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Abstract

At this fully digital age and with the massive transmission of information by
electronic media, the error detection and correction is something inherent to the
electronic transmission of information. This transmission is performed by several
channels: copper cable, optical fiber, electromagnetic waves.... There exist inter-
ferences, noise, that affect to these channels and can introduce errors during the
transmission. For this reason it is necessary to know how to detect when these
errors occur and to be able to correct them whenever it is required.

In the theory of information, the Shannon-Hartley theorem is an application
of the theorem of codification for noisy channels. The theorem determines the
Shannon-capacity of the channel, a superior bound that establishes the maximum
quantity of digital data that can be transmitted without error (i.e. information)
by that channel with a specific bandwidth and which is affected by the presence of
noise.

The last few years have witnessed a significant decrease in the gap between
the Shannon channel capacity limit and what is practically achievable. Progress
has resulted from novel extensions of previously known coding techniques involving
interleaved concatenated codes. A considerable body of simulation results is now
available, supported by an important but limited theoretical basis.

This thesis presents a deep analysis about the types of coding used in the ultimate
versions of the DVB standards, such as terrestrial (T2), satellite (S2) and cable (C2).
This codes are Bose and Chaudhuri Hocquenghem (BCH) and Low-Density Parity-
Check (LDPC) and they successfully approach the Shannon limit. It is presented,
first of all, an introduction to the world of error-correcting codes so as to get a global
idea. There is also a final comparison between LDPC and Turbo-Codes, another
important type of coding although not used in the standards mentioned before. At
the end, it is presented a brief summary of the main ideas and a list of conclusions.
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Chapter 1

Introduction to the world of
error-correcting codes

Before immersing into the contents of the new and current error-correcting codes,
we should have a global vision about why they exist, how they work and how they
have evolved along our days, as well as about their current situation.

At this fully digital age and with the massive transmission of information by
electronic media, the error detection and correction is something inherent to the
electronic transmission of information. This transmission is performed by several
channels: copper cable, optical fiber, electromagnetic waves.... There exist inter-
ferences, noise, that affect to these channels and can introduce errors during the
transmission. For this reason it is necessary to know how to detect when these
errors occur and to be able to correct them whenever it is required.

Human beings use a language to communicate among themselves, and only one.
However, there exist many languages by which human beings can communicate. In
a similar way, in digital communications many languages are used, error-correcting
codes, for the transmission of information.

Thus, error-correcting codes are not a protocol of communications but a way of
encoding the information that is going to be transmitted, so that the receiver of the
information can detect whether there have been errors during the transmission and
correct them in certain cases. Thanks to them the receiver knows when the received
information is correct and the fact of being able to correct the errors avoids it from
requesting the transceiver the retransmission of data.

The targets of the coding theory are the following ones:

• Building codes for the transmission of the information.

1



2 1.1. Error-detection

• These codes must detect the errors during the transmission.

• They must correct the maximum number of errors.

Thus, we must be sure that if in a transmission some errors occur, they can be
detected. The method to detect and correct errors lies in including in the blocks of
the transmitted data some additional bits called redundancy-bits.

Two basic strategies have been developed to manage the errors:

• Error-Detection Codes: They include only the necessary redundant informa-
tion in each data-block to detect the errors. In this case the number of redun-
dancy bits is smaller.

• Error-Correction Codes: They include enough redundant information in each
data-block so that the erroneous bits can be detected and corrected.

If we consider a data-block formed by m data-bits and r redundancy-bits, the
final length of the block will be n, where n = m + r.

1.1 Error-detection

Detecting errors is quite easy for human beings. We have a grammar and syntax
in the language which we use to establish a communications. Following this ”human
method” is not functional for an electronic device, by now. Especially when the
transmitted information by electronic media goes beyond the human condition.

The transmitted information by electronic media is not limited to the information
that we want to transmit. Furthermore, all the data necessary for the transmission
of information is included, such as the protocols of communication which are being
used. In the error-correcting codes the size of the word is fixed so that all the words
have the same size. In our code we use a restricted set of these words.

If we suppose that we have an alphabet composed by 26 letters and the words
of our code are formed by 4 letters, how many words can we form?

264 = 456976

From these 456976 available words we will choose a set of them and we will
communicate ourselves with this set. Thus, when we receive in the transmission a
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word which is not included in this set we will assume that there has been an error
during the transmission.

This presents a problem. What would happen if when an error occurs it results
in a word from our set? In this case we will not be able to detect the error. This is
why the words from our set must accomplish some requirements.

1.1.1 Hamming distance

The Hamming distance is defined as the number of characters which differ in
two words. For instance:

dHamming(abcd, acbd) = 2

In this case we say that there exists a Hamming weight of 2 between both words.
If we choose the words from the code so that the minimum of the Hamming distances
among them is as large as possible, we will reduce the probability of that an error
occurred during the transmission results in another word from the code. That is to
say, we will reduce the probability that non-detectable errors occur. We call this
distance as the minimum distance of the code.

How many errors can a code detect?

Theorem 1 A code detects errors of a Hamming weight minor or equal to n if and
only if the minimum distance of the code is minor to n.

Figure 1.1: 4-bit binary hypercube for finding Hamming distance

In the figure 1.1 we can observe two examples:



4 1.1. Error-detection

1. Red path: 0100-1001 has distance 3 (0100 requires 3 bits to change in order
to become 1001).

2. Blue path: 0110-1110 has distance 1 (0110 requires 1 bit to change in order to
become 1110).

1.1.2 Types of error-detecting codes

Several schemes exist to achieve error detection. The general idea is to add some
redundancy (i.e., some extra data) to a message, which enables detection of any
errors in the delivered message.

Most such error-detection schemes are systematic: The transmitter sends the
original data bits, and attaches a fixed number of check bits, which are derived
from the data bits by some deterministic algorithm. The receiver applies the same
algorithm to the received data bits and compares its output to the received check
bits; if the values do not match, an error has occurred at some point during the
transmission. In a system that uses a ”non-systematic” code, such as some raptor
codes, the original message is transformed into an encoded message that has at least
as many bits as the original message.

1.1.2.1 Simple parity (horizontal check)

It consists of adding an extra bit to the string that we want to send, and it will
indicate us if the number of ones (bits set to 1) is even or odd. If it is even we will
include this bit with value = 0; otherwise, we will include it with value = 1.

* Example of generation of one bit of simple parity:

We want to send the string “1110100”:

1. We count the quantity of ones included: 4 ones.

2. The number of ones is even so we add a bit with value = 0.

3. The sent string is 11101000.

The receiver now repeats the operation of counting the quantity of ones included
(except the last bit) and if it matches, no error has occur.

Problems with this method:
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There is a high probability that there exist some cases in which there has been an
error, and it has not been detected, such as if two numbers change in the transmission
instead of one.

1.1.2.2 Diagonal parity (horizontal-vertical check)

In order to improve the previous method, we perform a parity that affects both
the bits of every string or word and a set of all of them. We always use relatively
short strings so as to avoid us from having lots of errors.

