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Abstract

In this work we propose to develop a computational strategy based on the use of Finite
Element Methods (FEM) for articulatory speech synthesis. In this context, we follow
a bottom-up strategy to deal with the physics involved in speech generation. First, we
solve the acoustic wave equation using FEM in space and finite differences in time. Next,
boundary losses due to viscous friction and heat conduction are taken into account. Then,
a radiation condition is introduced to simulate outward propagation waves to freespace.
A Perfectly Marched Layer (PML) is used for this purpose. Finally we apply the finite
element method to the vowel synthesis problem, taking as an example the case of vowel
/e/. The quality of the results is analyzed by means of objective measurements.






Summary

This project is focused on human computer interaction (HCI), where speech plays a
key role, both for general users and, in particular, for users with particular accessibility
needs (people with sensory disabilities and the aged). In this context, the automatic
generation of speech signals (i.e. speech synthesis) has made several significant steps so
as to move from poorly intelligible to very natural systems. However, this process has
almost ignored the seminal idea of modeling the human vocal tract and the articulation
processes (articulatory techniques) to propose more practical techniques based on actual
speech recordings, typically from a professional speaker. With the increasing capacity
of computers, these recordings (speech corpora or databases) have become larger and
larger, leaving the signal processing techniques practically aside i.e. following the so
called "choose the best to modify the least". Nevertheless, this corpus based techniques
must record a new database for each new voice they want to synthesize, which is a very
expensive process, both in terms of time and economical cost.

In contrast, this project retakes the idea to generate speech from scratch by means of
articulatory speech synthesis techniques in order to generate any kind of speech (gender,
age, speaking style, etc.). Although the physics involved in speech generation is quite
complex, the current capacity of computers, combined with recent advances on numerical
mathematics (in particular the Finite Element Method (FEM)) makes possible to address
it. Since this is a very challenging goal, we will start from the most simple speech sound:
the synthesis vowels.

So, one of the techniques that deals with the above purpose is articulatory speech
synthesis. In order to better understand it, we present a brief review. The articulatory
synthesis concept is explained by means of a generic block diagram, whose main blocks
(geometrical, glottal and vocal tract) are detailed.

This work focus on the vocal tract modelling. For this purpose, we use a computational
model based on finite element methods in the time domain. Two dimensional geometries
are considered. In order to deal with the complexities of the acoustic modelling, we have
started by solving the standard acoustic wave equation using FEM in space and finite
differences in time, deriving an explicit scheme. Next, we have increased the complexity
of the problem taking into account boundary losses due to viscous friction and heat
conduction. Finally, a non-reflection condition has been included, which allows to consider
free space propagation of sound waves. A Perfectly Marched Layer (PML) is used for this
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purpose. The above approaches are tested using benchmark problems such as the wave
propagation in a tube and in a membrane.

Once solved the complexities of the acoustic modelling, we have applied the finite element
method to the vowel problem. Given the /e/ vocal tract geometry and a glottal source,
we synthesize as an example the vowel /e/. Then, its quality is analyzed by means of
objective measurements.



Contents

1 An introduction to articulatory speech synthesis
1.1 Introduction . . . . . . . . . ...
1.2 Vocal tract geometry . . . . . . . ..o L
1.2.1 Articulatory data . . . . . .. ... ...
1.2.2 Geometry models . . . . . . . ..o
1.3 Glottal models . . . . . . . ...
1.3.1 Waveform and self-oscillating models . . . . . ... ... ... ...
1.3.2 Computational models . . . . . .. .. ... ... .. ........

1.4 Vocal tract acoustic models . . . . . . . .. ...
1.4.1 Tubemodels. . . . . . . . . . .

1.4.2 Computational models . . . . . .. .. ... ... .. ........

2.1.2 Variational problem statement . . . . . .. ... ... .. ... ...
2.1.3 Space and time discretization . . .. ... ... ... .. ... ...
2.1.4 Benchmark examples . . . . . . .. ... o oL
2.2 The acoustic wave equation with boundary losses . . . . ... ... .. ..
2.2.1 Variational problem statement . . . . . .. ... ... ... ... ..
2.2.2  Space and time discretization . . . . .. .. ... L.

2.3 The acoustic wave equation with a Perfectly Matched Layer (PML)
2.3.1 The Perfectly matched layer . . . . . . ... ... ... ... ....

2.3.3 Variational problem statement . . . . . .. ... ... ... ... L.
2.3.4 Space and time discretitzation . . . . . .. ... ...

3.1 Introduction . . .. .. ..

2 Finite Element Method for acoustics
2.1 The acoustic wave equation
2.1.1 Strong form . . . .
2.2.3 Numerical example
2.3.2 Strong form . . . .
2.3.5 Numerical example
3 Applying FEM to the synthesis of vowels

3.2 Some considerations on the acoustic modeling . . . . . .. ... ... ...

3.2.1 Geometry . . ...

17
17
17
18
20
22
27
27
28
29
34
34
34
36
37
39



vi CONTENTS
3.2.2 Glottal source . . . . . .. ... 46

3.2.3 LOSSeS . . ... 49

3.3 Computational model for the vocal tract . . . . ... ... ... ...... 50
3.3.1 Model description . . . . . . . ..o 50

3.3.2 Numerical scheme . . . . . . . .. ... ... 0 52

3.4 An example: synthesis of vowel /e/ . . . . .. ... oL 53
3.4.1 Synthesis . . . . . . 53

3.4.2 Analysis of theresults . . . . . ... ... ... ... ........ 57

3.4.3 Some remarks on vowel synthesis quality . . . . . .. ... ... .. 59

4 Conclusions and future work 63
4.1 Conclusions . . . . . . . . . e 63
4.2 Future work . . . . . . .. 65

A Numerical computation in 2D 69
A1 Introduction . . . . . . . . . . .. 69
A.2 The element point of view . . . . . . . .. ... ... 69
A.3 Numerical computation over a master element . . . . . . .. ... ... .. 70
A.3.1 Coordinate transformation and shape functions . . . .. ... ... 70

A.3.2 Mapping the integrals to the reference domain . . . . . . . .. . .. 73

A.3.3 Numerical Integration . . . ... ... .. ... ... ... ..... 74

A.4 Calculation of the Stiffness matrix . . . . . . . . . ... ... ... ... .. 75
A.4.1 Stiffness matrix . . . . ... 75

A.4.2 Memory efficiency . . . . . ... o 75

Bibliography 77



Chapter 1

An introduction to articulatory speech
synthesis

In this introductory chapter, a brief review of different issues and approaches related
to articulatory speech synthesis will be presented. We will begin by explaining what s
articulatory speech by means a generic block diagram. Then, in the following sections the
main blocks of this diagram will be described (geometry, glottal and acoustic). First, a
discussion of the most relevant techniques used to acquire articulatory data is given, as
well as the main models used to construct the vocal tract geometry by means of these data.
Second, some models used to emulate the behavior of the vocal cords are introduced. These
models aim to provide the input airflow of the vocal tract. Finally, the different acoustic
models for the vocal tract are presented and roughly compared. These models describe
the acoustic behavior of the waves propagating within the vocal tract through which the
synthesized speech can be obtained. This is the main goal of this work. Special attention
will be paid to computational models, which constitute the core of the proposed model.

1.1 Introduction

Articulatory speech synthesis aims at producing the speech sounds by means of modelling
the human vocal tract and the acoustic behavior of the sound waves travelling inside
it. An articulatory speech synthesis system roughly comprise [34]: i) a module for
the generation of vocal tract dynamics (control model), ii) a module for converting this
dynamics information into a continuous succession of vocal tract geometries (vocal tract
geometry model), and iii) a module for the generation of acoustic signals on the basis of
this articulatory information (glottal and vocal tract acoustic models) (see Figure 1.1).

This project mainly focuses on this last step (acoustic modelling), and specifically on the
use of finite element methods (FEM) to compute the acoustic pressure at the exit of the
vocal tract (speech). However, before going into detail in the proposed model (see chapter
3), it is interesting to make a brief overview of the main elements of an articulatory speech
synthesizer. In what follows, we will describe each block in Figure 1.1.
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Figure 1.1: Generic block diagram of an articulatory speech synhtesis system

1.2 Vocal tract geometry

If speech is to be generated from scratch, the first thing we need is a geometry that
resembles the human vocal tract, in order to lately compute its acoustic behavior. That
is, we need to know the inner boundary surface of the vocal tract cavity when a given
sound is produced. This implies knowing the shapes and positions of all vocal tract organs
such as lips, jaw, tongue, palate, nasal cavity, etc. If the sound is not steady, then the
geometry will evolve with time (e.g., when pronouncing a syllable) and this evolution will
have to be modelled to.

To build the vocal tract geometry, two issues have to be taken into account: i) how
to obtain the articulatory data and ii) how to reconstruct or approximate the vocal
tract geometry from this articulatory information. In the following subsections, a brief
description of the most relevant techniques is provided.

1.2.1 Articulatory data

For the construction of the geometry model, a database with articulatory information
(e.g. position of all vocal tract organs) is necessary. In order to build it, there are several
techniques to collect the articulatory information. The main features that should have
these techniques are a good spatial and temporal resolution, and health safety. The
spatial resolution is necessary for a clearly distinction of all articulatory organs, and the
temporal resolution for a good observation of the speech dynamics (healthy restrictions
are obvious). The most relevant techniques are the X-ray, Magnetic Resonance Imaging
(MRI), Computed Tomography (TC), ultrasounds and Electromagnetic Articulography
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(EMA). Below there is a brief review of these tools applied to speech production (see [47]).
Moreover, links to some existing databases are provided.

X-ray

X-ray was the first technique applied to articulatory speech analysis and was widely used
in the earlier years of the XX century until the appearance of new tools such as MRI
or EMA. This technique has a good temporal resolution, but a poor spatial resolution.
Moreover, it can only acquire articulatory data in the midsaggital plane. However, X-ray
can be used to acquire information of all speech organs.

Nowadays X-ray has fallen into disuse due to health safety reasons. However, some
databases developed in the 60’s and 70’s were digitalized and are now available to the
speech research community. One of them is the X-ray film database for speech research,
also known as ATR database, developed by Queen’s University and ATR Laboratories.
This database offers 25 X-ray films in the midsagittal plane (totalling 55 minutes of
footage) acquired at a rate of 50 images/s |26], with a DAT recording of the original
audio tracks (see Figure 1.2a). The subjects are 14 native speakers of Canadian English
or French, reading phonetically contrastive sentences. The X-ray film database is available
to researchers at no cost, with a limitation of one disk per institution. Only a small fee have
to be paid for the DAT recording. Some information about this database can be found
in [43] and in its webpage (http://psyc.queensu.ca/ “munhallk/05_database.htm). It
is to be noted that this database has been under-exploited due to the tedious hand tracing
needed for the analysis of such data. However, in recent articles (e.g. [26]) semi-automatic
methods for extracting tract movements from X-ray films have been developed (see Figure
1.2b). This could awake more interest for ATR database given the difficulties of finding
open access databases.

(a) (b)

Figure 1.2: (a) An X-ray image of a 38 year old male native speaker of Canadian English
producing the sentence “Why did Ken set the soggy net on top of his deck”, from the
ATR database. (b) Complete vocal tract contour from the semi-automatic method
described in [26].
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Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is the most common technique given that it is the only
technique that can provide three-dimensional (3D) data of the whole vocal tract, without
involving any known radiation risk. Moreover, in contrast to X-ray, this technique provides
a high signal-to-noise ratio and a high spatial resolution (e.g. 0.1 cm/pixel in [49]).

The MRI scan can be done in any plane: axial, coronal or sagittal. Then, using the set
of images acquired in the different slices, a reconstruction in the other planes or even in
any direction can be done. For example, in [49] a stack of 25 sagittal images with an
inter-slice space of 0.4 cm were acquired (see Figure 1.3).

)

(a) Sagittal-/i/ (b) Saittal—/a/ | (c) Transverse-/a/

Figure 1.3: Examples of MRI images for /i/ and /a/ articulations (a) and (b) and (c) of a
transverse image for /a/ reconstructed along the thick white line in (b) [49]

The main drawback of this technique, in contrast to X-ray, is the slow acquisition speed,
which implies that the subject has to sustain an articulatory position artificially (e.g. 20
seconds in [53] for each vowel, 35 seconds in [49] for each articulator), restricting the use of
MRI to static speech sounds (e.g. vowels, fricatives, etc.). However, this time resolution
restriction has been overcomed by some recent advances on MRI technology and signal
processing (at he price of decreasing the signal-to-noise ratio) leading to the so-called
real-time MRI or cine-MRI (e.g. in [44], 8-9 images/s are acquired and 20-24 images/s
are reconstructed, overcoming the limit of 20 images/s necessary for the observation of
the speech production dynamics [44]). However, these new techniques can only acquire
data in the midsaggital plane, which only allows to construct two-dimensional models.

