to reproduce (9). For small times, for a su�ciently thin melt region the governing equations are

equivalent to the Cartesian system so again we may write R ≈ 1 − 2λt1/2, a ≈ βλ2/2. In the limit

t→ 0 the HBI provides an equation for λ,

n

2
− 1

2
λβn =

λ

8(n+ 1)(4 + βλ2(n− 1))
. (42)

For the standard HBIM we substitute n = 2 to determine λ(β). For the TIM, n is chosen to

minimise the error function (calculated using MATLAB)

E(n, t) =

∫ 1

R

(
∂T

∂t
− 1

r

∂T

∂r
− ∂2T

∂r2

)2

dr. (43)

Numerical integration of the above gives n ∈ [1.404, 1.6869] as the optimal choice for β ∈ [1, 10].

For the perturbation solution we rescale time and expand the temperature in powers of ε to �nd

the leading and �rst order solutions

T0(r, t) = 1− ln(r)

ln(R)
, (44)

T1(r, t) =
((R2 − r2) ln(r) + r2 − 1) ln(R) + (1−R2) ln(r)

4R ln(R)3
dR

dt
. (45)

Upon substitution into the Stefan condition, the melt front satis�es

dR

dt
= − 4βR ln(R)2

4βR2 ln(R)3 + 2R2 ln(R)2 − 2R2 ln(R) + (R2 − 1)
, (46)

with R(0) = 1.

3.2.2 Approximate solutions in a transformed system

The transformation u = rT does not help in this case. Instead we follow [21, 36] and use the following

boundary �xing transformation,

ρ =
ln(r)

ln(R)
, τ = ln(R), T (r, t) = u(ρ, τ). (47)

The cylindrical problem becomes

e−2τρ
∂2u

∂ρ2
= τ

dτ

dt

(
τ
∂u

∂τ
− ρ∂u

∂ρ

)
, ρ ∈ [0, 1], τ < 0 (48)

u(1, τ) = 1, (a) u(0, τ) = 1 τ(0) = 0, (49)

∂u

∂ρ

∣∣∣∣
ρ=1

= −βe2ττ dτ

dt
. (50)
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To remove the t dependence in equation (48) we may substitute for τt from the Stefan condition.

This transformation complicates the heat equation, with the result that if we leave n unknown the

HBI cannot be integrated analytically, hence we cannot specify one of the ODEs for the TIM solution.

However, we may still make progress for the particular case n = 2.

The quadratic polynomial satisfying boundary conditions (49) is

u(ρ, τ) = 1− (1 + a)ρ+ aρ2. (51)

where a = a(τ). The HBI is obtained by integrating the heat equation (48) over the domain ρ ∈ [0, 1],

after removing the t dependence via the Stefan condition. This leads to∫ 1

0
β
∂2u

∂ρ2
dρ =

∫ 1

0
e2τ(ρ−1)(a− 1)

[
ρ
∂u

∂ρ
− τ ∂u

∂τ

]
dρ. (52)

Applying u from (51) leads to the ODE for a(τ),

da

dτ
=
e−2τ

(
a2(τ + 2)− 2a− τ

)
+ 8βaτ3 − 2τ2(a− 1)2 + (1 + 3a2 − 4a)τ + 2a(1− a)

τ(a− 1)((τ + 1)e−2τ + τ − 1)
. (53)

Note, unlike in previous examples we now only have a single equation to solve for a(τ), although

again we do not know the initial condition. To �nd the value of a(0) we apply the small time solution

τ = ln(R) = ln
(
1− 2λt1/2

)
to the Stefan condition (50). Taking the limit t→ 0 gives

a(0) = 1− 2λ2β. (54)

Substituting for a, τ into (53) leads to a quadratic for λ,

1

3
λ4β2 +

(
β

3
+ 2β2

)
λ2 − β = 0. (55)

Now we simply have to solve (53) numerically over the range τ ∈ [0,−∞] subject to (54). With

this transformation the melt front is at R = eτ . Once a is known we can convert from τ to t by solving

the Stefan condition (50)
dτ

dt
= −a− 1

β
e2τ , (56)

In practice we calculate t via the discretisation

ti = ti−1 −
βτi−1e

2τi−1

ai−1 − 1
(τi − τi−1) (57)

where t0 = 0.