To see it more clearly, we usually group the bits in a matrix of N rows and K
columns. After that, we perform all the horizontal parities by the previous method
and at the end, we repeat the same operation of calculating the number of ones, but
now from every column.

The probability of finding just one error is the same, but instead, the probability
of finding an even number of errors is not zero anymore, as in the previous case.
Even so, there still exist a great quantity of non-detectable errors.

* Example of diagonal parity (or geometric code):

1. We have this code to transmit: 1100101111010110010111010110.

2. We group the code into every word, forming a matrix of N x K:

1100101
1110101
1001011
1010110

3. We add the horizontal parity bits:

1100101 0
1110101 1
1001011 0
1010110 0

4. We add the vertical parity bits:

1100101 0
1110101 1
1001011 0
1010110 0
0001101 1



6 1.1. Error-detection

Once we create the matrix, we can send it by rows or by columns. By sending
the words by columns we increase the probability of correcting a word which has
suffered a burst error1.

1.1.2.3 Cyclic redundancy checks (CRCs)

By trying to improve the codes that only control the parity-bit, there exist the
cyclic codes. These codes use the modular arithmetic to detect a greater number of
errors, by using operations in module 2 and the sums and subtractions are performed
without carriage (becoming operations Or-Exclusive or XOR). Furthermore, in order
to ease the calculations they work with polynomials, although only theoretically.

The aim of this method is to create a part of the redundancy which we add at
the end of the code to transmit (just like in the methods of parity). This part must
be as small as possible and must detect the greatest possible number of errors. But
besides this, it must be a systematic method, that is to say, with the same code
to transmit (and the same generator polynomial) it must always generate the same
final code.

Generator polynomial:

It is a polynomial which has been chosen previously and minimizes the redun-
dancy. It usually has a length of 16 bits, for messages of 128 bytes, which indicates
that its efficiency is good, since it only increases the length in an approximate 1.6%:

(16bits/(128bytes ∗ 8bitsperbyte)) ∗ 100 = 1, 5625%

An example of generator polynomial used normally in networks WAN is: g(x) =
x16 + x12 + x5 + 1

The operations performed by the transceiver to calculate its CRC are:

1. It adds as many zeros at the right of the original message as the grade of the
generator polynomial indicates.

2. It divides the message with the zeros included by the generator polynomial.

3. The remainder obtained from the division is added to the message with the
zeros included.

1Errors which affect several bits in a row, generally due to electronic causes, such as sparks,
and which could make the word to be lost completely.
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4. The result obtained is transmitted.

These operations are generally incorporated in the hardware in order to be cal-
culated with the highest speed, but in theory they only use the polynomials in order
to ease de calculations.

* Example of how to obtain the CRC:

Data:

Coded binary message: 1101001
Generator polynomial: x4 + x+ 1

Operations:

1. Obtain the equivalent polynomial of the message: x6 + x5 + x3 + 1

2. Multiply the message by x4 (adding 4 zeros at the right): x10 + x9 + x7 + x4

3. Divide in binary the message by the generator polynomial and obtain the
remainder: x2 + 1

4. Transmit the message with the remainder (also in module 2): x10 + x9 + x7 +
x4 + x2 + 1

The receiver must check the CRC code to detect if some errors have occurred.

* Example of the calculations in the receiver:

1. They agree to the generator polynomial by corresponding protocol.

2. It divides the received code by the generator polynomial.

3. It checks the remainder of this operation:

• If the remainder is zero, no errors have occurred and the message is
processed.

• If the remainder is nonzero, it means that some errors have occurred so
the message must be resent or it must try to correct the errors by the
error-coding correctors.

To sum up, this method requires a generator polynomial which, chosen properly,
can achieve a great number of errors: simple, double, in the odd positions of the
bits, bursts with a smaller length than the grade of the polynomial, etc.
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1.1.2.4 Checksums

It is an easy method but efficient only with the short-length strings of words.
For this reason, it is only used in headers of important frames or another important
strings, and in combination with other methods.

It involves grouping the message to transmit in strings of a certain length L
which is not very big, for example 16 bits, considering every string as an integer
numbered according to the numbering system 2L − 1. After that it sums up the
value of all the words in which the message is divided and it adds the result to the
message to transmit, but with the sign changed. With this, the receiver only has to
sum up all the strings, and if the result is 0 it means that no errors have occurred.

* Example:

Message 101001110101

1. Agree to the length of the string: 3

2. Agree to the numbering system: 23 − 1 = 7

3. Split the message: 101 001 110 101

4. Transform every string in an integer: 5 1 6 5

5. Sum up all the values and add the number with its sign changed: -17

6. Send 5 1 6 5 -17 binary-coded

7. The receiver sums up all the values and if it is = 0 processes the message;
otherwise, some errors have occurred.

This is the easiest method and it is optimum to be implemented in software,
since it can reach a speed of calculation similar to the hardware implementation.

1.2 Error-correction

So far, the methods that we have studied are included in the error-detection,
with capacity of detecting but not correcting. Now we are going to develop the erro-
correcting codes. There are two basic ways to design the channel code and protocol
for an error-correcting system:
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• Automatic Repeat Request (ARQ): The transmitter sends the data and also an
error-detection code, which the receiver uses to check for errors, and requests
retransmission of the data that was deemed erroneous. In many cases the
request is implicit: The receiver sends an acknowledgement (ACK) of correctly
received data, and the transmitter re-sends anything not acknowledged within
a reasonable period of time.

• Forward Error Correction (FEC): The transmitter encodes the data with an
error-correcting code (ECC) and sends the coded message. The receiver never
sends any messages back to the transmitter. The receiver decodes what it re-
ceives into the ”most likely” data. Forward error-correction codes are designed
for real-time systems, such as video transmission.

It is possible to combine the ARQ and FEC so that minor errors are corrected
without retransmission, and major errors are corrected via a request for retransmis-
sion. The combination is called a hybrid automatic repeat-request.

Originally the error was only treated by probability, according to its random
nature. As from the Shannon theory (see page 12), which establishes units of mea-
surement of information, it is also possible to measure and quantify the error, even
determine previously the maximum levels of error in a message.

Theoretically it is possible to correct any fragment of binary code automatically.
For that, error-detecting codes are complemented with error-correcting codes, of a
greater mathematical complexity and a greater number of necessary redundancy
bits. The cost of decreasing the level of error of a message, is the increase of the
redundancy bits and latency due to more complex algorithms, and the economic
factor.

The necessity of a greater number of redundancy bits sometimes makes the cor-
rection of multiple bits become non-viable and inefficient. For this reason the error-
correcting codes usually correct 1, 2 or 3 bits.

How many errors can a code correct?

Theorem 2 A code can correct all the errors of a weight minor or equal to t if and
only if its minimum Hamming distance is bigger or equal to 2 · t+ 1.