On the one hand, it is to be noted that MRI images can only clearly distinguish between
soft tissues and air, but not bones. To compensate it, CT (Computed Tomography)
scans are frequently used to identify the bony structures (e.g. the teeth). On the other
hand, MRI also need to be complemented with other measurements with higher temporal
resolution such as EMA, ultrasounds and/or X-ray, to correctly replicate the articulatory
movements.
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Although there exist almost no public databases, many studies have been conducted with
the aim of achieving MRI data. The most representative are:

e A database of MRI vowels called MRI vowels image database developed in 1998.
Coronal and axial slices with a thickness of 3mm are provided for different vowels
corresponding to five subjects (three males and two females). (http://www.isle.
illinois.edu/mri/) (see Figure 1.4a).

e Some MRI images can be found in the 3D Vocal Tract project developed in the
Center for Speech Technology (KTH). (http://www.speech.kth.se/multimodal/
vocaltract.html) (see Figure 1.4b).

e Some cine-MRI examples (up to 25Hz) among others can be found in the Vocal Tract
Visualization Laboratory (University of Marylang, Baltimor). (http://speech.
umaryland.edu/) (see Figure 1.4c).

e Some examples of cine-MRI with sincronized audio of sentences can be found in the
Phonetics Laboratory (Faculty of Linguistics, Philology and Phonetics, University
of Ozford). (http://wuw.phon.ox.ac.uk/mri) (see Figure 1.4d).

e Several cine-MRI with sincronized audio of syllables can be found in the Speech
Production and Articulation kNoledge Group (SPAN) (University of Southern
California) (see Figure 1.4d). (http://sail.usc.edu/span/video.php) (see
Figure 1.4e).

e Some MRI images corresponding to all catalan sounds (vocals and consonants)
can be found in the Laboratori de Fonética (Universitat de Girona). (http:
//web.udg.edu/labfon/imatge.htm) (see Figure 1.4f).

CT (Computed Tomography)

Computed Tomography (CT) is another technique that can provide 3D data, but with
an existing radiation risk. In contrast to MRI, this technique can discriminate bones and
has a higher spatial resolution (e.g. 0.05 cm/pixel in CT in contrast to 0.01 cm/pixel
in MRI [49]). Due to healthy restrictions, this technique can be only applied with the
human vocal tract in a rest position. So, CT scans are used to obtain much detail and to
distinguish the bony structures, in contrast to MRI scans that are used to acquire several
articulatory positions. As for MRI, the temporal resolution is also small, but this is not
a drawback given that this technique is not used for acquiring speech dynamics.

The CT scan also can be done in anyone of the three planes (as in MRI): axial, coronal and
sagittal. Then, using the set of images acquired in the different slices, a reconstruction
in the other planes can be done. For example, in [49] a stack of 149 axial CT images
with an inter-slice space of 0.13 cm are acquired. Then the sagittal and coronal views are
reconstructed. (see Figure 1.5).
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(a) Coronal MRI /a/ (b) Cine-MRI /a/ (c) Cine-MRI /i/

(d) Cine-MRI /a/ (e) Cine-MRI /m/ (f) MRI m/

Figure 1.4: (a) Coronal MRI of /a/. (b) First frame of a Cine-MRI corresponding to the sentence
“matt”. (c) First frame of a Cine-MRI (/i/) of the diphthong /ia/. (d) First frame

(/a/) of the sentence “answer a door”. (e) First frame of the syllable “pai”. (e) Static
MRI of /m/.

(a) Axial (b) Coronal (c) Sagittal

Figure 1.5: (a) An axial CT image of a rest vocal tract and the reconstructed images in the (b)
coronal and (c) sagittal planes [49].
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Ultrasounds

Ultrasound is a technique used to collect real-time data of the tongue surface. In the
reconstructed image, the tongue surface is (more or less) visible as a white line on a black
background (see Figure 1.6a). Then, a 3D reconstruction of the tongue surface can be
done (see Figure 1.6b).

(a) Ultrasound image (b) Tongue surface

Figure 1.6: (a) /i/ midsagittal ultrasound image corresponding to the sentence “It ran a lot”, (b) a
3D reconstruction of the tongue surface during /i/, from the Vocal Tract Visualization
Laboratory

Some videos can also be found in the Vocal Tract Visualization Laboratory (University of
Marylang, Baltimore). (http://speech.umaryland.edu/).

EMA (ElectroMagnetic Articulography)

The ElecroMagnetic Articulography is a minimally invasive real-time technique for
transducing the movements of specific points of the active speech organs, as the tongue,
palate, lips, etc. A finite number of small coils are located inside the mouth and on some
points of the face (see Figure 1.7). Then, using magnetic fields, the position of each coil
can be deduced, obtaining a time evolution function of each measured point (see Figure
1.8a).

In the beginnings, this technique was only able to measure in the midsagittal plane
(2D data), but nowadays, new EMA generation allows to collect real-time 3D data,
like the Carstens AG500 (http://www.articulograph.de) (see Figure 1.7a). The main
advantage of this technique is that is real-time, portable and cheap (in contrast to X-ray,
MRI, CT, etc.). Although it cannot provide data for a full 3D reconstruction (it can only
acquire a small finite number of points), this kind of data is useful, for example, when
used for articulatory inversion (e.g. in [29,40]) or in hybrid parametric synthesis systems
(e.g. in [52]).

There are many EMA database. One of them is the MultiChanel Articulatory
(MOCHA) database (http://www.cstr.ed.ac.uk/research/projects/artic/mocha.
html), recorded at Queen Margaret University College in 1999. Its main purpose is create
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(a) EMA 3D system (b) coil positions

Figure 1.7: (a) EMA AG500 3D system, from Carstens Medizinelektronik GmbH (http://www.
articulograph.de). (b) EMA coils configuration used in [52], where T1 is the tongue
dorsum, T2 the tongue body, T3 the tongue tip, J the jaw, LL the Lowe lip and UL
the upper lip.

a phonetically balanced dataset for training an automatic speech recognition system, but
it can also be used for speech synthesis systems. This database provide 2D EMA data,
acquired with the Carstens AG100 (midsagittal plane, see Figure 1.8b for coil positions)
at a sample rate of 50Hz, acoustic speech waveform recorded a 16KHz, laryngograph
waveform at 16KHz and Electropalatography (EPG). In Figure 1.8, the interface of the
EMA database and the EMA coil configuration can be seen.

Tie: 5.56800i0c 0:03394 L 635981 R: 719925 [ 295)

(a) MOCHA interface (b) MOCHA coil positions

Figure 1.8: (a) MOCHA interface and (b) coil positions, where the magenta coils are the
articulatory points and the cyan ones are used for head correction respect to the
helmet in the EMA processing. From [46].
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1.2.2 Geometry models

Depending on how the vocal tract geometry is approximated, the corresponding models
can be classified as being geometrical, statistical or biomechanical [34]. Alternatively,
some authors play emphasis on the distinction between 2-dimensional models that only
take into account the midsagittal plane (e.g. [39,51]), and 3-dimensional models (see
e.g. [5,11,16,49]), which consider the whole geometry.

Statistical models

Statistical models (see e.g. [49,51]) obtain the vocal tract geometry from huge databases
measured using different techniques such MRI (Magnetic Resonance Imaging), CT
(Computed Tomography), X-ray or/and EMA (ElectroMagnetic Articulography) (see
Figure 1.9). Although very precise and realistic, statistical models just reproduce the
characteristics of a single speaker and become much less flexible than geometrical models.
Their advantage is that they deal with a relatively small set of uncorrelated parameters.

Geometrical models

Geometrical models (see e.g. [5,39]) rely on simulating the complex airflow in the vocal
tract linking simple geometric elements (i.e., circumferences, arcs, squares...) (see Figure
1.10). The various parameters of these elements (i.e. radius, dimensions, etc.) can be
modified to simulate the articulatory movements of the vocal tract. Geometric models are
the most flexible ones and can be adapted to mimic any speaker’s vocal tract (different
age and sex) |7].

Biomechanical models

Biomechanical models (see e.g. [11,16]) commonly make use of FEM to simulate the
dynamics of the vocal tract. Therefore physiological knowledge on the relation between
muscle activation and articulatory movements for speech synthesis is required. These
models usually involve a large number of parameters and are difficult to control. An
example of a biomechanical model developed by Artisynth staff [15] can be seen in Figure
1.11.

Additionally, some further approaches to obtain the vocal tract geometry have been
recently devised such as the audiovisual-to-articulatory inversion process (e.g. [29]), which
obtains articulatory data combining EMA measurements with face video acquisition and
speech recording.
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Figure 1.9: Statistical model developed by Serrurier [37]

(a)

Figure 1.10: Geometrical model developed by Birkholz |7], where (a) is the 3D rendering of the
geometrical model and (b) corresponds to the vocal tract parameters used by this
model.

(a) (b) (c)

Figure 1.11: Biomechanical model developed by Artisynth staff, where (a) are the jaw and
laryngeal models, (b) is the jaw model connected to the tongue model and (c)
is the airway model coupled to the tongue, palate and jaw meshes [15].
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1.3 Glottal models

Once defined the vocal tract geometry and prior to the simulation of its acoustics response,
we need to know how sound is generated in it. This is the main goal of glottal models,
which aim at simulating the behavior of the phonatory organs (vocal cords). The latter
are responsible for the characteristics of the input airflow into the vocal tract. For voiced
sounds (e.g. vowels), this air inflow corresponds to a train of pseudoperiodic pulses known
as glottal pulses. Glottal pulses are generated by vocal cords, which act on the steady
airflow coming from the lower respiratory tract (trachea, lungs, etc.). Basically, glottal
models can be divided into waveform models, self-oscillating models and computational
models.

1.3.1 Waveform and self-oscillating models
Waveform models

Waveform models approximate the velocity waveform of the airflow generated by the
phonatory organs by means of trigonometric functions. The input parameters of these
models coincide with some articulatory parameters (e.g. fundamental frequency or pitch,
amplitude, etc.). The most celebrated waveform model is that of Rosenberg [48] (e.g.
in [12]). Rosenberg’s waveform shapes (glottal pulses) can be seen in Figure 1.12.

Figure 1.12: Waveform shapes from the Rosenberg model [48]

Self-oscillating models

In the case of self-oscillating models, the vocal cords behavior is modelled by means of a
mechanical analogy (e.g., coupled mass-spring systems). The system solution gives place
to self-sustained oscillations determining the glottal aperture (aperture between the vocal
folds, aka glottis) and the glottal waveform (glottal pulses). Self-oscillating models are
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controlled by biomechanical parameters like the air pressure provided by the lugs, the
tension of the vocal cords, etc. The simplest of these models are the one-mass model [17]
(see Figure 1.13) and the two-mass model [25] (e.g. in [50]).

Figure 1.13: One-mass model scheme [§]

It is worthwhile noting that although Rosenberg and two-mass models were developed
quite a long time ago, they are still very popular because they combine simplicity with
very acceptable results (see e.g. [12]).

1.3.2 Computational models

Much research has also been placed to understand the fluid mechanics and aeroacoustics
of the vocal tract airflow, both from a theoretical analysis of the involved physics [30,32],
and from the results of simple scale models as well [31]. Analytical approaches based on
the Green’s function solution of the corresponding partial differential equations (vorticity
formulation of Lighthill’s analogy approach) have been also attempted [21,22,38|. These
approaches have the advantage of easy parameter space exploration, but are only suitable
for very simplified geometries. Further remarkable insight has been gained by resorting to
computational approaches to glottal models. For instance, in [56,57], a direct numerical
simulation of the compressible Navier-Stokes equations using a finite difference scheme
was carried out, and its results compared to those of applying an acoustic analogy (the
Ffwocs-Williams Hawkings analogy was used in this case). However, it has not been
until very recently, that a finite element method to solve the coupled equations for the
mechanics, fluid dynamics and the acoustics of a 2-dimensional glottal system has been
presented [35]. The use of FEM to address the problem seems to be the most promising
way to deal with all the complex physical phenomena involved in the generation of human
voice.
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1.4 Vocal tract acoustic models

Once having the vocal tract geometry and once implemented the glottal model to simulate
the source of sound (vocal tract inflow), we can focus on simulating the acoustics of the
vocal tract, which will finally yield the synthesized voice. Basically, two main types of
acoustic models can be distinguished: tube models and computational models.

1.4.1 Tube models

For historical reasons and thanks to their simplicity, tube models have become widely
known and used. Duct models approximate the vocal tract geometry as a finite set of
concatenative tubes, each one having constant cross section [34| (see Figure 1.14).

\.-\
Sinus cavity L ;

Nostrils
mﬂ Radiated sound pressure
Velum Jh,ﬂ WHW““
Glottal volume velocity ’_HHH H-ﬂ /
g Ve Va
S LA
“..}J“
Glottis
Mmlth opening

Figure 1.14: Schematics of a tube model for a whole vocal tract (nasal and vocal cavities are
considered) (33|

Usually, the geometry block only provides an area function: a time-varying function
that describes the constant cross section of each tube, which is computed as the area of
each section perpendicular to the midline of the vocal tract airway (see e.g. [2]). Duct
or tube models can be mainly subdivided into the ABCD matrix based models, the
Digital Waveguides models (aka KL models) and the circuit analogy models. The former
correspond to hybrid time-frequency domain models, the second to reflection type line
models, and the latter mimic transmission line circuit models [34].

ABCD matrix based models

Tube models of the ABCD matrix type (e.g. [50]) compute the acoustic transfer function
of the vocal tract as the products of individual transfer functions for each elemental tube.
To obtain them, a matrix that links the tube’s input with its output, known as the ABCD
matrix, is used. This matrix is such that

()= (2 5)(eh)=x(s) -
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where P is the pressure, U is the volume velocity, the subscripts ¢n and out refer to the
tube’s input and output, and K is the ABCD matrix with components A, B, C and D,
which are computed using classical acoustic duct theory. Then, using the ABCD matrix
K, the duct transfer function is computed. Finally, the speech signal is calculated in the
frequency domain using the vocal tract transfer function and the flow source provided
by the glottal model. In contrast to time domain models, these models do not directly
provide the acoustic pressure or the acoustic velocity within the vocal tract. Consequently,
time-frequency transformations must be used to obtain their time variations.