With a large Stefan number we rescale time scale to obtain

ετ
dτ

dt

(
τ
∂u

∂τ
− ρ∂u

∂ρ

)
= e−2τρ

∂2u

∂ρ2
, 0 < ρ < 1, (58)

∂u

∂ρ

∣∣∣∣
ρ=1

= −e2ττ dτ
dt
. (59)
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subject to (49). This leads to

u0 = 1− ρ, (60)

u1 = −(1− ρτ)e2ρτ + ρe2τ (τ − 1)− 1 + ρ

4τ2
dτ

dt
. (61)

Finally, we �nd that the melt front is given by the same expression as in (46).

3.2.3 Numerical solution

To solve the cylindrical problem numerically we immobilise the boundary as in the spherical case via

the coordinate η = (r −R)/(1−R). The governing equations (5)-(7) transform to

(1−R)2
∂T

∂t
=

(
(1− η)(1−R)

dR

dt
+

1−R
η(1−R) +R

)
∂T

∂η
+
∂2T

∂η2
, (62)

T (0, t) = 0, T (1, t) = 1, (63)

β(1−R)
dR

dt
= −∂T

∂η

∣∣∣∣
η=0

. (64)

We use standard �nite di�erences to approximate the temperature derivatives as in (35). As in the

spherical case, we can now write

Tn+1
i = 0, i = 1, (65)

âni T
n+1
i−1 + b̂ni T

n+1
i + ĉni T

n+1
i+1 = d̂nTni , i = 2, . . . , J − 1, (66)

Tn+1
i = 1, i = J, (67)

which allows us to write down a matrix system that we solve at every time step n. We are able to

determine the position of the melt front via the Stefan condition (64) using a three-point backward

di�erence for the partial derivative, and taking the time derivative to be (39). The small time analysis

leads to R ≈ 1− 2λt1/2, with λ =
√

1/(2β).

3.2.4 Comparison of results

In Figure 4 we present the numerical and approximate solutions in the original domain for β = 1, 10.

In this case all the heat balance methods are inaccurate for approximately R < 0.3. As expected the

perturbation solution is poor for β = 1 and much more accurate when β = 10. In both cases the TIM

is more accurate than the standard HBIM but neither is su�ciently accurate to justify their use.

In Figure 5 we show a comparison of the melt front predictions of the numerical solution (solid

line) and the approximate solutions in the transformed domain for various β. The HBIM with n = 2

and perturbation solutions are shown as dash-dotted and dotted lines, respectively. At small times all

solutions agree well, however as R decreases they begin to diverge. For the case where β = 1, shown

in Figure 5a), we see that the HBIM and perturbation both present errors of about 10%. In Figure

5b) we present results for β = 10. Now the solutions are more accurate, with the same error of about

3.5%.
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Figure 4: Melting front evolution of a cylindrical particle in the original system for HBIM (dash-dotted), TIM

(dashed), perturbation (dotted) and numerical (solid) solutions for various β.
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Figure 5: Melting front evolution of a cylindrical particle in the transformed system for HBIM (dash-dotted),

perturbation (dotted) and numerical (solid) solutions for various β.

4 Newton cooling boundary condition

In practice a �xed temperature boundary condition is di�cult to maintain; a �xed �ux or Newton

cooling condition is more physically realistic [39]. We now focus on the Newton cooling condition,

which means using boundary condition (3b). Again, since we follow the methods of the previous

section we omit most details.
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4.1 Spherical problem

The problem is speci�ed by (5)-(6), with p = 2, and the Newton cooling boundary condition (b). The

polynomial to approximate the temperature T is given by (8), but now c = 0 and b = Nu(1−R)(a−1)+aR
(1−Nu)(1−R)−n .