1.2.1 Types of error-correcting codes (FEC)

There is a great quantity of methods to generate FEC, but they are all orientated
to reconstruct in the receiver the data-sequence originated in the transceiver. In the
video transmission we use two methods:
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• Block codes: they work on fixed-size blocks (packets) of bits or symbols of
predetermined size. Practical block codes can generally be decoded in poly-
nomial time to their block length. There are many types of block codes, but
among the classical ones the most notable is Reed-Solomon coding because of
its widespread use.

• Convolutional codes: they work on bit or symbol streams of arbitrary length.
They are most often decoded with the Viterbi algorithm, though other algo-
rithms are sometimes used. Viterbi decoding allows asymptotically optimal
decoding efficiency with increasing constraint length of the convolutional code,
but at the expense of exponentially increasing complexity. A convolutional
code can be turned into a block code, if desired.

1.2.1.1 Reed-Solomon (RS)

The RS is a FEC code, whose coding process is similar to all the block codes,
involving an operation that adds a group of known bits to a group of bits of the
message to be transmitted. The relation between the added bits and the message
bits is known by the receiver so that it can decode it.

The RS code, and in general all the block codes, is defined as systematic codes.
This indicates that the message is not altered by the addition of redundancy bits,
since the position of the added bits to the message is always well-defined according
to the error-correcting polynomials. This way, it is not necessary to include all the
parity bits calculated in the RS-encoder inside the message, being added only at the
end of the stream.

The entrance to the RS encoder is a stream of k bytes of message (mixed in the
randomizer) and its exit is a stream of n bytes, where n is bigger than k, so that n
- k is the number of parity bytes added.

Figure 1.2: Example of RS stream at the exit of the encoder
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The RS code is represented as RS(n,k,t) or just RS(n,k), where t = (n − k)/2
indicates the maximum number of erroneous bytes that can be corrected. A typical
example of RS code in the transmission of video is RS(204,188,8) which indicates
that to an input of 188 bytes we add 16 parity bytes, generating a capacity of correct-
ing 8 erroneous bytes. The correction of 1 erroneous byte is achieved independently
of the total number of erroneous bits it has, it could be one, two or all the bits from
the byte.

The capacity of the RS code to correct groups of bits or bytes is adequate to
correct burst errors. However, since this capacity is limited, it is not used for long
burst errors. The interleaver located at the exit of the RS coder makes the burst to
affect different frames.

We will see later how we can correct bits by a series of calculations with poly-
nomials.

1.2.1.2 Viterbi

The convolutional coding is a technique to control the error which generates a
coded sequence of bits from an input sequence of bits of information.

The coded sequence at the exit is generated from every bit of the input sequence
and not from the blocks as in RS codes. The output of the encoder, apart from de-
pending on the current input bit, depends on the previous input bits, in a continuous
process that creates redundancy.

The encoder has inner memories in order to remember the bits from previous
inputs. The greater quantity of memories it has, the higher probability of decreasing
the error. The disadvantage are a greater quantity of redundancy bits, a greater
latency due to the complexity of the operations in each memory, more computer
resources needed and a higher economic cost.

The Viterbi algorithm is a technique to decode the possible states of a state
machine, which would correspond to a transmission of information. Viterbi says
that the current state of an event depends on a previous state, and it provides with
a method to determine all the states with minimum calculation. This algorithm lets
us detect the real sequence of transmitted information in case an error occures in
the channel.
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Figure 1.3: Example of application of the Viterbi algorithm

In a real convolutional encoder, the input sequence is split in segments of k bits
which are introduced simultaneously at the entrance of the encoder. For each input
segment of k elements, the encoder generates an output segment of n elements, where
is bigger than k.

The n bits of the output segment depend on the k bits of the input segment at
the time t and on the bits of the previous segments. That is to say, the segments
at the instants t-1, t-2, ..., t-K, whereK is the number of previous inputs that can
store the encoder.

The formal notation of the convolutional codes is indicating the parameters n,
k, K as C(n,k,K). But the common thing is to indicate the quotient between the
input elements and the output ones as R=k/n, called code rate. For instance, if the
elements of an input segment are 2 and the output segment has 3 elements, then
R=2/3, indicating explicitly that for every 2 input bits another correcting bit is
added. If R=7/8, then for every 7 input bits another correcting bit is added.

The code rate 2/3 adds more redundancy bits than 7/8, achieving a higher
possibility of correcting errors.

1.3 Shannon theorem

In the theory of information, the Shannon-Hartley theorem is an application of
the theorem of codification for noisy channels. A very frequent case is an analogic
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channel of communication continuous in time that presents a gaussian noise.

Figure 1.4: Schematic diagram of a general communication system

The theorem determines the Shannon-capacity of the channel, a superior bound
that establishes the maximum quantity of digital data that can be transmitted
without error (i.e. information) by that channel with a specific bandwidth and
which is affected by the presence of noise.

In the main hypothesis, for the correct application of the theorem, we assume a
limitation in the power of the signal and also that the process of the gaussian noise
is characterized by a known power or a spectral density of power.

1.3.1 Nyquist rate

In 1927, Nyquist determined that the number of independent beats which could
go through a telegraph channel, per unite of time, was limited to the double of the
bandwidth of the channel.

fb ≤ 2 ·B (1.1)

; where fb is the frequency of the beat (in beats per second) and B is the band-
width (in Herz). The quantity 2 ·B was called, afterwards, Nyquist rate.
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1.3.2 Shannon limit

Claude Shannon, after Nyquist’s investigation, studied how noise affects the
transmission of data. Shannon took into account the relation signal-noise of the
channel of transmission (measured in dB) and got the theorem of Shannon-capacity:

Theorem 3 Given a noisy channel with capacity of channel C and information
transmitted with a rate R, then if R < C there exist codes which let the probability
of error in the receiver be arbitrarily small.

C = B · log2(1 + S/N)

This means that, theoretically, it is possible to transmit the information almost
without error in any way under a limiting rate, C. This maximum capacity is not
reachable, since the Shannon formula assumes some conditions which in practice do
not exist. It does not take into account the impulsive noise, neither the attenuation
or distortion. It simply represents the theoretic reachable limit.

In this thesis, we will analyze the new correcting codes which approximate more
to this Shannon limit, such as Low-Density Parity-Check (LDPC), which are being
used in the new european standards of digital transmission (DVB-T2, C2 y S2).



Chapter 2

Overview of the new DVB
standards

The Digital Video Broadcasting Project (DVB) is an industry-led consortium
of around 250 broadcasters, manufacturers, network operators, software develop-
ers, regulatory bodies and others in over 35 countries committed to designing open
technical standards for the global delivery of digital television and data services.
Services using DVB standards are available on every continent with more than 500
million DVB receivers deployed.

Figure 2.1: Logo of DVB

In this chapter it is presented an overview of the new standards DVB-T2, C2
and S2, which use the error-correcting codes that we will explain later.

2.1 DVB-T2

DVB-T2 is an abbreviation for Digital Video Broadcasting – Second Generation
Terrestrial; it is the extension of the television standard DVB-T, issued by the con-
sortium DVB, devised for the broadcast transmission of digital terrestrial television.