Waveguide models

In waveguide models, the d’Alembertian solution (backward and forward signals) of
the one-dimensional acoustic equation is used to emulate the behavior of the acoustic
wave propagation within the vocal tract. Hence, each tube is approximated as a digital
waveguide, made of bidirectional delay units to emulate the wave propagation in the
time domain. Then, on the basis of scattering equations that reflect the impedance
discontinuity at tube junctions, forward and backward travelling flow waves are computed
in each tube (see Figure 1.15). The main problem of these models is that the geometry
cannot be changed smoothly [12]|, which is essential for coarticulation processes such as
the synthesis of diphthongs (e.g. /ei/) and syllables (e.g. /na/, /sa/).

The simplest model is the Kelly-Lochbaum model [28] (aka KL model), which can only use
one-dimensional geometries. However, some complex models have been developed in order
to achieve synthesised speech with more complex geometries (e.g. [42| for 2-dimensional
geometries).

...............................

O A0 0 N A O fi )
g | L " '
b;(t) bi(t +7);  biga () bi+1(t+ 1)
+«— ' |« + \.IJ= ; 77 |le——
Scattering junction

Figure 1.15: KL schematics of two concatenated tubes with different section, where r is the
reflection coefficient of the scattering junction, 7 is the delay introduced by the
delay line, and f and b denote the forward and backward signals respectively.
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Circuit analogy models

In tube models based on circuit analogies (see e.g. [6,49]), the volume velocity and pressure
waves are respectively interpreted as intensity and voltage signals [6], and the acoustic
properties of each tube are modelled by an electrical circuit analogy, obtaining a two-port
network representation for each tube (see Figure 1.16a). Then, the whole vocal tract can
be represented by a chain of these two-port networks (see Figure 1.16b).

_’?_f;. ,—P}? R L; L, R Paranasal
— S N [ sinus B
Nasal
Rw i cavity
R - _
«  CTIEDEE IT
%/—/

Subglottal  Glottis Pharynx Mouth
system cavity cavity

(a) (b)

Figure 1.16: (a) Two-port circuit network equivalent to one tube section. L; is the inertance
of the mass of air in the tube section i, C; represents its compressibility, and R;
accounts for energy lost to viscous friction at the tube walls. The Ry, ; — Ly ;i — Cu.
circuit models the elasticity of the vocal tract walls. The optional elements ;, p;
and Ry constitute a volume velocity source, a pressure source and a resistance for
the kinetic pressure drop at the main constriction [6]. (b) Circuit model for the
entire vocal tract system. Each gray box represents a two-port network [6].

These models compute the speech signal in the time domain, but they need to do a
lot of approximations in the electric analogy process [34| (this is the case for instance,
of the electrical analogue for the propagation of frequency-dependent waves into free
space, which is necessary to account for the propagation of speech emanating from
the mouth). In contrast to waveguide models, circuit models can assume time-varying
geometry lengths [34].

1.4.2 Computational models

The use of computational models for the acoustics of the vocal tract offers again wider
possibilities than the presented models. Complex geometries can be implemented in full
detail, coarticulation can be included, and the aeroacoustics involved in the generation of
many sounds can be taken into account.

Simple 1-dimensional models that require low computational cost have been already
applied to the synthesis of diphthongs [12]. These were based on the solution of the
flow momentum equations using a finite volume approach to perform a space-time
discretization. However, the use of 1-dimensional models requires many artifacts to
correctly reproduce the physics of speech synthesis. Although finite difference schemes
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have been commonly used at an initial stage, the appropriate numerical method to address
the whole complexity of the vocal tract acoustics clearly seems to be the finite element
method (FEM), applied to 2 and 3-dimensional geometries. Given that the application
of FEM to speech synthesis is rather new, there is still much work to be done. For the
moment, efforts seem to have been focused on frequency domain methods that perform
a modal analysis of the vocal tract using the Helmholtz equation (see Figure 1.17). This
is used to compute the frequency response function of the latter, which can be combined
with a glottal model to obtain a source-filter type model for speech synthesis [27]. Hence,
it should be noted that frequency domain models can not directly synthesize speech.

FREQUENCY 5300 [HzI
Sound Pressure [dB]

= 1.12e+02
=1.12e+02
= 1.06e+02
< 1.00e+02
< 9.3%e+01
< 8.78e+01
= 8.17e+01
< 7.568+01
< 6.95e+01
< 6.340+01
< 5.72e+01
< 5.11e+01
= 4.50e+01

Max = 1.18e+02
Min = 3.28a+01

Figure 1.17: An example of the pressure distribution for vowel /a/ at 5300 Hz computed through
the Helmholtz equation [41].

On the other hand, frequency domain models cannot deal with the most natural aspects
of speech production such as coarticulation of sounds and time variations of the glottal
inflow (pitch, intensity) [4]. Only steady states can be considered. Consequently, if the
above aspects are to be considered, it will be necessary to work in the time domain. This
is the aim of this project. Some steps in this direction has been recently done. In [53]
3-dimensional models using finite element methods have been developed in time domain
and static vowels are synthesized solving the classical acoustic equation. However, as for
as we know, no dynamic computational models have been developed.

It is the main goal of this project to use FEM to directly compute the time dependent
acoustic pressure at the output of the vocal tract (synthesized speech).



Chapter 2

Finite Element Method for acoustics

In this chapter, we will describe some fundamentals on finite element methods (FEM) that
will be later needed for the synthesis of vowels. First, we will show how to solve the acoustic
wave equation using FEM. Second, we will deal with losses in the domain boundaries due
to friction and heat conduction of the acoustic waves. Finally, a non reflection condition
will be addressed, which will allow to consider propagation of sound waves towards infinity.
A perfectly matched layer (PML) will be used for this purpose. For each involved equation
the corresponding weak form will be solved. These will be discretized in space (FEM) and
time (finite differences), resulting in an explicit scheme. Finally, these numerical schemes
will be tested using benchmark problems such as wave propagation in a membrane or in a
tube.

2.1 The acoustic wave equation

2.1.1 Strong form

As first step, we will need to compute the sound wave propagation in a given open or closed
domain. We will consider sound waves being solution of the hyperbolic wave equation

(0% — V) pla,t) = G f (1), nQ, £>0 (2.1)

where ¢q stands for the sound speed, p(x,t) is the sound pressure, f(z,t) is the external
force and 0, = 0/0;. To solve (2.1) both initial and boundary conditions are required.
Let 02 denote the boundary of the domain €. The boundary 9€) can be split into two
boundary regions I'p and I'y such that 02 = I'n UT'y (see Figure 2.1), with I'p and T'y
respectively standing for the Dirichlet and Neumann boundaries.

The Dirichlet and Neumann boundary conditions are defined as

p(x,t) =gp(xz,t) onlp, t>0, (2.2)
Vp(z,t) -n=gnx(x,t) only, t>0.

17
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Figure 2.1: Boundaries I'p (blue) and I'y (red) of a domain 2

The first is used to impose pressure conditions on the boundary and the later to impose the
pressure gradient, which corresponds to velocity fluctuations. For simplicity, we consider
that gp (z,t) and gy (x,t) are constant in their boundaries. So, the boundary conditions
that we will consider are

p(x,t) =gp(t) onTp, t >0, (2.4)
Vp(z,t)-n=gx(t) onDy, t>0. (2.5)

On the other hand, for simplicity we will consider the following initial conditions

p(z,0) =0, in Q, (2.6)
Op(x,0) =0, in Q. (2.7)

2.1.2 Variational problem statement
Functional framework

Prior to establish the weak or variational form of the problem, it is necessary to introduce
the functional framework that will be used through this work. As usual L?(Q) will stand
for square integrable functions,

[2(Q) = {f:Q—>§R \/Q|f\2dQ<oo} (2.8)

L*() is a Barach space with norm

= ( |u<a:>|2da:)é (29)



2. Finite Element Method for acoustics 19

and also a Hilbert space with the inner product of two functions f,g € L*(2) being given
by

(f,9) = /Q fgds2. (2.10)

The L? norm can then be written as |ul/,» = (w,w)2. On the other hand, if f, g are
functions such that the product fg is integrable, we will denote by < -, - > the integral

<f.qg >::/Q fg dQ. (2.11)

In the particular case of f,g € L? < -,- > becomes the inner product (-,-). Next, let us
introduce the Sobolev spaces H' and H]

HY Q) :={f| fand 0;f € L*Q)}, (2.12)
Hy(Q):={feH ()| f=0inTp}, (2.13)

i.e. H! is a space of functions whose elements and elements first derivatives are both
square integrable, and H} C H' contains the functions in H' that also vanish on the
boundary I'p. Its associated inner product is

(1, )1 = %(u, v)+ (Va, Vo), (2.14)

1
where L is a characteristic length. The H' norm is given by ||u|/;;; = (u,u)%,. Finally,

to take into account the time evolution of the pressure, use will be made of the space

T
/ IfI2 dt < oo}, (2.15)

L2(0,T; X(Q)) == {f :(0,T) = X(Q)

where X (£2) can be any of the above spatial functional spaces.

Pressure and trial space of functions
Once defined the general functional framework, we can identify the space of functions P
for the pressure and the space Q for the test function such that

P = LZ(OaT; Hl(Q))’ (2'16)
Q = Hy(Q). (2.17)

These space of functions will be needed for the weak formulation of the acoustic wave
equation.
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Variational form
Taking into account the above functional framework, the variational or weak problem
consists in finding p € P such that

( 8tp) +c3(Vq,Vp) —ca < q,9n >rn=Co < q, f >, Vg€ Q. (2.18)

(2.18) is found as follows. Multiply the wave equation (2.1) by the test function ¢ € Q
and integrate it on €2 to get

/qaftp dQ—CS/qVQP dQ:cS/qfdQ. (2.19)
Q Q Q

Then, integrating (2.19) by parts and applying the divergence theorem it follows
/ OLp dQ— co/ q Vp-i er—cg/ q Vp-n dFN+/ VqVpdQ = cg/ q f dQ. (2.20)
I'p I'n Q 0

Given that ¢ € Hj, inserting boundary condition (2.5) and using definitions (2.10) and
(2.11), yields

(q,05p) + ¢ (Vq, VD) — ¢t < ¢, gn >ry=c3 < ¢, f > . (2.21)

2.1.3 Space and time discretization

Spatial discretitzation: Galerkin approximation

Being P, C P and Q) C Q finite subspaces, the spatial discretitzed scheme consists in
finding p;, € P, such that

(an Opn) + ¢ (Van, Von) — ¢ < qny gnn >re= ¢ < @, frn >, Yan € Oy (2.22)

where gy, and f, are discretizations of gx and f respectively. If we expand p, € P, and
qn € Qp as

ZN” VP (x, 1), (2.23)

= ZN“ x)Q%(x), (2.24)



2. Finite Element Method for acoustics 21

where N(x) are the shape functions and P? and Q® are the nodal values, and introduce
the above equations (2.23—2.24) into (2.22) we get

Z Z Q" (N, N*) P* = —c2 Z ZQ“ (VN VN*) Pt

¢+ ZQ“ < N% gxn >ry +cOZQ“ < N f >, (2.25)

(the double dot denotes second order time derivative). Expressing (2.25) in matrix form
Q'MP=c¢Q'L-3Q'KP, (2.26)

where T denotes the transpose of a vector and P and @ are vectors of nodal values
P=[P"]=(P' P*...PY)", (2.27)
Q=1Q7=(Q @@, (2.28)

being N the total number of nodes in the mesh. Cancelling Q' in (2.25) yields the final
algebraic system

MP =L - KPP, (2.29)
where M is the mass matrix, K is the stiffness matrix and L the load vector. The
corresponding entries are (see appendix A for its numerical computation)

M = [M*], M®=(N" N, (2.30)
K = [K"], K®= (VN VN’), (2.31)
L= [La], L =< Na,gN,h >y + < N, fn>. (232)

Time discretization: Finite differences

Next, a time discretization is carried out. We use a second order finite difference scheme
to approximate the second time derivative

PnJrl —2pP" + Pnfl

. ;
p= e +O(AR), (2.33)

where the superindex n denotes the time step, and ©(A¢#?) is the error introduced by
the scheme, which is proportional to At?. Introducing the second order finite difference
scheme (2.33) into the matrix Garlekin expression (2.29), we get the following explicit
scheme for the evolution of the nodal acoustic pressure:

P = 2A1 MY (L — KP") +2P" — P! (2.34)
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2.1.4 Benchmark examples

In this section we will apply the scheme 2.34 to solve some benchmark examples.

Square membrane

This example consists of a squared membrane of 1m? fixed by the edges with a inner
circle where some oscillations are introduced. This system could represent, for example,
a loudspeaker being a squared membrane.

Figure 2.2: Domain € with inner (I'py, colour red) and outer (I'pa, colour blue) boundaries.