The heat balance integral is given by (11), which upon substituting for T from (8), with the corre-

sponding c and b yields

d

dt

[
a

1−R

(
1

2
−R

)
+

1−R
n+ 1

(
[−Nu− a(1−Nu)](1−R) + a

(1−Nu)(1−R)− n

)
+

aR2

2(1−R)

]
=

n

1−R

(
[−Nu− a(1−Nu)](1−R) + a

(1−Nu)(1−R)− n

)
.

(68)

The second ODE is simply the Stefan condition (9).

Small time analysis

At small times R takes the form R ≈ 1 − λt, see [39]. Substituting this into the Stefan condition

determines the initial condition for a ≈ βλ2t. To determine the initial conditions for the numerical

solution we substitute both these small time solutions into equation (32), and upon letting t→ 0, we

may write uηη ≈ 0. Applying the appropriate boundary conditions yields the small time form for u,

u(η, t) = − 1−R
(1−R)(1−Nu)− 1

η. (69)

Substituting the above expression for u(η, t) into the Stefan condition (34) determines λ = Nu/β.

In contrast to the previous solutions, since Nu = R0h/k there is a dependence on the initial size.

The solution by the TIM shows that for Nu = 15 and β ∈ [1, 10], the optimal n ∈ [2.7, 3.55]. For

Nu = 1 there is a similarly large variation in n.

The leading and �rst order solutions for the perturbation are

T0 =
F1

r
+ F2, (70)

T1 =
r2

6

dF1

dt
+
r

2

dF2

dt
+ F3 +

F4

r
, (71)

where

F1 =
Nu

R(1−Nu) + Nu
, (72)

F2 = − NuR

R(1−Nu) + Nu
, (73)

F3 =
1−Nu

Nu

[
1

6

dF1

dt
+

1

2

dF2

dt
+ F4

]
− 1

2Nu

dF1

dt
− 1

Nu

dF2

dt
, (74)

F4 = − R

6R(1−Nu) + 6Nu

[
(NuR2 − 2−Nu)

dF1

dt
+ 3(RNu− 1−Nu)

dF2

dt

]
. (75)
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Substituting the �rst order approximation for T into the Stefan condition leads to

dR

dt
= − 3Nu [(Nu− 1)R−Nu]

2[
3Nu [(Nu− 1)R−Nu]

3 − εNu(1−R)
(
1 + Nu + Nu2 + (1 + Nu− 2Nu2)R+ (Nu− 1)2R2

)] . (76)

Equation (76) can be solved via MATLAB's ode45.

For the transformed system, with u = Tr, the polynomial approximation is given by (8), with

c = 0 and b = Nu(1−R)(a−1)+aR
(1−Nu)(1−R)−n and the heat balance integral is given by equation (28). The HBIM

solution to the Stefan problem is now described by equation (27)for R, and substituting u into (28)

we obtain an ODE for a. These two equations are subject to the initial conditions stated in the small

time analysis. The TIM yields values for n that vary with β and Nu, n ∈ [1.63, 1.95] (see Table 1).

The perturbation solution is the same in the transformed system as in the original. For the

numerical solution we employ the same scheme de�ned in �3.1.5, the only di�erence is due to the

boundary condition, so that for i = J , (1− (1−Nu)(1−Rn)∆η)un+1
i − un+1

i−1 = Nu(1−Rn)∆η.