15
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This system transmits compressed digital audio, video, and other data in ”physical
layer pipes” (PLPs), using OFDM modulation with concatenated channel coding
and interleaving. It is currently broadcasting in parts of the UK under the brand
name Freeview HD.

The generic T2 system model is represented in figure 2.2. The system input(s)
may be one or more MPEG-2 Transport Stream(s) and/or one or more Generic
Stream(s). The Input Pre-Processor, which is not part of the T2 system, may include
a Service splitter or de-multiplexer for Transport Streams (TS) for separating the
services into the T2 system inputs, which are one or more logical data streams.
These are then carried in individual Physical Layer Pipes (PLPs).

Figure 2.2: High level T2 block diagram

The system output is typically a single signal to be transmitted on a single RF
channel. Optionally, the system can generate a second set of output signals, to be
conveyed to a second set of antennas in what is called MISO1 transmission mode.
The standard defines a single profile which incorporates time-slicing but not time-
frequency-slicing (TFS). It is not intended that a receiver with a single tuner should
support TFS.

The input data streams shall be subject to the constraint that, over the duration
of one physical-layer frame (T2-frame), the total input data capacity (in terms of
cell throughput, following null-packet deletion, if applicable, and after coding and
modulation), shall not exceed the T2 available capacity (in terms of data cells,
constant in time) of the T2-frame for the current frame parameters. Typically, this
will be achieved by arranging that PLPs within a group of PLPs will always use
same modulation and coding (MODCOD), and interleaving depth, and that one or
more groups of PLPs with the same MODCOD and interleaving depth originate
from a single, constant bit-rate, statistically-multiplexed source.

Each group of PLPs may contain one common PLP, but a group of PLPs need
not contain a common PLP. When the DVB-T2 signal carries a single PLP there is

1Multiple-input and Single-output
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no common PLP. It is assumed that the receiver will always be able to receive one
data PLP and its associated common PLP, if any.

More generally, the group of statistically multiplexed services can use variable
coding and modulation (VCM) for different services, provided they generate a con-
stant total output capacity (i.e. in terms of cell rate including FEC and modulation).

When multiple input MPEG-2 TSs are transmitted via a group of PLPs, splitting
of input TSs into TSPS streams (carried via the data PLPs) and a TSPSC stream
(carried via the associated common PLP), shall be performed immediately before
the Input processing block shown in figure 2.2. This processing shall be considered
an integral part of an extended DVB-T2 system.

The maximum input rate for any TS, including null packets, shall be 72 Mbit/s.
The maximum achievable throughput rate, after deletion of null packets when ap-
plicable, is more than 50 Mbit/s (in an 8 MHz channel).

2.2 DVB-C2

DVB-C stands for Digital Video Broadcasting - Cable and it is the DVB European
consortium standard for the broadcast transmission of digital television over cable.
On February 18, 2008 it was announced that a new standard - DVB-C2 - would
be developed during 2008, and a ”Call for Technologies” was issued. Proposals
including simulation programs and information on patent rights could be submitted
until June 16, 2008.

The results of the DVB-C2 Study Mission already provided clear indications
that technologies are available allowing the performance of the second generation
DVB cable transmission system to get so close to the theoretical Shannon Limit
that any further improvements in the future would most likely not be able to justify
the introduction of a disruptive third generation of cable transmission system.

The generic C2 System model is represented in figure 2.3. The system input(s)
may be one or more MPEG-2 Transport Stream(s) and/or one or more Generic
Stream(s). The Input pre-processor, which is not part of the C2 System, may
include a service splitter or a demultiplexer for Transport Streams (TS) used to
separate the services into the C2 System inputs, which are one or more logical data
streams. These are then carried in individual Physical Layer Pipes (PLPs). The
system output is a single signal to be transmitted on a single RF channel.
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Figure 2.3: High level C2 block diagram

The input data streams shall be subject to the constraint that, over the duration
of one physical-layer frame (C2 Frame), the total input data capacity (in terms of
cell throughput, following Null Packet Deletion, if applicable, and after coding and
modulation), shall not exceed the C2 available capacity (in terms of Data Cells,
constant in time) of the C2 Frame for the current frame parameters. One or more
PLPs are arranged in a group of PLPs and one or more of such groups of PLPs form
a Data Slice. A C2 System may consist of one or more Data Slices. Each group
of PLPs may contain one Common PLP, but a group of PLPs need not contain a
Common PLP. When the DVB-C2 signal carries a single PLP there is no Common
PLP. It is assumed that the receiver will always be able to receive one Data PLP
and its associated Common PLP, if any.

More generally, the group of statistically multiplexed services can use variable
coding and modulation (VCM) for different services, provided they generate a con-
stant total output capacity (i.e. in terms of cell rate including FEC and modulation).

When multiple input MPEG-2 TSs are transmitted via a group of PLPs, splitting
of input TSs into TSPS streams (carried via the Data PLPs) and a TSPSC stream
(carried via the associated Common PLP) shall be performed immediately before
the Input processing block shown in figure 2.3. This processing shall be considered
an integral part of an extended DVB-C2 System.

2.3 DVB-S2

Digital Video Broadcasting - Satellite - Second Generation is an enhanced spec-
ification to replace the DVB-S standard, developed in 2003 and ratified by ETSI
(EN 302307) in March 2005. The development of DVB-S2 coincided with the intro-
duction of HDTV and H.264 (MPEG-4 AVC) video codecs.

According to figure 2.4, the DVB-S2 System shall be composed of a sequence of
functional blocks as described below.
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Figure 2.4: Functional block diagram of the DVB-S2 System

Mode adaptation shall be application dependent. It shall provide input stream
interfacing, Input Stream Synchronization (optional), null-packet deletion (for ACM
and Transport Stream input format only), CRC-8 coding for error detection at
packet level in the receiver (for packetized input streams only), merging of input
streams (for Multiple Input Stream modes only) and slicing into DATA FIELDs.
For Constant Coding and Modulation (CCM) and single input Transport Stream,
Mode Adaptation shall consist of a ”transparent” DVB-ASI (or DVB-parallel) to
logical-bit conversion and CRC-8 coding.

A Base-Band Header shall be appended in front of the Data Field, to notify
the receiver of the input stream format and Mode Adaptation type. To be noted
that the MPEG multiplex transport packets may be asynchronously mapped to the
Base-Band Frames.

For applications requiring sophisticated merging policies, in accordance with
specific service requirements (e.g. Quality of Service), Mode Adaptation may op-
tionally be performed by a separate device, respecting all the rules of the DVB-S2
specification. To allow standard interfacing between Mode and Stream Adapta-
tion functions, an optional modulator interface (Mode adaptation input interface)
is defined. Stream adaptation shall be applied, to provide padding to complete a
Base-Band Frame and Base-Band Scrambling.