So, we have a 1m? squared domain ) with a circle of radius lem in its center. Boundaries
I'p1 and I'py correspond the internal and external boundaries respectively (see Figure
2.2). Because the membrane has fixed edges, the displacement on I'py will be zero. On
the other hand, oscillations are introduced at the inner boundary, which correspond time
dependent Dirichlet condition. Hence,

p(x,t) = gp(t) onIpy, t >0, (2.35)
p(x,t) =0 on Ipy, t>0. (2.36)

In this example, the following smooth function [18] is used for gp

golt) = & (e, (2.37)
dt

where Fj is the frequency of the pulse. In Figure 2.3 the above pulse with F, = 1000Hz
(the used frequency in this example) can be observed. This pulse bas one positive peak
followed by a negative one, and finally tends to zero. This type of pulses are often used to
test numerical schemes (e.g. [18]), because they resemble a punctual force. However, they
key point of this pulse is that it is very smooth (i.e. it contains no abrupt transitions).
This ensures that no high frequency energy is introduced in the numerical scheme, which
could cause numerical instabilities and numerical errors in case the mesh not being tine
enough to capture this information.
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Figure 2.3: Representation of the pulse (2.37) with frequency F = 1000Hz.

Once the problem statement has been defined, we will proceed to construct the
computational domain  and to mesh it (see Figure 2.4). The geometry has been
divided in different surfaces to ensure a good transitioning mesh. A non-uniform mesh
of triangular elements have been built with element sizes h=0.015m for surfaces and
h=0.003m for the inner boundary (over lines). Finally, we have got a mesh with 7310
nodes and 14332 elements.

(a) (b)

Figure 2.4: Geometry (a) and mesh (b) obtained for the membrane example.

Because our final goal is to be able to perform speech synthesis, we use as sound speed ¢
the velocity of sound waves in the air at a temperature of 24°C (¢ = 345m/s). On the other
hand, given that we use an explicit scheme, we have to use a sampling frequency fs (the
sampling frequency is the inverse of the time step At) such that the stability condition
is satisfied. Stability is guaranteed wherever the link between At and the element size h
given by the Courant-Friedrich-Levy (CFL) number [1]

At

CFL = ¢ (2.38)
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fulfills CFL < 1. If CFL > 1 the numerical scheme becomes unstable. However, it
has to be noted that a CFL < 1 does not fully ensures stability. In this example
we take f; = 200KHz. Using h = 0.003m and ¢ = 345m/s, the CFL number will be
CFL = 0.575 < 1. We have tested in a long simulation (1 second) that the numerical
solution under the above description becomes stable in time. It has to be noted, that
given that the used time step is so small (At = 1/200KHz), 1 second of simulation
implies 200000 time steps, which means that a simulation of 1s is a long simulation.

(a) t=0.75ms (b) t=1.25ms (c) t=2ms
(d) t=2.5ms (e) t=3ms (f) t=3.5ms
(g) t=4.5ms (h) t=>5ms (i) t=10.25ms

Figure 2.5: Snapshots of the numerical solution of the membrane at different time instants.

Once explained the framework and configuration of the example, in Figure 2.5 some
results corresponding to the first milliseconds can be seen. In the first frame (a), we can
observe the initial spherical wave front generated by the boundary ['ps. By this instant,
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the positive peak of the smooth function (2.37) has been generated. In the next frame (b),
the negative peak appears in the domain. Then, in (c¢) the whole pulse has been generated
by I'no and the wave front is near the boundary I'p;, where it will reflect. In the frames
(c)-(h) we can see how the wave front reflects on the domain edges and interact with the
other reflected waves, causing constructive and destructive interferences. Finally, given
that the used formulation does include any dissipation mechanism, these interactions in
(h) do not vanish with time.

Tube

As seen in chapter 1, the human vocal tract can be modeled as a finite number of
concatenated tubes. So, we have considered that the acoustic behavior of a tube could be
an interesting benchmark problem. In this example, we study the acoustic behavior of a
tube closed by its extremes and excited in one end by means of a piston. The dimensions
of this tube are 0.5m x 0.1m. We have considered a rectangular domain €2 with boundaries
I'ni and I'yo, where I'yo corresponds to the rigid walls of the tube and I'y; to the piston
wall (see Figure 2.6).

Figure 2.6: Domain  corresponding to a tube with rigid walls (I'n2, colour blue) and a piston
in its beginning (I'ng, colour red).

Once again, like in the previous example, we have used the smooth pulse (2.37), but in
this case with a frequency Fy = 2000Hz and inverted (i.e. multiplied by —1). Moreover
we take ¢ = 345 m/s and f; = 200K H z.

Figure 2.7: Geometry (a) and mesh (b) obtained for the tube example.
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(a) t=0.5ms

(b) t=1ms

(c) t=1.5ms

(d) t=2ms

(e) t=2.5ms

(f) t=3ms

(g) t=10ms

Figure 2.8: Snapshots of the acoustic pressure at the tube for different time instants.
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We have also generated a non structured mesh of triangular elements with A7=0.005m in
surfaces (no specification is done over lines). The final geometry and mesh can be seen in
Figure 2.7.

Some numerical results for different time steps can be seen in Figure 2.8. In the first
frame (a), a plane wave front is generated at boundary I'y;. This plane wave front is
done due to Huygens phenomena. Then, this plane wave travels through the tube (b)-(c)
and arrives to the end (d), where it reflects and return to the beginning (e)-(f). Once
again, given that there are no losses, this wave front will go back and forward without
deformations (g).

2.2 The acoustic wave equation with boundary losses

2.2.1 Variational problem statement

It will be interesting for our purposes to consider the acoustic wave equation with
boundary losses due to viscous frictions and heat conduction. We will directly address
them in the weak form of the problem. With respect to the weak formulation of the
acoustic wave equation, we only have to add [53]

1co(q, Oup)ry (2.39)

to the left hand side of the acoustic wave equation in weak form (2.18), where

(¢, 0p)ry = / q Op dl'w. (2.40)
I'w

q is the test function, u stands for the coefficient of the boundary admittance and 'y is

the lossy boundary. The boundary coefficient x can be computed as [53|
r
= — 2.41
h= (2.41)

where pg stands for air density and r corresponds to the real component of the boundary
impedance (resistance term). The term (2.39) corresponds to the representation in the
weak formulation of the boundary condition

Op = pcy, on Iy. (2.42)
So, the variational or weak problem consists in finding p € P such that
(¢, 95p) + 5 (Vq,Vp) = ¢§ < ¢, 95 >y +1c0(q: 0p)ry = 5 < ¢, f >, Vg€ Q, (2.43)

where P and Q are the same space of functions that in the acoustic wave equation (see
section 2.1).
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2.2.2 Space and time discretization
Spatial discretitzation: Galerkin approximation

Being P, C P and Q;, C Q finite subspaces, the spatial discretitzed scheme consists in
finding p;, € Py, such that

(an, Ozpn) + ¢ (Van, Vion) — ¢ < @n, gnn >rx +160(ans Oipn)ry = ¢ < an, fr >, (2.44)

Van € Qn, where gnp and fj are discretizations of gy and f respectively. If we expand
pr € Py and g, € Qy in terms of shape functions N(z) and insert them into (2.44) we get

>N @ (N NY) PP+ ey (N, N)p, + 6 > Q (VN VNY) Pb =
a b

a b
+) Q< N gun >y +65 Y Q< N, fy >, (2.45)

where P® and Q® are the nodal values. Expressing (2.45) in matrix form and canceling
the test function vector Q' gives the final algebraic system

MP + ucyBP + KP = ¢L, (2.46)

where M is the mass matrix, B is the damping matrix, K is the stiffness matrix and L
the load vector. The corresponding entries are

M = [Mab]7 Mab — (Na,Nb) ’ (
_ ab ab __ a b
B =[B"|, B —(N,N)FW, (
K =[K®], K® = (VN" VN'), (
L=[L], L*=<N"gnn>ry + <N fr>. (

Time discretization: Finite differences

Using second order finite differences for the time discretization,

Pn+1 —2pP" Pnfl PnJrl - Pnfl
M B

INE + g KP" =i L™ (2.51)

Grouping some terms we get

M  pucyB 2M M pucyB _
— Pl ()P — = — Pl L — K P". (252
(At2 oA ) (At2) (At2 2At ) e 0 (2.52)
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Defining the matrices

(M ucB
C = <At2 YN ) , (2.53)
2M
(M ucB
Cs = (At2 2AL ) ’ (2:55)

we finally arrive at the following explicit scheme for the evolution of the nodal acoustic
pressure:

Pn+1 _ Cl_l (CQP“ . Can_l + CSL” _ CSKP”) . (256)

2.2.3 Numerical example
Tube with wall losses

As a example we reconsider the same tube used in the second benchmark problem for
the acoustic wave equation (section 2.1), but including losses in the walls. We also use
¢ = 345m/s, f, = 200K Hz and the same mesh. However, in this case we study its
behavior using two different pulses: a transient pulse and a stationary signal.

Let us first first consider the case of transient signals. To do so we use the smooth pulse
(2.37) with Fy = 2000Hz. We use it to test the model for different boundary admittance
coefficients: p = 0.005, 0.001, 0.0005. Some time instants of the numerical solution for
= 0.001 can be seen in Figure 2.9. In contrast to the solution obtained for the lossless
example (see Figure 2.8), it can be seen how the pulse is attenuated at each time step.

Point number  x (m) y (m)

1 1.1 1.05
2 1.2 1.05
3 1.3 1.05
4 1.4 1.05

Table 2.1: Coordinates of four points in the tube (it has to be noted that the lower corner of the
tube is at (z,y) = (1,1)). These points are used to capture the time. In Figure 2.10
there is a representation of these points in the tube.

In order to better observe the attenuation effect, we have captured the time evolution of
the solution at four points (see Figure 2.10). Their location is given in Table 2.1.
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(a) t=1.25ms

(b) t=4.15ms

(c) t=7.05ms

(d) t=9.95ms

(e) t=12.85ms

() t=15.75ms

(g) t=18.65ms

Figure 2.9: Snapshots of the tube acoustic pressure with wall losses and p = 0.001 for different
time values.
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Figure 2.10: Location of the four points in the tube used to capture the time evolution of the
different solutions. Their coordinates are provided in Table 2.1.
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Figure 2.11: Time evolution of the solution of the tube in the transient case with p = 0.005 (a),
0.01 (b) and 0.005 (c) for 4 points (see Table 2.1 or Figure 2.10 for their location).

First of all, we will describe the wave propagation in the graphic of Figure 2.11. We
can observe some wave packets formed by four pulses (one for each point). Each packet
corresponds to the front wave passing trough the points. The direction of this front wave
can be seen according to when the peaks captured in each point appear. For example,
when the front wave comes from the left side, we will see that the peak arrives first at point
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1, second at point 2, then at point 3 and finally at point 4. However, when the wave front
comes from the right side, we will observe the opposite effect (4 — 3 — 2 — 1). Once
analyzed the meaning of this graphic, it can be observed that the higher the boundary
admittance coefficient p the higher the speed at which the signal is attenuated (i.e. the
higher the boundary admittance coefficient the higher the losses). For example, with
p = 0.005, with only five reflections at the ends of the tube (six packets) there remains
no signal in the tube, while for x = 0.01 and p = 0.005 the wave signal still has not lost
the half of the initial amplitude.

Next we study the case of stationary signals generating a sinusoidal signal of fundamental
frequency Fy = 2070Hz, which corresponds to the 6th resonance mode of the tube without
losses. The goal of this benchmark is to observe the tube behavior for stationary signals
in a resonance mode. In a lossless model with constant energy input, the solution will
grow to infinity because there is no energy dissipation. Furthermore, given that we are
close to a resonance mode it will grow up faster. However, in a model with losses we could
expect that the solution converges to a certain value. In Figure 2.12 the time evolution
of point 1 (see Table 2.1 or Figure 2.10 for its location) is plotted for different p. It can
be observed how for all tested p the different solutions converges to a value. On the other
hand, for the tested cases, the higher the losses the lower the converge value. This is
a normal behavior, because the higher the losses the lower the remaining signal, which
is directly related to the observed “offset”. We refer to remaining signal as that signal
that corresponds to a previous time step and still have an important amplitude. We have
seen in Figure 2.11 that the higher the losses the higher the speed at which the signal is
attenuated. If we introduce energy constant in time, the remaining signal will never be
zero. This signal will be proportional to the speed at which the waves are attenuated, i.e.
to the losses. So, the higher the losses the lower the convergence value.
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Figure 2.12: Time evolution of point 1 (see Table 2.1 or Figure 2.10 for its location) corresponding
to the the solution of the tube with losses excited with a stationary signal and using
different boundary coefficients (u).
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Another interesting effect can be seen in Figure 2.13. When attenuation is introduced in
the walls, the pressure level close to the walls decays because viscous friction and heat
conduction. This causes that plane wave front to curve. For example, with x = 0.01 (a)
(we have added to see this phenomena easier), this effect is high, but as the losses decrease,
this effect is reduced. In fact, the last observable case is p = 0.005 (b). With p = 0.001
(c) and p = 0.0005 (d) this phenomena can not be observed. On the other hand, it has
to be noted some asymmetries on the solution of (a) and (b). This is done because we
are using a non structured mesh that cause not uniform losses on the boundaries.