In Figure 6 we show two results for R(t) in the original system. As in the previous case we observe

that for small β no approximation method is suitable. For β = 10 the perturbation solution provides

reasonable accuracy, which obviously will improve as β increases. In Figure 7 we show results in the

transformed system. Now the integral methods are clearly superior, providing good agreement in all

examples. Interestingly, for the case β = 1, Nu = 1.5 we can see from the inset that the standard

HBIM with n = 2 is more accurate than the TIM, with n = 1.95, although both are obviously good

approximations. The reason behind this is that the TIM is based on a global minimisation of the error

in the temperature. This does not guarantee the most accurate temperature gradient at r = R. It

seems that in this case the standard HBIM better approximates the gradient, Tr(R, t), (at least as

R→ 0) better than the TIM. However, as may be seen from the other three �gures, in general the TIM

is most accurate. Approximate values for n are provided in Table 1. Note, as Nu → ∞ the Newton

cooling condition tends to the �xed boundary temperature boundary condition and so n ≈ 1.6 (as

predicted previously). For small Nu, n ≈ 1.92. For simplicity we could take n = 1.76 for any Nu, β

and �nd a good approximation. For better accuracy we could derive a function which moves smoothly

between the limits (1.6, 1.95) as Nu moves between 0 and ∞.

TIM exponent

Nu = 1.5
β = 1 1.95

β = 10 1.89

Nu = 15
β = 1 1.68

β = 10 1.63

Table 1: TIM exponent for di�erent β and Nu in the transformed system.
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Figure 6: Melting front evolution of a spherical particle in the original system for HBIM (dash-dotted), TIM

(dashed), perturbation (dotted) and numerical (solid) solutions for various β and Nu.

4.2 Cylindrical problem

Here we follow the method of �3.2. In the original coordinate system we assume that the temperature

pro�le has the form (8), with c = 0 and b = (1+Nu−NuR)a−Nu(1−R)
NuR−Nu−n . The heat balance integral may be

expressed as (41). We close the system by applying (8) to the Stefan condition. Assuming R ≈ 1− λt
at small times, the Stefan condition leads to a(0) ≈ βλ2t, and taking the limit t→ 0 in the HBI yields

λ = Nu/β. Finally, the best n is chosen to minimise the error function (43) at the �nal times. This

gives n ∈ [2.19, 2.62] as the optimal choice for β = 1, 10, Nu = 15.

The leading and �rst order perturbation solutions are

T0(r, t) = F1(t) + F2(t) ln(r), (77)

T1(r, t) = F3(t) ln(r) +
r2

4

dF1

dt
+
r2

4

dF2

dt
ln(r)− r2

4

dF2

dt
+ F4, (78)

where

F1(t) =
Nu ln(R)

Nu ln(R)− 1
, (79)

F2(t) =
Nu

1−Nu ln(R)
, (80)

F3(t) = −1

4

(
R2 ln (R)Nu2 +

(
−Nu−Nu2

)
R2 + 2Nu + Nu2 + 2

)
Nu

R (−1 + Nu ln (R))3
dR

dt
, (81)

F4(t) =
1

4

Nu
((

2 + 2Nu + NuR2 + Nu2
)

ln (R)−R2 (1 + Nu)
)

R (−1 + Nu ln (R))3
dR

dt
. (82)
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Figure 7: Melting front evolution of a spherical particle in the transformed system for HBIM (dash-dotted),

TIM (dashed), perturbation (dotted) and numerical (solid) solutions for various β and Nu.

The melting front is given by

dR

dt
=

4Nu (ln (R)Nu− 1)2(
4Nu3 ln (R)3 − 12Nu2 ln (R)2 + (+12Nu) ln (R)− 4

)
R
. (83)

For the transformed system, given by the change of coordinates (47), the outer boundary condition

is ∂u
∂ρ

∣∣∣∣
ρ=0

= τλ(1− u(0, τ)). The polynomial approximation is given by

u(ρ, τ) = c+ τNu(1− c)ρ− (c+ τNu(1− c)) ρ2. (84)
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Then the heat balance integral yields

dc

dτ
=
−2 (τNu(c− 1)− 2c)2 e−2τ

(
1/2 + τ2 − τ

)
e2τ + ((τNu− 2) c− τ Nu)2 e−2 τ + 8βτ3 (τNu(c− 1)− c)

(−τNu + τNuc− 2c) ((1 + τ2Nu + (−2−Nu) τ) e2τ − 1 + (2 + Nu) τ2 + τNu) e−2ττ
.