20 2.3. DVB-S2

Forward Error Correction (FEC) Encoding shall be carried out by the concatena-
tion of BCH outer codes and LDPC (Low Density Parity Check) inner codes (rates
1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, 9/10). Depending on the appli-
cation area, the FEC coded block shall have length nldpc= 64 800 bits or 16 200
bits. When VCM and ACM is used, FEC and modulation mode may be changed in
different frames, but remains constant within a frame. For Backwards Compatible
modes, the bit-stream at the output of the FEC encoder shall be processed. Bit
interleaving shall be applied to FEC coded bits for 8PSK, 16APSK and 32APSK.
Mapping into QPSK, 8PSK, 16APSK and 32APSK constellations shall be applied,
depending on the application area. Gray mapping of constellations shall be used for
QPSK and 8PSK.

Physical layer framing shall be applied, synchronous with the FEC frames, to
provide Dummy PLFRAME insertion, Physical Layer (PL) Signalling, pilot symbols
insertion (optional) and Physical Layer Scrambling for energy dispersal. Dummy
PLFRAMEs are transmitted when no useful data is ready to be sent on the channel.
The System provides a regular physical layer framing structure, based on SLOTs of
M = 90 modulated symbols, allowing reliable receiver synchronization on the FEC
block structure. A slot is devoted to physical layer signalling, including Start-of-
Frame delimitation and transmission mode definition. This mechanism is suitable
also for VCM and ACM demodulator setting. Carrier recovery in the receivers may
be facilitated by the introduction of a regular raster of pilot symbols (P = 36 pilot
symbols every 16 SLOTs of 90 symbols), while a pilot-less transmission mode is also
available, offering an additional 2,4% useful capacity.

Base-Band Filtering and Quadrature Modulation shall be applied, to shape the
signal spectrum (squared-root raised cosine, roll-off factors 0,35 or 0,25 or 0,20) and
to generate the RF signal.

From now on, we will dedicate exclusively to analyze the FEC coding mentioned
above, which is applied for all the standards commented before.



Chapter 3

Bose and Chaudhuri
Hocquenghem (BCH)

3.1 Introduction

In coding theory the BCH codes form a class of parameterised error-correcting
codes which have been the subject of much academic attention in the last fifty
years. BCH codes were invented in 1959 by Hocquenghem, and independently in
1960 by Bose and Ray-Chaudhuri. The acronym BCH comprises the initials of these
inventors’ names.

The principal advantage of BCH codes is the ease with which they can be de-
coded, via an elegant algebraic method known as syndrome decoding. This allows
very simple electronic hardware to perform the task, obviating the need for a com-
puter, and meaning that a decoding device may be made small and low-powered.
As a class of codes, they are also highly flexible, allowing control over block length
and acceptable error thresholds, meaning that a custom code can be designed to a
given specification (subject to mathematical constraints).

In technical terms a BCH code is a multilevel cyclic variable-length digital error-
correcting code used to correct multiple random error patterns. BCH codes may
also be used with multilevel phase-shift keying whenever the number of levels is a
prime number or a power of a prime number. A BCH code in 11 levels has been
used to represent the 10 decimal digits plus a sign digit.

BCH codes are also useful in theoretical computer science, for instance in the
MAXEkSAT problem.

21
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3.2 To the math

Regarding a coding system to reduce errors, Shannon says that it can be done,
but not how. That is the curse of existence theorems. However, many have gone
before us and laid the foundations of error control coding. Let’s explore those
foundations.

Transmission on computer and radio networks uses binary symbols. For example,
the American Standard Code for Information Interchange defines the letter “A”
as corresponding to a binary value of 1000001. The letter “B” is 100010, and so
on. Each letter, number, and symbol on the typical personal computer keyboard
has its own numeric value. A sentence is then represented by a string of these
values: “ABC” = 1000001, 1000010, 1000011. If we desire to detect errors in the
transmission of such a string of ones and zeros, then it is a good design decision to
make a coding system that works with binary symbols.

However, what type of system shall we choose? We anticipate that encoding and
decoding data will not be trivial, so we will need the most capable system available.
From our study of abstract algebra (see any basic text on the subject), we know
that the most flexible, yet still basic system of rules is that of the field. In a field,
we can add, subtract, multiply and divide.

What field do we choose? Our binary symbols are strings of ones and zeros taken
from Z2 (the field of binary numbers). Perhaps we could use it. However, it only has
two digits, so if each character is to be represented in the field, we will need a bigger
field. Well, the order of (number of elements in) every finite field is pm for some prime
p and integer m > 0, so we are stuck with the power of a prime number of elements in
our field. That is coincidentally good, however, because digital data is transmitted
typically in multiples of eight bits (23), so each message can be considered to have
values from a field of 2m bits, a power of a prime. Therefore, we conclude that Z2m

is a good candidate for our field, with m to be determined. Unfortunately, we soon
learn that ordinary arithmetic in Z2m does not meet the criterion for inverses. For
example, in Z24 (containing the integers 0...15), 2 has no inverse. That is, 2b mod
16 = 1 has no solution b. (Remember that two field elements are multiplicative
inverses if we get 1 when they are multiplied together.) Therefore, Z24 is not a
field with standard multiplication as Zp is. Ordinary arithmetic fails because Z16 ≈
Z/ < 16 > (≈ denotes isomorphism), and the generator of < 16 > is a composite
number. Zp ≈ Z/ < p > is a field for p a prime. We need a different operation, at
least for multiplication.

That different arithmetic is polynomial arithmetic. We know that Zα ≈ Z2[x]/ <
p(x) > where p(x) is a minimal polynomial with root α. Thus, we have replaced
the non-prime 2m with a “prime polynomial,” irreducible p(x).
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The isomorphism above tells us again that the required field exists. Now we have
to build an example and see how it works. The following is a standard example of
the construction of Z24 from the references. I will not go through all the details,
but this is the basic outline.

We are constructing the extension field of Z2[x],Z2(α). The isomorphism sug-
gests that we need a minimal polynomial with a root in Z24 . Since we want 16
elements in Z2(α), the degree of the polynomial should be 4, so that 24 = 16.

However, there is an additional condition. The polynomial must be primitive in
GF(24)1. That means that every element in Z24 must be expressible as some power
of p(x). With this limitation, checking the minimal polynomials of all the nonzero
elements in GF(24), we find two polynomials, x4 + x3 + 1 and x4 + x + 1, that are
primitive. Either may be used.

To generate the elements, we start with three initial elements of the extension
field and perform all arithmetic modulo p(x) = x4 +x3 + 1. The initial elements are
0, 1, and α. Raising α to powers successively identifies α2 and α3 as members of the
extension field. When we get to α4, we realize that it does not represent an element
of Z24 , but we know that p(α) = 0 = x4 + x3 + 1, so α4 = α3 + 1 (in a binary field
addition is equivalent to subtraction). Thus, we reduce each power greater than
three using the identity α4 = α3 + 1.