(a) p=0.01
(b) u=0.005
(c) p=10.001
(d) © = 0.0005

Figure 2.13: Snapshots of the numerical solution of the tube with wall losses with different u in
the transient case at t=32ms.
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2.3 The acoustic wave equation with a Perfectly
Matched Layer (PML)

2.3.1 The Perfectly matched layer

Finally, we will also need to consider radiation of sound waves towards infinity. The
main problem is that the computational domain must be finite, so it will be necessary to
truncate it. To emulate outward waves to infinity, a radiation boundary condition has to
be introduced to avoid reflections of the acoustic waves at the domain boundary. In the
continuous, it takes the Summerfield boundary condition

Vp(x,t) - n=1/co Op on 'y (2.57)

where ' is the non reflection boundary condition. However, (2.57) is not optimal [10]. In
this work it will be replaced by a Perfectly Matched Layer (PML). A PML is an artificial
region where incident sound waves are absorbed. The key property is that incident waves
coming from a non PML region do not reflect at the PML interface. Then, these waves
are attenuated in the PML region (see Figure 2.14). However, in practice some residual
signal remains. Therefore, an important aspect when designing a PML region is that it
provides enough absorption for this residual to be negligible.

Figure 2.14: Truncation of a domain using a Perfectly Matched Layer (PML). The PML region
corresponds to the shaded area. In this example, an incident wave p; reaches the

PML interface and becomes absorbed inside it p,. No reflection p, takes place at
the PML interface.

2.3.2 Strong form

Let us introduce the formulation of the acoustic wave equation with a perfectly matched
layer (PML) in the two-dimensional case 18]

Oup — gV p=cf + V- — (&1 + &)0p — Ei&op, (2.58)
dip =T1¢ + ;T2 Vp, (2.59)
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where ¢; are the damping profiles, ¢ is an auxiliary vector of the form ¢ = [¢,, ¢,] T, and
I'; and I's are matrices of the form

I‘lz(_o61 _052>, I‘Qz(&gfl 51852). (2.60)

Let us define the continuous functions a(x) = & (z) + &(y), Blx) = &(x) &(y) and
v(x) = &(y) — & (x). In components, the above expressions (2.58) and (2.59) can be
written as

8ttp - CSVQP = Cgf + 8x¢x + ay¢y - (fl + fZ)atp - 6162]7, (261)
Oipe = —E1600 + V0D, (2.62)
Oy = =&y — cgvayp. (2.63)

The damping profiles &; can be constant, linear, or quadratic among others. Following
Grote and Sim [18], we use

0 for |z;| < a;, i=1,2,
A7) — R o sin [ Zrlzizail 264
fz(ﬂfz) fz (xl a;| ( L, )) for a; < |x2‘ < a; +Lia i = 1727 ( 6 )

L; 2

being éz a constant to control the damping effect, a; the i-th coordinate of the PML layer
and L; the thickness of the PML region in the i-th direction. Because &;(x) is twice
continuously differentiable throughout the interface at |z;| = a;, no special transmission
conditions are needed there [18].

Figure 2.15: Damping profile {(z) in the PML region for different values ofé (in the graphic is
&o). The length of the PML region is L = 0.5m and ¢ = 345m/s.

The constant 52 depends on the discretization and thickness of the layer and can be

computed as 18]
2 c 1
& = Elog (§> ; (2.65)
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where R is the relative reflection of the boundary of the PML, which usually is truncated
using a Dirichlet or Neumann condition. A good value for R could be R = 10~*, which
for a ¢ = 345m/s corresponds to £ = 2760 (see Figure 2.15).

On the other hand, we consider the following boundary and initial conditions

p(x,t) =gp(t) onlp, t >0, (2.66)
Vp(x,t)-n=gn(t) only, t>0, (2.67)
p=0, inQ, t=0, (2.68)

Op=0, nQ, t=0. (2.69)

2.3.3 Variational problem statement
Space of functions

The space of functions P, Q, U and V for the pressure, pressure test function, auxiliary
function and auxiliary test function respectively are

P =L*0,T; H(Q)), (2.70)
Q = Hy (), (2.71)
U=L*0,T; H(Q)), (2.72)
= H) (). (2.73)

See section 2.1 for the definition of the above space of functions.

Variational form

Defining a(z) = &i(x) + &(x), B(z) = &i(x)s(z) and y(x) = L(x) — Si(x), the
variational form of the problem consist in find p € P and ¢ € U such that

( 8tp) + CO(VQ7 VP) = 6(2) < g, 9N >FN +C(2) < Qaf >

+ (4, 0:02) + (¢, 0y0y) — (q,20,p) — (q, Bp), (2.74)
(Uxa at¢x> - (Uxa §1¢x) + CO (UOE? 781}3) (275)
(Uw at¢y) = —(vs, 2¢y) - CO(Uy,Vayp), (2.76)

Vg € Q, Vv, € V and Vv, € V.
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2.3.4 Space and time discretitzation

Spatial discretization: Garlekin approximation

Being P, Qpn, U, and V), a finite subspaces of P, Q, U and V respectively (P, C P,
Qn C Q, U, CU and V), C V), the spatial discretitzed scheme of the problem consist in
finding p, € Py, and ¢, € U, such that

(qn, 3t2,gph) + cé(th, Vo) = +Cg < Gh, 9N,h >Ty +Cg < qn, frn >

+ (qn, Obap) + (an, Oydy.n) — (n, nOipn) — (qn, Brpn), (2.77)
(Ve Own) = —E1n(Vans Pun) + oV, YhO2DH), (2.78)
(Vy.hs Orbyn) = —Ean(Vyns Byn) — Co(Vyhy YROuPR), (2.79)

Vay € O, Y, € Vy, and Vv, 5, € V. Using the shape functions N(x); ps, qn, ¢p and vy,
can be written as

ZN” )P (x, ), (2.80)

= ZNa(w)Q“(w% (2.81)
on(x,t) = [Z N() @b (x,t), Y  N(a) @ (y, t)] , (2.82)

_ [Z N @)V (), 3 N (@) Ve(w)

Using the above expression and inserting into the scheme, the final algebraic system is

(2.83)

MP + KP =L+ B,®, + B,®, - M,P — M;P, (2.84)
and the algebraic system for the auxiliary functions

M®, = —M:®, + B, P, (2.85)
M(I)y - _M&(I)y - OBZ/WP7

where M is the mass matrix, M, and Mp are the mass matrices with the spacial functions
a(x) and f(x), K is the stiffness matrix, L the load vector, B, and B, are the damping
matrices in the x and y directions, and B, , and B, are the damping matrices with the
spacial function a(x). The entries of these matrices and vectors are
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M = [M™], M* = (N N”) (2.87)

M, = [M®), M® =< N° a,N° > (2.88)

Mp = [M§"], Mg’ =< N° BN’ > (2.89)

K =[K"”], K= (VN VN”) (2.90)

L =[L", L=< N%gxn>ry +ca < N fi >, (2.91)
B, = [B*], B®™ = (N“ 0,N"), (2.92)

B, =B, B = (N“0,N"), (2.93)

B,,=[BY], B = (N 0N, (2.94)

B, = [BZ,bW], BZ,b«, = (Na77habe)~ (2.95)

Time discretization: Finite differences

Using second order finite difference schemes for the time discretization

Pn+1 —opn + Pnfl 5 "
M AP +cgKP" =
Pn+1 _ Pn—l
+cL" + B,®" + B,®" — M, — MsP". (2.96)
Y 2At
Grouping some terms
M M, 2M
4 2 )Pt === + My | P"
(Aﬁ * 2At) (At2 * 5)
M M n— 1 2rn mn n n
_(At2_2At)P +cL" — GKP"+ B,®} + B,®. (2.97)
We define the auxiliary matrix C, Cy and Cj5 such that
M M,
C, == 4+=2 2.
! (At2 2At) ’ (2.98)
2M
C, = ( N Mg) (2.99)
M M
Ci=|-—--—""). 2.100
’ (Aﬁ 2At) (2.100)
With the above definitions, we get the following explicit scheme
P =C' (CyP" — CsP" ' + GjL" — K P" + B, ® + B,®)) . (2.101)

Note that if we are not in the PML region, & 3,

& p, ®, and @, are zero and the above

scheme reduces to the explicit scheme for the acoustic wave equation. On the other hand,
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the explicit schemes for the auxiliary functions ®, and ®, are

@;L—l—l _ (I);z—l . 2AtM—1 (Mfl (I);z . C?)Bx,'ypn) (2102)
@+t = "l - OAIM ! (M, ®" + 2B, P") (2.103)

2.3.5 Numerical example
Infinite membrane

In this example we use the same squared membrane that in the example of section 2.1,
but surrounded by a perfectly matched layer of thickness L=0.5m (see Figure 2.16) to
emulate free space propagation. So we get an infinite membrane.

Figure 2.16: Membrane of the example of section 2.1 surrounded by a perfectly matched layer
(PML) of thick L=0.5. The boundaries I'p; and I'ps are marked in red and blue
respectively.

N

(a) (b)

Figure 2.17: Obtained Geometry (a) and mesh (b) for the infinite membrane example.

The smooth pulse (2.37) with F, = 1000Hz is also used as an excitation signal in the
contour I'p;. We take the same wave propagation (¢ = 345m/s) and sampling frequency
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(fs = 200KHz). The adopted meshing criteria is also A = 0.015m over surfaces and
h = 0.003m over the inner boundary I'p;. We have obtained a mesh of 17560 nodes and
34700 elements (see Figure 2.17 for the obtained geometry and mesh). However, in this
case the boundary I'ps corresponds to the outer boundary of the PML region, where we
have imposed an homogeneous Dirichlet condition (p = 0). On the other hand, we take
the damping factor éz = 2760 being the same scale factor for x and y. This factor implies
a relative reflection coefficient R of 107* (see (2.65)).

The obtained numerical results can be seen in Figure 2.18. In (a) and (b) the wave front
is generated by the contour I'p; and advances towards the PML interface. In (c¢) the wave
front has just entered the PML region, where it will be absorbed. This effect can be seen
in the frames (d)-(h), until it reaches (i), where there is no appreciable signal.

To be able to properly evaluate the quality of the perfectly matched layer, we have
captured the time evolution for four membrane points. Their coordinate values and
locations on the membrane are given in Table 2.2 and Figure 2.19a respectively. It has to
be noted that the lower left corner of the PML is in (x,y) = (0.5, 0.5)m.

Point number x (m) y (m)
1 1.53122  1.49994
2 2 1.49254
3 2.25053 1.5
4 2.45862 1.5

Table 2.2: Coordinates of four analysis points in the infinite membrane. These points are used
to capture the time evolution signal in some locations of interest: in the domain of
interest, in the PML interface and in the PML region (see Figure 2.19a.)

It can be seen in Figure 2.19b that point 1 has the higher value given that it is the nearest
point to the source. Just in the PML interface there is point 2, whose signal will be taken
as a reference to evaluate the PML efficiency. It has to be noted that this signal is lower
in amplitude with respect to point 1 because geometrical divergence effect. Time delay
of signal 2 respect to signal 1 is because sound propagation. Once the wave front has
gone inside the perfectly matched layer, it is captured by point 3, which is located in the
middle of the PML. Finally, close to the end of the PML, there is point 4. It can be seen
how the front wave arrives at point 4 with a small signal, close to zero. With the aim
to evaluate the PML efficiency, we have computed the difference between the maximum
value of signal 2 with respect the maximum value of signal 4. This difference is about
15dB, which in acoustics means that this signal can be omitted. Note that this front wave
still has to reflect in the boundary I'yo and return to the domain of interest, in which
path it will be even more attenuated. Finally, after the front wave arrives at point 4,
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(a) t=0.75ms (b) t=1.25ms (c) t=2ms
(d) t=2.5ms (e) t=3ms (f) t=3.5ms
(g) t=4ms (h) t=4.5ms (i) t=6ms

Figure 2.18: Snapshots of the numerical solution of the infinite membrane example for different
time instants.
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no more peaks can be observed. So, it can be said that no significant reflections appear
in the measurement. On the other hand, this effect can also be observed in the residual

(a) (b)

Figure 2.19: Time evolution of four points (b) located according to Table 2.2 for the infinite
membrane example. The representation of the localization of these points in the
domain can be seen in (a).

signal of the numerical simulation at time instants higher than 5ms (when the whole wave
front has leaved the domain of interest). For example, in Figure 2.20, we have plotted the
residual signal at time t=6ms. Its amplitude is about 3 order of magnitude less than the
signal of interest. This also means that these reflections can be neglected.

Figure 2.20: Residual signal for the infinite membrane example at time t=6ms.



Chapter 3

Applying FEM to the synthesis of
vowels

In this chapter the finite element method will be applied to the synthesis of vowels problem.
First, we will put in context the synthesis problem by means the particularization of the
generic block diagram used in chapter 1 to introduce the articulatory speech synthesis.
Second, some important remarks concerning the acoustic modelling will be provided
(geometry, glottal source and losses). Next, the main features that should have the acoustic
wave equation within the vocal tract will be discussed. Then, the obtained numerical
scheme will be provided. Finally, as an example, we will synthesize the catalan vowel /e/.
Its transfer function will be calculated, from which an objective study of the intelligibility
will be done. Some remarks on vowel quality will also be done.

3.1 Introduction

In chapter 1 we have introduced the concept of articulatory speech synthesis by means of
a generic block diagram (see Figure 1.1). In this chapter, we will use the same generic
block diagram, particularizing it to the synthesis of vowels (see Figure 3.1).

Special attention has to be paid to the vocal tract acoustic block, which is at the core of
this work. This block has become a computational model based on finite element methods
(FEM). This block, using as inputs the airflow provided by the glottal model and the
vocal tract geometry, will simulate the time envolving pressure distribution within the
vocal tract by solving the underlying physics equations using FEM. It is subdivided into
three blocks: the pre-processing block where the computational domain becomes meshed
and the boundary conditions imposed (e.g., inflow from the glottal model, Sommerfield
free space radiation at the outlet of the computational domain, rigid or elastic conditions
for the vocal tract walls, etc.); then, in the second block the FEM code is used to solve
the acoustic and flow dynamics equations using FEM. In the post-processing block, the
time dependent acoustic pressure at the outlet of the lips is converted to an audio file.