(85)

The small time solution is c(0) = 1 − 2βλ2. Now (85) is solved numerically using an ODE solver in

MATLAB over the range [0, −∞]. The corresponding melt front is simply R = eτ . We use (57) to

convert the interval from τ back to t. For the perturbation solution, we �nd that the melt front is

given by (83).

The numerical scheme is the one described in �3.2.3 but equation (67) becomes

Tn+1
J = (Nu(1−Rn)∆η + 1)Tn+1

i − Tn+1
i−1 = Nu(1−Rn)∆η. (86)
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Figure 8: Melting front evolution of a cylindrical particle for HBIM in the transformed system (dash-dotted),

TIM in the original system (dashed), perturbation (dotted) and numerical (solid) solutions for various β and

Nu = 15.

5 Conclusion

The goal of this paper was to improve the accuracy of the HBIM applied to Stefan problems in spherical

and cylindrical geometries. To do this we analysed the standard form and the optimised form (TIM),

in the original and a transformed co-ordinate system, subject to �xed temperature and Newton cooling

boundary conditions. The large Stefan number perturbation solution was also calculated to �rst order

since this is the most common way to approximate solutions to Stefan problems. The accuracy was

determined by comparison of the predicted melt front position with a numerical solution for two values
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of the Stefan number β = 1, 10. The upper limit for β was chosen since it is a typical maximum value

for practical melting problems [35].

First we considered melting due to a �xed temperature boundary condition. For the spherical

problem all solutions in the original domain were inaccurate for small β. For large β only the per-

turbation solution was accurate. However, when the temperature variable was changed to u = rT

the solutions improved in accuracy. In particular the TIM gave the most accurate solutions for the

β values tested. Even when β = 10, when we expect the perturbation solution to have an accuracy

of O(10−2)% the TIM was signi�cantly more accurate. The expression for the temperature with the

�xed temperature boundary condition takes the form

u = a

(
r −R
1−R

)
+ b

(
r −R
1−R

)n
, (87)

where b = 1− a. For the standard HBIM n = 2. For the TIM n ∈ [1.55, 1.65] varies slightly with β.

However, choosing the average value n = 1.6 provides more accurate solutions than the other methods.

Consequently when studying spherical Stefan problems, with a �xed temperature boundary condition

we recommend transforming the temperature variable T = u/r where u is given by (87) and n = 1.6.

With a Newton cooling condition the conclusions are similar. Firstly, the temperature must be

transformed to u = rT . The relation between a and b is more complex and with the TIM the exponent

varies with both β and Nu = hR0/k. For small Nu we found good accuracy with the average n = 1.92.

For larger Nu (here we tested Nu= 15) we found a smaller value n = 1.65, which is obviously tending

to the �xed temperature limit n = 1.6 (corresponding to Nu →∞).

In the case of cylindrical symmetry the results were not so satisfactory. Firstly, the temperature

transformation was of no use, instead we used a boundary �xing transformation, which complicated

the governing heat equation. Secondly, the TIM proved too complex to be of practical use or appeal.

Thirdly, in general accuracy was poor for both boundary conditions. From this part of the study it

is di�cult to make a conclusive statement. When β = 1, for a �xed temperature boundary condition

the TIM works best in the original system, for the cooling condition it is more accurate than the

HBIM and perturbation calculated in the transformed system. For large β it is the worst, while the

perturbation is reasonably accurate for the values of Nu examined.

In conclusion then, it appears that the TIM can be used with great accuracy in spherically symmet-

ric melting problems, provided the temperature transformation u = rT is employed. In the cylindrical

problem the results are less conclusive and di�erent methods work better for di�erent parameter val-

ues. In this case it is hard to make a single recommendation. However, it is possible that a di�erent

transformation, either of the temperature or co-ordinates, could change this conclusion.
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