For example, when multiplying 1011 by 1101, the polynomial representation is:

(x3 + x+ 1)(x3 + x2 + 1) = x6 + x5 + x4 + 3x3 + x2 + x+ 1

Reducing this using the identity, finally we see that 1011 x 1101 = 0010, or:

(x3 + x+ 1)(x3 + x2 + 1) = x

By computing successive powers of α and reducing using the identity, we can
build the entire field Z24 . There is a program to do the busy work, which syntax
appears in appendix A. Now that we have a field with all the proper operations, we
may call it GF(24) or GF(16), the Galois field with 16 elements.

Below in the figure 3.1 appear the elements generated by both primitive poly-
nomials. There are three forms of each element. The power form expresses the
reality that each field element except zero is the power of the generating element,
α, and is useful when multiplying field elements. The polynomial form is useful for
adding field elements, and the binary values in the centers of the tables are merely

1Galois Field
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the coefficient of these polynomials, with the highest power of α on the left. Notice
that the two fields contain the same elements in different order.

Figure 3.1: Fields of 16 elements generated by two different generators.

To examine why a primitive polynomial is needed to generate all the field ele-
ments, let’s see what happens by using a non-primitive polynomial. Notice in figure
3.2 repetition in the elements.
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Figure 3.2: Field of 16 elements generated by a non-primitive generator.

This is undesirable because not all the values in GF(16) are represented by the
computations, and our ability to encode and decode messages using arithmetic in
this set would be impaired or destroyed. (However, some families of codes do use
non-primitive polynomials because it allows a greater range of selection of code
lengths; the code can be tailored to the application.)

Mechanically, these field elements are easy to generate. Multiplication by element
α results in a left shift of the previous binary value. If a one is shifted out of the
fourth position (in GF(16)), that constitutes a polynomial of fourth degree and the
result is reduced by subtracting the generator polynomial from the result. However,
subtraction in binary arithmetic is merely the exclusive OR function, so an encoder
for field elements is easy to build in logic circuits. Next time, we will look at various
types of codes that arose over the years as a result of the investigations reproduced
above.

3.3 Types of codes

We are looking at the BCH error detection and correction code, going first
through some preliminary background on the mathematical basis of the code. Now
that we have a field in which to do computations, what we need next is a philosophy
for encoding and decoding data in order to detect and possibly correct errors. Here
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we are taking advantage of results discovered by the hard work of perhaps a hundred
individuals just in the last 50 years.

There are several types of codes. The first major classification is linear vs. non-
linear. Linear codes in which we are interested may be encoded using the methods
of linear algebra and polynomial arithmetic. Then we have block codes vs. convo-
lutional codes. Convolutional codes operate on streams of data bits continuously,
inserting redundant bits used to detect and correct errors.

Our area of investigation here will be linear block codes. Block codes differ from
convolutional codes in that the data is encoded in discrete blocks, not continuously.
The basic idea is to break our information into chunks, appending redundant check
bits to each block, these bits being used to detect and correct errors. Each data
+ check bits block is called a codeword. A code is linear when each codeword is a
linear combination of one or more other codewords. This is a concept from linear
algebra and often the codewords are referred to as vectors for that reason.

Another characteristic of some block codes is a cyclic nature. That means any
cyclic shift of a codeword is also a codeword. So linear, cyclic, block code codewords
can be added to each other and shifted circularly in any way, and the result is still
a codeword. You might expect that it takes some finesse to design a set of binary
words to have these properties.

Since the sets of codewords may be considered a vector space, and also may be
generated through polynomial division (the shifting algorithm, above), there are two
methods of performing computations: linear algebra and polynomial arithmetic. We
will dwell on polynomial arithmetic methods later in this paper.

Assume that we have a code that can detect t errors in a codeword. That means
up to t errors can occur and the receiver will say with 100% certainty that the
codeword contains errors. How does this work? What is the intuitive structure of
these codewords in the field?

Let us say that we transmitted one of the codewords generated previously in
GF(16) by the polynomial α4 + α+ 1. If an error occurs, the result will be another
codeword in this field. We have no way of knowing exactly which bits were changed.
That is because every possible bit pattern is a codeword.

However, if we used a larger field, say, GF(32), and then transmitted our four
bit information words plus one check bit, half of the 32 codewords would be valid
and the other half would not. If we received one of the invalid codewords, we could
request a retransmission. That is exactly how parity check bits work, the simplest
error detection system.

With the example above of the character “A”, binary 1000001, only seven bits are
needed to represent the entire alphabet and several punctuation marks, 128 values
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in total. Adding an eighth bit, which is a parity sum of the other seven, enlarges
the required field to 256 elements, with 128 of them representing valid information.

Then our letter “A” would be represented as 01000001, with the leftmost bit
being an even parity bit. This bit is set or reset to give the entire binary word
an even number of one bits. For the letter “C”, the value is 11000011, and the
parity bit is 1 because there are three ones in the rest of the word, four total. If
a character is received with a parity error, it is discarded. The odd parity scheme
is equivalent in performance and effectively identical. Now the parity bit is used in
communications links today, and many chips have the capability of encoding and
decoding it in hardware, flagging errant data words. However, it can only detect
errors, and only those which change an odd number of bits. One may suspect that
adding more check bits increases the error detection capability of the code, and that
is right. Much effort has been expended to find powerful codes that can detect and
correct a significant number of errors while still being easy to encode and decode.

Now, we will look intuitively at how codewords are selected to allow error cor-
rection.

3.4 Codeword Selection Criteria

We suspect, however, that the selection of codewords in a more error tolerant
coding system would have to be done by a deeper method of which the parity
example above is only a special case. What criterion do we use to select codewords?

The criterion is related to the relative distances between objects in space, but
a space of perhaps many dimensions. For example, when placing fenceposts on a
one-dimensional line, the farmer spaces them evenly to maximize and equalize the
support given to each part of the fence. Consider our codewords spaced along the
fence.

The subset of our field elements which are valid codewords are the fenceposts.
Two other invalid codewords are noted by arrows. Errors occur during communi-
cation change the codewords, moving them along the fence line. To maximize our
chances of guessing the correct codeword in spite of the errors, we need to likewise
space our codewords evenly, as in the diagram. For that we use a concept called
Hamming distance.



28 3.4. Codeword Selection Criteria

Hamming distance (or simply distance) is a very simple tool. To find the dis-
tance between two binary words, we just count the number of bits differing. For
example, the distance between binary 01010011 and 01011100 is four, because the
four rightmost bits differ. The distance between 10100 and 11001 is three bits.

This computation can be performed easily by using the logical exclusive OR
function:

The result has three ones, or we say a weight of three.

Given a requirement for 256 codewords in a larger set of 1024, for example, our
task is to find a method of selecting the 256 valid codewords that maximizes the
distance between them. Then, when errors occur, we can make a good estimate
as to what correct codeword was transmitted. Each code has a minimum distance,
called d that represents this value.

Now just from the minimum distance between the codewords we can draw a
powerful conclusion. Consider the codewords arrayed on the fence again. If the
distance between the codewords is three bits, then how many errors can we correct
and be sure that we have not over corrected?