43
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Figure 3.1: Block diagram for the proposed articulatory speech synthesis system

Prior to describing the core of the model, in the following section some important remarks
on the acoustic modelling will be done.

3.2 Some considerations on the acoustic modeling

To construct the acoustic model, it is necessary to study all aspects involved in speech
production, as well as the physical phenomena that occur. In this section some important
considerations to be taken into account will be described as well as the assumptions we
will make. The most relevant key points are the geometry, the glottal source and the
losses, described below.

3.2.1 Geometry

One of the most important issues in the acoustic modeling process is the geometry, which
is, in the current case, the human vocal tract. The geometry used can be one, two
or three dimensional. Depending on the geometry accuracy, a higher speech quality
will be obtained. In fact, the higher the dimension, the better the spectrum accuracy,
which means better speech quality. However, in the case of synthesis of vowels, the
geometry dimensionality hardly affects the low frequency range (below 3KHz) of the
speech spectrum [53|. This assures a good intelligibility but not a good quality. So, it is
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therefore desirable to use geometries of higher dimensions, i.e. two or three dimensions.

On the other hand, the numerical method to use depends, among other factors, on the
complexity of the geometry. For example, in the one-dimensional case, a finite difference
method is widely used (e.g. in [12], [1]). Moreover, in the two or three dimensional cases,
due to the complexity of the geometry, the above method can not be used. In these cases,
the most widely used numerical method seems to be the finite element method (e.g. [53]).

Another important aspect is the geometrical model to use (see chapter 1 for a review).
Given that we aim at synthesize high quality vowels, we will require the geometry to be
accurate and realistic as possible. The geometry model that satisfy these requirements
is the statistical model, which needs a huge database of articulatory data. In our case,
we will use a statistical model corresponding of a collection of static magnetic resonance
images. These images correspond to the midsagittal plane of the vocal tract and they
were captured from a male native catalan speaker producing five catalan vowels (/a/,/e/,
/i/, /o/ and /u/). In Figure 3.2 there are some examples of the MRI collection. Then,
the geometry has been obtained by hand tracing the inner boundary of the vocal tract.

(d) /o/

Figure 3.2: MRI images used to synthesize the vowels /a/, /e/, /i/, /o/ and /u/.

So, we will use a statistical model that will provide two-dimensional geometries to the
vocal tract acoustic model. Given the complexity of these geometries, will use as numerical
method the finite element method.
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3.2.2 Glottal source

Although the glottal model is usually an independent block of an articulatory synthesizer,
it need to be coupled into the vocal tract acoustic model. Generally, glottal models are
coupled to the vocal tract acoustic models by imposing the glottal output airflow (glottal
pulses) as the input airflow of the vocal tract, e.g. the Rosenberg model [48]. However,
some more complex models require some additional data in order to estimate the glottal
pulses. For example, the two-mass models require the cross-sectional area of the input of
the vocal tract [50].

In our case, we first considered using the C Rosenberg model [48] as a glottal model. This
model stands out for its simplicity and its proper behavior for the synthesis of vowels.
This model parametrizes the waveform of the volumetric glottal velocity u,(t) as

t
%[1—cos<7rT—p>] 0<t<t,
ug(t) = 4 qcos <§t_Tfp) ty <t<t,+t, > (3.1)
0 t, +t, <t <1y

where a is the amplitude, ¢, is the positive slope, ¢,, the negative slope and 7 the period
of the glottal pulses (i.e. the inverse of the fundamental frequency Fj or pitch) (see Figure
3.3). The times ¢, and ¢,, are related to the pitch as

t, = 40% To, (3.2)
t, = 16% T. (3.3)

In figure 3.3 we show one pulse generated by the C Rosenberg model, using a =
4-107*m?/s? and a pitch of Fy = 100 Hz.

(a) ug(t) (b) d/dt ug(t)
Figure 3.3: Rosenberg model of the C type, where u4 (a) is the volumetric velocity of the glottal

pulse and d/dt ug4 its time derivative.

However, this pulse contains high frequency information because it has abrupt transitions
(i.e. it is not smooth). In numerical schemes, high frequency information can pollute the
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solution because they can not be captured by the mesh (the size of the elements can not
be tine enough to capture it). This may result in errors and instabilities of the solution.

Given the above drawbacks, we though about using the LF model [14]. This models
also describe the flow variations of the glottal source, but it does so acting on its time
derivative. This is an important feature because imposing the time derivative of the
glottal flow is the most natural way to couple the glottal model with the vocal tract
acoustic model (we will see it in (3.10)). However, the most important advantage is that
this model describes a smooth pulse, closer to reality. So, no excessive high frequency are
expected to be introduced into the numerical scheme.

In a LF model, the time derivative of the volumetric velocity w,(t) is

d 0 Eye*sin(wyt) 0<t<t (3.4)
—uy(t) = ’ '
dt 9 _% (6—6(t—te) _ 6—e(To—te)) te < T,

where T} is the inverse of the fundamental frequency or pitch Fy. Prior to define the wave

parameters £y, a, wy and ¢, it is necessary to introduce some dimensionless quantities

_ ta : _te_tp’ RQZE,
TO - te tp 2tp

R, (3.5)

where the definitions for ¢, t,, t, and T can be seen in Figure 3.4b. The angular frequency
wy is related to the fundamental frequency Fy by w, = 27 FyR,. On the other hand, E.
is the minimum value of the time derivative of the glottal pulse (see Figure 3.4). For a
male voice, E, = 0.4m3s™2 R, = 1.12 and Rj = 0.34 |54]. The time t,, for small values
of € can be computed as

(3.6)

where U, is the mean flow volume rate in the glottis, which in a male is U, = 0.121/s [54].
So, using (3.6) we can compute the time ¢, = 0.3ms. On the other hand, imposing that
the time derivative of the glottal pulse (3.4) at time ¢, must be zero and imposing its
continuity at time t¢., we get the following non linear equations

Eoe*rsin(wyt,) = 0,
Epe*sin(w,t,) = E.,

E.
=F,.

e __—e(To—te)
o (1 e o )

(3.9)

Solving the non-linear system of equations (3.7—3.9), the parameters F., a and € can be
determined.

We will use the LF model as the glottal model. However, it would have been interesting to
use a mechanical model, because they work with physical parameters closer to the process
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(a) ug(?) (b) d/dt ug(t)

Figure 3.4: LF model, where (a) is the volume velocity of the glottal source and (b) is its time
derivative. In (b) the four wave shape parameters t,, t., t, and E. that uniquely
determine the pulse can also be seen.

of phonation, such as the tension of the vocal cords, the air injected by the lungs, etc.
With such parameters, it is easier to synthesize natural voice, because they are better
defined than the shape of the glottal pulses.

On the other hand, given that the unknown of the equation is the acoustic pressure, it is
necessary to express the velocity fluctuations of the glottal pulses as a pressure condition.
This step can be done using the Newton equation

ou

Vb =—pan

(3.10)
where p is the air density. Thanks to the LF model, we do not need to discretize the
temporal term of (3.10) because we directly know its time derivative. However, we have
to keep in mind that the LF model provides a volumetric velocity and the Newton equation
requires a punctual velocity. The conversion can be easily done if we know the area where
the source have to be imposed.

Finally, this glottal source will be introduced into the acoustic model using the following
Neumann boundary condition

Ouy

—p>, on Lg, (3.11)

Vp =g(t) =
where I'g is the Neumann boundary. Expressing (3.11) in its time discrete form we obtain

n
ou v

V' -n=q"=—p—2
b -n=g p@t

on I'g, (3.12)

where the superscript n denotes the time step n. So, the glottal model will have to provide
to the vocal tract acoustic model the glottal source g™ at each time step.
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3.2.3 Losses

The modeling of losses is an important issue for achieving good quality in the synthesized
speech. These losses mainly contribute to the bandwidth of the formants, specially for
middle and high frequencies, and in less extent, to their location. The most significant
are the radiation loss, the wall losses and the losses introduces by the vibration of the
walls.

Radiation loss

The radiation loss refers to the energy dissipated when the sound field generated inside
the vocal tract leaves the mouth, spreading towards free space. This is the most important
loss effect in the speech production process [3]. Many artifacts have been devised to model
this phenomena. The most commonly used is the approximation of the mouth as a circular
piston in an infinite baffle, from which the value of a load impedance can be obtained
([25]). Then, the domain is truncated at the mouth, using the load impedance to emulate
the acoustic radiation into free space. The main drawback is that this impedance is
frequency dependent, which cause several difficulties for time domain methods. However,
some approximations to the load impedance can be made (e.g. in [3]), but decreasing the
quality of the radiation losses.

In our case, we will not use any approximation. We will calculate the acoustic field without
truncating the domain at the mouth. That is it will consider a domain with the vocal
tract and the free space. However, the domain must be finite, it will be necessary truncate
the free space domain. To simulate this behavior we will use the perfectly matched layer
(PML) approach, previously introduced in chapter 2.

Wall losses: viscous friction and heat conduction

The wall losses are losses due to the propagation of the acoustic waves close to the vocal
tract walls. The most important are due to viscous friction an the heat conduction.
Compared to other losses, heat conduction can generally be neglected [3]. Moreover,
compared to radiation loss, viscous friction losses contribute the second to the bandwidth
of formants. So, it is desirable to model this loss in the vocal tract. In general, when wall
losses are considered, we refer to soft walls, whereas if they are not considered, we refer to
hard walls [53|. In Figure 3.5 we show the vocal tract transfer function corresponding to
a Japanase /a/. Hard and soft walls are considered, but not radiation losses. The nasal
cavity is also included in the study. Vocal tract functions have been computed using 3D
finite element methods in frequency domain [36]. It can be seen how sharp peaks vanish
and formant bandwidth increase because of wall losses.

In one-dimensional cases, some modification to the conservation of momentum equation
can be done to include viscous friction effects (e.g. [3,12]). However, for higher dimensions
(2D or 3D), these losses are introduced as boundary conditions (e.g. [53]).
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Figure 3.5: Vocal tract transfer functions of a male producing Japanese /a/, considering nasal
coupling and hard (a) and soft (b) walls [36].

In our acoustic model we will take them into account, i.e. we consider soft walls.
Because we are using two-dimensional geometries, we will consider the following Neumann
condition

%p(t) = ucop on Iy, (3.13)

where 'y is the vocal tract boundary.

‘Wall vibration losses

A usual assumption in the acoustic modelling process is to consider that the vocal tract
walls are rigid (e.g. in [58]|). However, a non rigid model of the vocal tract (yielding
walls) can also be used. This introduces some losses to the model. One technique is
simulate this vibration by means of mechanical models (e.g. in [12]). This simulate the
wall vibration using mechanical analogies, which depend on different physical properties
such as the elasticity, the pressure within the vocal tract, the cross-sectional area, etc.

In our case, we will consider rigid walls for simplicity.

3.3 Computational model for the vocal tract

3.3.1 Model description

In the previous section, we have seen some of the most important considerations that have
to be taken into account in the acoustic modelling process. In the computational model
framework, we have finally decided the following aspects:

a) Geometry model: A statistical geometry model providing 2D static geometries.

b) Glottal source: a FL model generating glottal pulses.
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c) Radiation Loss: a Perfectly matched layer (PML) for taking into account free space
propagation.

d) Wall loss: wall losses due to viscous friction and heat conduction.

e) Wall vibration losses: a rigid model of the vocal tract (so no wall vibration losses
are introduced).

First, we have seen that given that we want to synthesize high quality vowels, we need
a geometry with all possible details. So, the appropriate geometry model to use is of
the statistical type. It has to provide 2D geometries to the vocal tract acoustic model.
Thanks to their simplicity with complex geometries, we have decided to use the finite
element method (FEM). Second, as a glottal source, we use a FL model. We have seen
that this model directly provides the time derivative of the volume velocity of the glottal
pulses, which simplifies the coupling between the glottal and vocal tract acoustic models.
Moreover the generated pulse is smooth, which ensures that no exceed high frequency
energy is introduced in the numerical scheme. Finally, as we make synthesis in the time
domain (in time domain we can get better quality than in frequency domain [4]), we have
to use the acoustic wave equation. We have addressed this issue in section 2.1. However,
if we want to deal with losses, we will also have to consider the wall losses and radiation
losses. The former have been addressed in section 2.2 and the latter in section 2.3 by
means of a Perfectly Matched Layer (PML).

(a) (b)

Figure 3.6: Boundary conditions (BC) for the acoustic wave equation within the vocal tract,
where 'y, 'y, 'c and 'y are the Wall, Head, Glottal and Infinity boundaries
respectively. The shaded area in (a) denotes the PML region. In (b) can be seen in
detail the head region.

With regards to the boundary conditions, we suppose a soft vocal tract wall (I'y) and a
hard head, i.e. the gradient of the pressure is zero on the boundary I'y. On the other
hand, we introduce the variable airflow g(¢) produced by the glottal model by means of an
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inhomogeneous Neumann condition (I'g). Finally, we truncate the PML domain by means
of an homogeneous Neumann condition (see Figure 3.6). So, the boundary conditions are

ot
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where ¢y stands for the sound speed and p stands for the coefficient of the boundary
admittance (see section 2.2). On the other hand, for simplicity we take the following
initial conditions

p(z,0) =0, in Q, (3.18)
Op(x,0) =0, in Q. (3.19)

3.3.2 Numerical scheme

Next, we will directly present the final explicit scheme for the wave equation within the
vocal tract. This problem has been addressed in the different sections of chapter 2. The
final explicit scheme for the vector of nodal pressures P reduces to use the explicit scheme
for the PML approach (see section 2.3)

Pl = [ (CP" — Gy Pt AL — EKP" + B,®" + B,®"),  (3.20)

but redefining the auxiliary matrices C, Cy and C3 as

M M, B
01=< + o ) (3.21)

At? - 2At 2At

2M
(M M, pcB
Cs= <At2 C2At 2At ) ' (3.23)

Note that the boundary losses terms (see section 2.2) have been added to the original
definition of C; (2.98), Cy (2.99) and Cj (2.100). On the other hand, no changes are
introduced to the explicit schemes for the auxiliary functions ®, and ®,, (see section 2.3),
which yields

@I =@ —2AtM ' (Mg, @) — B, ,P") (3.24)
@I = @0 —2AtM ! (Mg, ®} + i B, P") (3.25)



3. Applying FEM to the synthesis of vowels 53

Considering that we have no external forces, the above matrices and vectors can be
computed as

BI,’Y = [B;?VL B;f)'y = (Na/‘)/habe )
By,’Y = [B;,b'y]’ BZ,lzy = (Na’ Vhabe)’

M = [M™], M* = (N* N"), (3.26)

M, = [M®], M® =< N° o, N* >, (3.27)
Mg = [M"], Mg =< N° BN’ >, (3.28)
K = [K"], K®= (VN VN’), (3.29)
L" = [L™*], L™ =< N%g" >rg, (3.30)
B =[B"], B"=(N"N"). . (3.31)

B, = [B"], By =(N®d,N"), (3.32)

B, =[BY"], B = (N 0,N"), (3.33)
(3.34)

(3.35)

where N stands for the shape function, g™ is the glottal source at time step n and the
discrete functions ay, £, and v, are functions that control the behavior of the perfectly
matched layer (see section 2.3).

3.4 An example: synthesis of vowel /e/

3.4.1 Synthesis

In this section, we will present an example of the running of the articulatory synthesizer.
We will synthesize the Catalan vowel /e/. First, the geometry is constructed and then
meshed (see Figure 3.7). The former has been done by hand tracing the inner boundaries
of the vocal tract. Then, an artificial head has been included. Finally, we have surrounded
the domain by a PML region of thick L = 0.5m. The computational mesh has been
assigned a non structured mesh of triangle elements with size of h=0.003m over the vocal
tract surface and a h=0.02m to the rest of surfaces. To get a smooth transition between
the two surface zones, we have imposed a h=0.003m over the head boundary. With the
above specifications, we have obtained a mesh of 9997 nodes and 19276 elements.

We have used a wave speed ¢ = 345m/s and a sampling frequency f, = 200KHz (i.e the
time step At = 1/200KHz). The PML has been configured to have a reflection coefficient
R = 107%, which with the above ¢ and f, we have got a damping coefficient £ = 2760. On
the other hand, we consider a wall loss coefficient p = 0.0005.

As a first step, we have tested the model behavior using a broadband frequency pulse [54].
This pulse has energy until 10KHz, which ensures a good coherence below this range (see
Figure 3.8). This pulse has been introduced on the boundary I'g (glottal cords). Then,
the transfer function between the broadband pulse and the acoustic pressure at the lips
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(c) (d)

Figure 3.7: Geometry (a) and mesh (b) for the /e/ example. In (c) and (d) the head region is
shown in detail.

(a) (b)

Figure 3.8: Broadband frequency pulse used to test the FE model. (a) is the time signal and (b)
its spectrum.
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has been computed (see Figure 3.9b). In order to obtain the acoustic pressure at the
lips, we have chosen and arbitrary point close to the output of the vocal tract (see Figure
3.9a).

(a) (b)

Figure 3.9: (a) Location of the point used to capture the speech signal. (b) Transfer function for
vowel /e/.

Second, we have synthesized the vowel /e/ using the glottal pulse provided by the LF
model (see subsection 3.2.2). In this example, we have configured this glottal pulse with
a fundamental frequency or pitch Fy = 100Hz and a duration time ¢, = 1ms. In figure
3.10 you can see the acoustic pressure obtained at the libs and its spectrum. Its envelope
has also been calculated and overprinted using a LPC analysis. In order to do the LPC
analysis, the time signal has been downsampled to f; = 40KHz. Then, 50 coefficients has
been used to estimate the signal.

(a) (b)

Figure 3.10: Acoustic pressure (a) of /e/ and its spectrum and envelope (b). The time signal
corresponds to the first 100 milliseconds of vowel /e/. The spectrum has been
computed in a stable region of the signal and then its envelope has been obtained
using a LPC analysis.
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Finally, some snapshots for the /e/ vowel acoustic pressure can be observed in Figure
3.11. Note that we have adjusted their amplitude for a clear visualization of the sound
waves coming from the mouth. So, sometimes the acoustic pressure in the vocal tract can
not be observed because its amplitude is too high.

(a) t=16ms (b) t=16.5ms (c) t=17ms
(d) t=17.5ms (e) t=18ms (f) t=18.5ms
(g) t=19ms (h) t=19.5ms (i) t=20ms

Figure 3.11: Snapshots of the /e/ acoustic pressure for different time instants.
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3.4.2 Analysis of the results

In order to verify the behavior of the FE model, we have compared the obtained frequency
formants with other formants of real voice. We have used some results of a frequency
analysis study of Catalan vowels done by Recasens et al. [45]. Recasens et al. had studied
the variations on vowel formants for four catalan dialects: majorcan, valencian, western
catalan and eastern catalan. On the other hand, given that in this work we have focused
on the FE modelling, we have only evaluated it measuring the location of the first two
formants, which could tell us objectively which vowel has been generated.

We have computed the transfer function of the FE model for /e/ using different wall
loss coefficients (u) (see Figure 3.12). Then, the location of the first two formants has

(a) (b)

Figure 3.12: Transfer functions of vowel /e/ for different wall loss coefficients (u). In (b) there
is an example of over-damped transfer function.

been calculated (see Table 3.1). Their bandwidths have also been computed for a better
understanding of the effects of wall losses. It can be seen how the bigger the losses the
higher the formant bandwidth. No significant variations on the formant location can be
observed, except when wall losses are too large, in which case the formants practically
vanish (see Figure 3.12b). So, this seems that wall losses hardly affect to the location of
fist two formants. On the other hand, if we compare the obtained formant values with
any of the real voice formants, we can see small variations (50Hz) in the location of the
first formant and bigger variations (150Hz) for the second.

On the other hand, if we plot the formant location in a vowel chard (F1 vs F2), we can
see that the obtained results are not so far from /e/ (see Figure 3.13). Moreover, doing an
informal perceptual test, the vowel /e/ has been detected. The problem on the formant
location could be caused by the use of a rough geometry, by some problems on the FE
modelling, by problems on the source coupling, etc. These points will be studied it in
detail in future works.
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F1/BW1 (Hz) F2/BW2 (Hz) F3/BW3 (Hz)

40 397/21 1692 /142 2426 /380
1=0.00005 397/24 1692/148 2426/388
1=0.0005 397/58 1698/203 2427/486
Majorcan /e/ 489/ - 1905/ - 2656/ -
Valencian /e/ 460/ - 1837/ - 2575/ -
Western /e/ 448/ - 1854/ - 2552/ -
Eastern /e/ 450/ - 1839/ - 2571/ -

Table 3.1: Formant location (Fi) and bandwidth (BWi) of the first three formants (i=1,2,3)
corresponding to the 2D vocal tract when /e/ is synthesized. Different wall losses

have been considered. The formant values of /e/ for four catalan dialects have been
also provided [45]

Figure 3.13: Vowel triangle for the four dialects presented in [45]. The synthetized /e/ is plotted
as a blue cross.
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3.4.3 Some remarks on vowel synthesis quality

In the above subsection we have studied the location of the first two formants. However,
the quality of the synthesized speech not only depends on the formant location but also
on their bandwidth and energy. Moreover the whole spectrum has to be analyzed.

We have also seen that the higher the wall losses the lower the formant bandwidth and
energy. So, tunning the wall losses seems to be a necessary tool to adjust the formant
bandwidth, and therefore to improve the quality of synthesized vowel.

On the other hand, the vowel quality not only depends on the acoustic vocal tract model
but also on the glottal and geometry model. To illustrate it, we present some examples
changing the geometry and the glottal source.

First, we want to observe spectrum changes due to geometry changes. To build the
geometry, we have transformed the /e/ geometry of a 1D synthesizer into 2D. We have
supposed a 2D tube model such that its radius is

r(z) =+/S(x)/x, (3.36)

where S(z) is the cross sectional area of the 1D tube used in [1,12]. The geometry and
mesh used can be seen in Figure 3.14. We also use the same domain and parameter
configuration than in the real vocal tract example (PML region, speed wave, sampling
frequency, mesh criteria, etc.). Then, we have computed the transfer function of the
tube example using the above methodology, but in this case, for simplicity, we have
not considered wall losses. The obtained transfer function can be seen in Figure 3.15
overprinted with the transfer function of the 2D vocal tract (“Tube” vs “2D” in Figure
3.15). The formant values are given in Table 3.2. We can see how the location of the
first two formants are the same in both examples. This seems to indicate that different
geometries corresponding to the same vowel do not change the location of the first two
formants. On the other hand, it seems that the 2D vocal better reproduce the higher
frequency range (above 3KHz) because some formants not shown in tube becomes clearly
visible. All these effects may be studied in detailed in future works.

Vowel F1 (Hz) F2(Hz) F3 (Hz)
e/ tube 429 1706 2635
/e/ 2D 307 1692 2426

Table 3.2: Formant location of the 2D vocal tract vs tube when /e/ is synthesized. No wall losses
have been considered.

Second, we have computed the acoustic pressure at the libs for the 2D vocal tract using
different glottal sources. We have used the same configuration described in the synthesis
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() (d)

Figure 3.14: Obtained geometry (a) and mesh (b) for the /e/ tube example. The head region
can be seen in detail in (c) and (d).

Figure 3.15: Transfer function of the tube and the 2D vocal tract.
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example for vowel /e/ (see subsection 3.4.1). Then, we have calculated its spectrum and
applied a LPC analysis with 50 coefficients to obtain its envelope. We have done it with
the LF model with ¢, = 3ms, ¢, = 1ms and the Rosenberg model (see subsection 3.2.2).
The results are shown in Figure 3.16. We can see that for different glottal sources we
get different spectra. The location of the first two formants do not change, but their
bandwidth and energy do. Moreover, the spectrum above the second formant changes.
So, different glottal sources will result in different vowel quality.

Figure 3.16: Envelope of vowel /e/ using different glottal sources: LF model with ¢, = 3ms and
t, = lms and Rosenberg model (see subsection 3.2.2).






Chapter 4

Conclusions and future work

4.1 Conclusions

In this work, we have proposed to develop a computational strategy based on the use of
finite element methods for articulatory speech synthesis. We have dealt with the problem
of synthesis of vowels and as an example, we have synthesized the catalan vowel /e/.

First, a brief review related to articulatory speech synthesis has been provided. We have
discussed about geometry, glottal and vocal tract acoustic models, being the latter at the
core of this work. Basically, two main types of vocal tract models can be distinguished:

e Tube models

The duct or tube models can be subdivided into the ABCD matrix based models,
the Digital Waveguides models and the circuit analogy models. These models
approximate the vocal tract geometry as a finite set of concatenative tubes, each
one having constant cross section, and need to do a lot of approximations in the
acoustic modelling process.

e Computational models

We have computational models, which offer wider possibilities than the above duct
models. Complex geometries can be implemented in full detail, coarticulation can
be included, and the aeroacoustics involved in the generation of many sounds can
be taken into account. We basically can distinguish between frequency and time
domain models. The former perform a modal analysis through which a frequency
response is obtained. Then, this is introduced in a source-filter type model for speech
synthesis. In contrast to frequency domain models, time domain models compute
directly the acoustic pressure at the output of the vocal tract. Moreover, we have
also seen that frequency domain methods need to work in steady state regime. So,
they can not deal with the most natural aspects of speech production such as pitch
or amplitude variations of the glottal source, coarticulation of sounds, etc. The
above aspects can only be considered in time domain methods.

63
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Consequently we have chosen a computational model due to its versatility with complex
geometries and its wide possibilities in the acoustic modelling. Moreover we have decided
to work in the time domain because we aim at synthesizing natural speech. To address
this problem we have chosen the finite element method.

On the one hand, among the existing geometrical models (statistical, geometrical or
biomechanical), we have decided to use a statistical model because they are more precise
and realistic than the others. On the other hand, as a glottal model we have used a
parametric model because its simplicity and its proper behavior for vowel synthesis. Two
models have been hardly compared: the C Rosenberg model and the LF model. The
former is the simplest but introduces excessive high frequency content, which could cause
numerical errors. However, the latter is more complex but better models the waveform of
the glottal source, ensuring that no excess of high frequency is introduced.