Looking at the diagram above, assume that codeword two has been transmitted.
If one error occurs, it takes us one bit closer to codeword three, but we can see from
the diagram that the obvious selection of the corrected codeword is still codeword
two. If two errors occur, then the received codeword is closer now to codeword three
than codeword two, and the decoder will select codeword three as the right one,
which is a mistake.

In real life, this situation is multidimensional, with each codeword having many
close neighbours in its field, distance-wise. But even this simple example suggests
that the number of errors that we can correct is t = (d-1)/2, or half the distance,
not including the middle bit for odd values of d. For d = 3, t = 1. For d = 4, t =
1 still.
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Note that if we are not correcting errors, we can detect more than t. In the
example, we could detect as many as two bit errors in either direction from codeword
two. The number of detectable errors is in general d-1, because d errors would
transform one codeword into another.

That brings up an important notion. A large number of errors in a codeword
(d or more) can possibly transform a codeword into another valid, but unintended
codeword. This situation is called an undetectable error. For example, if two bit
errors occurred in the transmission of the letter “A” with parity bit (01000001), it
could be mistaken for a “C” (11000011). To guard against this, communications en-
gineers sometimes use an additional overall check code that tests the entire message
for validity.

3.5 Two Linear Block Codes

The first code developed was the Hamming code, in 1950. It actually consists of
a whole class of codes with the following characteristics:

• Block Length: n = 2m - 1

• Information Bits: k = 2m - m - 1

• Parity Check Bits: n - k = m

• Correctable Errors: t = 1

These conditions are true for m > 2. For example, with m = 4, there are n =
15 total bits per block or codeword, k = 11 information bits, n - k = 4 parity check
bits, and the code can correct t = 1 error. A representative codeword would be:

10010100101 0010

; where the four bits on the right (0010) are the parity checkbits. By choosing
the value of m, we can create a single error correcting code that fits our block length
and correction requirements. This one is customarily denoted a (15, 4) code, telling
us the total number of bits in a codeword (15) and the number of information bits
(4).

We omit the details of encoding and decoding the Hamming code here because
such will be covered in detail for the BCH code, later. The Golay code is another
code, more powerful than the Hamming code, and geometrically interesting. This
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(23, 12) code was discovered by Marcel J. E. Golay in 1949. It may also be extended
using an overall parity bit to make a (24, 12) code. The minimum distance is seven,
so it can detect up to six errors, or correct up to t = (7 - 1)/2 = 3 errors.

The aspect of the Golay and Hamming codes that makes them interesting is
the fact that they are perfect. With any code, the codewords can be considered
to reside within spheres packed into a region of space. The entire space is GF(2m).
Each sphere contains a valid codeword at its center and also all the invalid codewords
that correct to the valid codeword, those being a distance of three or fewer bits from
the center in the case of the Golay code (t = 3). If there are orphan binary words
outside the spheres, then the code is termed imperfect.

Just how many codewords are in a sphere? With the Golay code, we first have
the valid codeword. Then add the invalid codewords produced by introducing a
single error in each of the 23 bits of the valid codeword, C(n, 1) = 23. Add to that
the invalid codewords produced by introducing two and three errors in the valid
codeword, C(n, 2) = 253, and C(n, 3) = 1771. Adding these up, we see the sphere
contains 2048 = 211 words.

There are also 4096 = 212 total valid codewords (and spheres) in the Golay code,
so the sum of all the codewords in all the spheres is 211 · 212 = 223, and that is the
entire set of 23-bit binary words in GF(223). So there is no binary word in GF(223)
that is not correctable to one of the 4096 valid codewords. That is a perfect code.
An imperfect code has some elements in GF(2m) outside of any such sphere, so a
correction algorithm may not produce a useful result with such elements.

The abstract beauty of this structure is remarkable, but even more remarkable
is the fact that perfect codes are rare. Pless and others have proven this fact, that
the only nontrivial multiple error correcting perfect binary codes are equivalent to
the binary Golay (23, 12) code. This sweeping conclusion comes about from a result
that states that a perfect binary (n, k) code that corrects t errors must have n, k,
and t satisfy the following relationship:

The proof concludes that there are only a few values of n, k, and t that provide
equality, indicating a perfect code. For the binary Golay code, the expression works
out to:
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The binary Hamming codes are perfect as well, and there is a ternary Golay
(11, 6) code with minimum distance 5 that is perfect. Aside from some other trivial
codes that are of no practical interest (repetition codes decoded with majority logic
gating), that is the extent of the perfect codes. One might suppose that there is
some n-dimensional space where another perfect code exists, but that is not the
case.

3.6 Main Event: The BCH Code

The BCH abbreviation stands for the discoverers, Bose and Chaudhuri (1960),
and independently Hocquenghem (1959). These codes are multiple error correcting
codes and a generalization of the Hamming codes. These are the possible BCH codes
for m > 3 and t < 2m − 1:

• Block Length: n = 2m - 1

• Parity Check Bits: n− k ≤ mt

• Minimum distance: d ≥ 2t+ 1

The codewords are formed by taking the remainder after dividing a polynomial
representing our information bits by a generator polynomial. The generator poly-
nomial is selected to give the code its characteristics. All codewords are multiples
of the generator polynomial.

Let us turn to the construction of a generator polynomial. It is not simply
a minimal, primitive polynomial as in our example where we built GF(16). It is
actually a combination of several polynomials corresponding to several powers of a
primitive element in GF(2m).

The discoverers of the BCH codes determined that if α is a primitive element
of GF(2m), the generator polynomial is the polynomial of lowest degree over GF(2)
with α, α2, α3, ..., α2t as roots. The length of a codeword is 2m − 1 and t is the
number of correctable errors. Lin concludes that the generator is the least common
multiple of the minimal polynomials of each αi term. A simplification is possible
because every even power of a primitive element has the same minimal polynomial
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as some odd power of the element, halving the number of factors in the polynomial.
Then g(x) = lcm(m1(x),m3(x), ...,m2t−1(x)).

These BCH codes are called primitive because they are built using a primitive
element of GF(2m). BCH codes can be built using non-primitive elements, too, but
the block length is typically less than 2m − 1.

As an example, let us construct a generator polynomial for BCH(31,16). Such a
codeword structure would be useful in simple remote control applications where the
information transmitted consists of a device identification number and a few control
bits, such as “open door” or “start ignition.”

This code has 31 codeword bits, 15 check bits, corrects three errors (t = 3), and
has a minimum distance between codewords of 7 bits or more. Therefore, at first
glance we need 2t - 1 = 5 minimal polynomials of the first five powers of a primitive
element in GF(32). But the even powers’ minimal polynomials are duplicates of odd
powers’ minimal polynomials, so we only use the first three minimal polynomials
corresponding to odd powers of the primitive element.

The field we are working in is GF(32), shown below in figure 3.3. This was
generated using primitive polynomial x5 + x2 + 1 over GF(32).
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Figure 3.3: Field of 32 elements generated by a generator.