Second, given the complexity of the speech problem, we have considered simpler
approaches, following a bottom-up strategy. These problems have been solved using
the finite element method for the spatial discretization and finite differences for the time
discretization, obtaining an explicit scheme. Then, these schemes have been validated by
means of benchmark problems. The considered approaches have been the following:

e The acoustic wave equation

As a first step, we have computed the sound wave propagation in a closed domain
by solving the hyperbolic wave equation.

e The acoustic wave equation with boundary losses

Next, losses due to viscous friction and heat conduction of the acoustic waves at the
boundaries have been introduced into the acoustic wave equation. We have used an
approach that assumes a constant frequency absorption.

e The acoustic wave equation with a Perfectly Matched Layer (PML)

Finally, a non-reflection condition has been considered to simulate propagation of
sound waves towards infinity. A Perfectly Matched Layer (PML) has been used for
this purpose.

Third, once solved the numerical difficulties of finite element methods for acoustics, we
have applied them to the problem of the synthesis of vowels. We have seen some important
features that have to be considered in the acoustic modelling. We have implemented
radiation losses (PML), wall losses (boundary losses) and a rigid model of the vocal tract.

As an example, we have synthesized the catalan vowel /e/. Then, we have evaluated
its quality using objective measurements. We have computed its transfer function using
a broadband pulse. These pulses are often used in transient analysis. Thanks to this
kind of pulses, we have obtained an accurate transfer function for the vocal tract. Some
important conclusions have been obtained:
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4.2

Location of the first two formants

We have measured the location of the first two formants for /e/ which have been
compared with the formant location of different catalan dialects. The obtained
results have not been so good as we initially expected. However, when plotted it into
a vowel graph (F1 vs F2) the results were not far from a real /e/. We have also tested
another geometry of an /e/ corresponding to a 1D tube synthesizer, transforming
its geometry to two dimensions. We have seen than the first two formants have also
coincided with the obtained results in the real vocal tract. These problems could be
caused by a rough geometry, by some problems on the FE modelling, by problems
on the source coupling, etc. These points will be solved in future works.

Other aspects in vowel quality

We have given some key points to adjust the vowel spectrum and therefore to
improve higher synthesied vowel quality. We have seen that the higher the losses
at the boundaries the higher the bandwidth and the lower the energy formant.
Moreover, geometries variations for a given vowel hardly affect the location of the
first two formants. However, their energy and bandwidth change and the others
formants also do. On the other hand, from the comparison of the tube example
with the real vocal tract, it can be observed that the real vocal tract yields better
results for the high frequency range (above 3KHz).

Future work

Let us next focus on possible research lines.

First, some improvements regarding the computational modelling of the vocal tract could
be done. The most important are:

Boundary losses

The boundary losses are a kind of boundary condition that is difficult to impose
in time domain models because it has a frequency dependent behavior. In this
work we have used the same value of boundary impedance for all frequencies. More
complex approaches have already done do deal with this problem [13]|. Studying
these techniques could be interesting.

Truncation of the PML

To reduce the computational cost, we could try to limit the extend of the
computational domain. For example, it could be interesting to only consider a
semi-infinite computational domain in the forward direction of the sound waves (i.e.
backward waves are not computed because they are absorbed by the PML). With
this approach the number of elements of the PML could be half reduced. However,
some simulations have been done and numerical instabilities appear in the corners
with truncated PML. This could be worth analysing.
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Next, the quality of the synthesized speech could be evaluated objectively and
subjectively:

e Objective measurements

Objective measurements generally need an acoustical reference, which is not always
a simple task [1,12]. Typical objective measurements are the formant location and
their bandwidth and energy. The whole spectrum should have to be analyzed using
the above measurements,

e Subjective measurements

Subjective evaluations could be done, such as MOS (Mean Opinion Score) or PSEQ
(Perceptual Evaluation of Speech Quality) [9], are often used to evaluate the overall
quality of the synthetic speech.

By means of the vowel quality analysis, the articulatory model could be tuned to achieve
the highest possible quality. As a first step, given a glottal source and a geometry, the
internal parameters of the vocal tract acoustic model would have to be adjusted. This
strategy could be as follows [1]:

e Generate transfer functions and synthesized speech for several configurations of the
vocal tract acoustic model

We have seen that the transfer function depends among other factors on the losses.
So, we could calculate the transfer function for different values of the losses,
obtaining a set of candidates to be the best configuration. The corresponding
synthesized vowel would also be computed.

e Voice quality analysis using objective measurements

As a second stage, the above set of transfer functions would have to be analyzed using
objective measurements such as location, bandwidth and energy of the formants.
Then, these results would have to be compared with a reference model analyzed
under the same conditions. At this stage, a first estimation of the proper parameters
may be obtained. All results that are far from this estimation may be discarded.

e Voice quality analysis using subjective measurements

Third, with the preselected configurations in the above stage, subjective
measurements would be carry out. Formal perceptual tests would be performed
with the corresponding synthesized vowels, from which a set of candidates may be
obtained.

e Choose the configuration that satisfies both measurements

Finally, the best configuration would be the intersection between the objective and
subjective candidates.
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Once the vocal tract model had been adjusted, we could additionally carry out a study
of the vowel quality for different glottal sources and geometries. This process could be
similar to the realized above for the internal parameters of the vocal tract model.

Finally, once the vowel problem had been solved, we could increase the complexity of the
problem and proceed to the synthesis of other sounds. The proper steps could be

e Synthesis of diphthongs

First, we could deal with the synthesis of diphthongs (e.g. /ai/, /ei/, etc.). In
contrast to static vowels, the coarticulation of vowels will require a time-varying
geometry. This implies in turn the use of an ALE (Arbitrary Lagrangian-Eulerian)
formulation (see e.g., [20], [24], and [55] for recent advances) for the involved
equations, to be solved within the FEM framework. Moreover, the complexity of
the geometry model will also increase, now being dynamic.

e Synthesis of syllables

Second, we would address the synthesis of syllables (e.g. /na/, /sa/, etc.). In
this process nasal consonants would be generated (e.g. /n/), which requires a
more complex geometry given that the nasal cavity has to be included. Syllables
containing fricatives consonants (e.g. /sa/) would pose more challenging problems as
we would need to consider aeroacoustic effects. An acoustic analogy approach (e.g.,
Lighthill’s acoustic analogy, [19]) would be followed involving a first Computational
Fluid Dynamic (CFD) simulation of the airflow in the vocal tract, from which an
acoustic source term could be extracted. Then, the modified wave equation with
the source term from the CFD acting as an inhomogeneous term could be solved,
to obtain the acoustic pressure at the exit of the vocal tract. All involved equations
would be solved again using FEM in an ALE formulation.

For the above processes, the speech quality of the synthesized speech shold be also
evaluated.






Appendix A

Numerical computation in 2D

In this appendiz we show some basic concepts and tools that are used to compute the
integrals that appear in the finite element formulation. We focus on the 2D problem and
we use as example the computation of the stiffness matrix. Prior to describe it, we present
the element point of view which allows us to perform integrals over and element and then
over a master element, where standard numerical integration techniques can be applied.

A.1 Introduction

One of the most common matrices that appear in the 2D problem is the stiffness matrix
K with entries

Kab = / VNa . VNb dx dy, (Al)
Q

where N, and N, stand for the shape functions. In this appendix we describe some
numerical approaches used to compute K.

A.2 The element point of view

Up to this point, we have worked with the global point of view, where the properties
of the finite element problem has been imposed. This point of view consider the whole
domain. However, in order to compute the integrals that appear in the finite element
formulation, another point of view that focuses on each element is necessary. This is the
so called element or local point of view [23] (see Figure A.1).

By means of the element point of view, an integral over a domain €2 can be computed as
the sum of the individual integrals over each element. So, we can use the decomposition

/QfdQ = i/ﬂ fdS2e, (A.2)
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Figure A.1: A 2D triangle mesh: global and local point of view. The global point of view
corresponds to the whole domain while the local point can be understood as one
triangle. Note also the nodal numeration used in each case.

where Ne is the number of elements of the mesh and €2, is the element domain. In the
2D problem, the above expression is

/QfdQ = i/ﬂ fdz dy, (A.3)

where x and y are the local or element coordinates in the element domain €.

A.3 Numerical computation over a master element

In this section we describe how to perform the integration of the shape function and its
first derivatives, i.e.

/Q N¢(z,y) dx dy, (A.4)

VN¢(z,y) dz dy, (A.5)

Qe

which appear in the construction of the stiffness and mass matrix.

A.3.1 Coordinate transformation and shape functions

In order to numerically compute integrals over an element domain 2., it is necessary to
make a coordinate transformation to a new domain where the integration rules can be
applied. For example, a typical domain in one-dimension numerical integrals is [—1, 1].
This new domain is known as the master element domain, which will be referred in this
work as €. So, we need a transformation function 7 that maps the reference coordinates
& = {2 §}7 of the master element to the physical coordinates * = {z y}* of an element
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e (see Figure A.2).

(a) Triangle (b) Quadrilateral

Figure A.2: Master elements and coordinate transformation 7

The transformation function can be written as

x =T i N¢(&)x (A.6)

where & are the physical coordinates of the local node j of the element e, and N;(:fz)
is the finite element interpolation function corresponding to the node j of the master
element €).. The above expression is called the geometrical interpolation.

For example, for the following master elements

e Triangular elements with 3 nodes

The master element is such that 0 < & < 1, and if this has 3 nodes (m = 3), the
transformation function is

3
o =T(&) =) Ni(a&)a, (A7)
=1
and the interpolation functions are [23]

7=1
] =2 (A.8)
j=3

Z
—
>
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e QQuadrilateral elements with 4 nodes

In the case of a quadrilateral element —1 < @ < 1, and if 4 nodes are defined
(m = 4), the transformation function is

o =T&) =Y Ni(d)x (A.9)

1-2)1-9) j=1

Gepn oy 1) A+D)A-9) j=2

N@D=1 a+d)0+p) =3 (4.10)
(1-2)1+g)  j=4

(a) Triangle (b) Quadrilateral

Figure A.3: Node numeration of the master elements.

There also exist triangular and quadrilateral elements with higher order of interpolations
and corresponding master elements (see e.g. [23]), but the above are quite common and
will serve our purposes. On the other hand, given that the polynomials that have been
used for the geometrical interpolation are first order, and the used interpolation for the
pressure is first order too, we can use the same shape functions in both, hence

N&(&) = N°(&). (A.11)

This is called the isoparametric case, and it is the most used in finite element methods.
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A.3.2 Mapping the integrals to the reference domain

Using the coordinate transformation 7, we can compute the integral of the shape function
Ne¢(x,y) € €, on the element domain (2, as

N(z,y) de dy= [ N°(&,9)|J| di dj, (A.12)

Qe Qe

where |J| is the Jacobian determinant of the transformation 7°:
ox; 9z 9y
J =t = & o | A13
(%) (A.13
This can be computed by means of the coordinate transformation as
or; N (ON(,7)
J = = —— ) @y A.14
9% JZI < oi, )" (A.14)

On the other hand, we can map the integral of the shape function derivative to the master
domain as

[ 0eNta) dody= [ 0.NG9) 1] di (A.15)
Qe e
Using the chain rule for partial differentiation, we have

aNe(j% g) _ aNe(j% g) afi‘z

(A.16)

The first term 0;, N¢(Z,7) can be simply computed deriving the shape function for the
master element. Regarding to the second term, it can be computed as

i _ <8xi)_1 _ (A.17)

Hence, the problem reduces to computing integrals over the master element. In the
following subsection, the numerical method used to solve these integrals is described.
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A.3.3 Numerical Integration

Between the most populars rules used for numerical integration (e.g. trapezoidal rule,
Simpson’s rule,...), finite element methods normally use the Gaussian Quadrature rule as
to it is just accurate as the others but involve fewer integration points [23|. This issue is
important in practice since the fewer the integration points the less the cost [23].

So, using a Gauss quadrature, an integral of a function F(z,7) € Q. can be computed as

Nint

/Q F(&,9) d dj =) F (&, i) w(k), (A.18)
e h=1

where n;,; is the number of integration points, ék and 7)., are the coordinates of the
integration point, and w(k) is the weight.

nine  Degree ¢ i w Point Geometry

1 1 /3 1/3 1 a

0 05 1/3 a
3 2 05 0 1/3 b
05 05 1/3 c

Table A.1: Gauss coordinates (£,7) and weights (w) for one and three integration points (2;,)
over a triangle. “Degree” stands for the degree of the polynomial used in the
geometrical interpolation.
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A.4 Calculation of the Stiffness matrix

A.4.1 Stiffness matrix
The stiffness matrix K = [K ] is

Ky = / VN, (z,y) - VNy(z,y) dx dy. (A.19)
Q

Using the element point of view, the above expression can be computed as the sum of the
integrals in each element

Ky = Z VNB (x,y) - VN;(z,y) dz dy. (A.20)

In order to compute the integral in )., we have seen that it has to be computed over the
master element domain €2,

Kap=Y [ VNi(&,9)- VN;(&,9) |J] di dj. (A.21)

Qe

Then, using a quadrature rule for the computation of the integral over the master element,
the stiffness matrix can be computed as

abNZZVNe ) - VN (&)1 (€0 w(k). (A.22)

A.4.2 Memory efficiency

On the other hand, for memory efficiency reasons, it could be interesting to directly
compute

Ko Py ~ Z Z ZVNe ) - VNE(E DT D) w(k) B, (A.23)
Finally, rearranging some terms we set

abe~ZZZVN€ ) - VNS(&,7) Py [J(E,9)] w(k). (A.24)
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