We need first a primitive element. Well, α is a primitive element in GF(32).
Next we need the minimal polynomials of the first three odd powers of α. Tables of
minimal polynomials appear in most texts on error control coding. Lin and Costello,
Pless, and Rorabaugh exhibit algorithms for finding them using cyclotomic cosets.
From Lin and Costello, the first three odd power of α minimal polynomials are:
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• α : m1(x) = x5 + x2 + 1

• α3 : m3(x) = x5 + x4 + x3 + x2 + 1

• α5 : m5(x) = x5 + x4 + x2 + x+ 1

Therefore, g(x) = lcm(m1(x),m3(x),m5(x)) = m1(x)m3(x)m5(x) (since these
are irreducible).

So g(x) = (x5 +x2 + 1)(x5 +x4 +x3 +x2 + 1)(x5 +x4 +x2 +x+ 1) = x15 +x11 +
x10 + x9 + x8 + x7 + x5 + x3 + x2 + x+ 1.

To encode a block of bits, let us first select as our information the binary word
1000001 for the letter “A” and call it f(x), placing it in the 16-bit information field .
Next, we append a number of zeros equal to the degree of the generator polynomial
(fifteen in this case). This is the same as multiplying f(x) by x15. Then we divide
by the generator polynomial using binary arithmetic (information bits are bold):

The quotient is not used and so we do not even write it down. The remainder is
100101000100010, or x14 +x11 +x9 +x5 +x in polynomial form, and of course it has
degree less than our generator polynomial, g(x). Thus the completed codeword is:

This method is called systematic encoding because the information and check
bits are arranged together so that they can be recognized in the resulting codeword.
Nonsystematic encoding scrambles the positions of the information and check bits.
The effectiveness of each type of code is the same; the relative positions of the bits
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are of no matter as long as the encoder and decoder agree on those positions. To
test the codeword for errors, we divide it by the generator polynomial:

The remainder is zero if there are no errors. This makes sense because we
computed the checkbits (r(x)) from the information bits (f(x)) in the following way:

f(x)xn = q(x)g(x) + r(x)

The operation f(x)xn merely shifts f(x) left n places. Concatenating the in-
formation bits f(x) with the checkbits r(x) and dividing by g(x) again results in a
remainder, r’(x), of zero as expected because:

f(x)xn + r(x) = q(x)g(x) + r′(x)

If there are errors in the received codeword, the remainder, r’(x), is nonzero,
assuming that the errors have not transformed the received codeword into another
valid codeword. The remainder is called the syndrome and is used in further algo-
rithms to actually locate the errant bits and correct them, but that is not a trivial
matter.

The BCH codes are also cyclic, and that means that any cyclic shift of our
example codeword is also a valid codeword. For example, we could interchange the
information and checkbits fields in the last division above (a cyclic shift of 15 bits)
and the remainder would still be zero.

3.7 Decoding the BCH(31,16) Code

Determining where the errors are in a received codeword is a rather complicated
process. (The concepts here are from the explanation of Lin and Costello.) Decoding
involves three steps:
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1. Compute the syndrome from the received codeword.

2. Find the error location polynomial from a set of equations derived from the
syndrome.

3. Use the error location polynomial to identify errant bits and correct them.

We have seen that computing the syndrome is not difficult. However, with the
BCH codes, to implement error correction we must compute several components
which together comprise a syndrome vector. For a t error correcting code, there are
2t components in the vector, or six for our triple error correcting code. These are
each formed easily using polynomial division, as above, however the divisor is the
minimal polynomial of each successive power of the generating element, α.

Let v(x) be our received codeword. Then Si = v(x) mod mi(x), where mi(x) is
the minimal polynomial of αi. In our example,

• S1(x) = v(x) mod m1(x)

• S2(x) = v(x) mod m2(x)

• S3(x) = v(x) mod m3(x)

• S4(x) = v(x) mod m4(x)

• S5(x) = v(x) mod m5(x)

• S6(x) = v(x) mod m6(x)

Now in selecting the minimal polynomials, we take advantage of that property
of field elements whereby several powers of the generating element have the same
minimal polynomial. If f(x) is a polynomial over GF(2) and α is an element of
GF(2m), then if b = 2i, αb is also a root of f(x) for i ≤ 013. These are called conjugate
elements. From this we see that all powers of α such as α2, α4, α8, α16, ... are roots
of the minimal polynomial of α. In GF(32) which applies to our example, we must
find the minimal polynomials for α through α6. The six minimal polynomials are:

• m1(x) = m2(x) = m4(x) = x5 + x2 + 1

• m3(x) = m6(x) = x5 + x4 + x3 + x2 + 1

• m5(x) = x5 + x4 + x2 + x+ 1

Next, we form a system of equations in α:
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• S1(α) = α + α2 + ...+ αn

• S2(α
2) = (α)2 + (α2)2 + ...+ (αn)2

• S3(α
3) = (α)3 + (α2)3 + ...+ (αn)3

• S4(α
4) = (α)4 + (α2)4 + ...+ (αn)4

• S5(α
5) = (α)5 + (α2)5 + ...+ (αn)5

• S6(α
6) = (α)6 + (α2)6 + ...+ (αn)6

It turns out that each syndrome equation is a function only of the errors in the
received codeword. The αi are the unknowns, and a solution to these equations
yields information we use to construct an error locator polynomial. One can see
that this system is underconstrained, there being multiple solutions. The one we
are looking for is the one that indicates the minimum number of errors in the received
codeword (we are being optimistic).

The method of solution of this system involves elementary symmetric functions
and Newton’s identities and is beyond the scope of this paper. However, this method
has been reduced to an algorithm by Berlekamp that builds the error locator poly-
nomial iteratively. Using the notation of Lin and Costello, a t + 2 line table may be
use to handle the bookkeeping details of the error correction procedure for binary
BCH decoding. It is described next.

First, make a table (using BCH(31,16) as our example):

The BCH decoding algorithm follows:

1. Initialize the table as above. Set µ = 0

2. If dµ = 0,then σ(µ+1)(x) = σ(µ)(x).Let L = lµ+1.

3. If dµ 6= 0, then find a preceding row (row ρ) with the most positive 2µ− lµ and
dρ 6= 0. Then σ(µ+1)(x) = σ(µ)(x) + dµd

−1
ρ x2(µ−ρ)σ(ρ)(x). If µ = t− 1,terminate

the algorithm.
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4. lµ+1 = deg(σ(µ+1)(x)).

5. dµ+1 = S2µ+3+σ
(µ+1)
1 S2µ+2+σ

(µ+1)
2 S2µ+1+...+σ

(µ+1)
L S2µ+3−L·σi is the coefficient

of the i-th term in σ(x).

6. Increment µ and repeat from step 2.

At each step we are computing the next approximation to the error locator
polynomial σ(µ)(x). Depending upon the result of the previous step, we may be
required to add a correction term, dµ to σ(µ)(x). When we have completed step t -
1, σ(µ)(x) is the final error locator polynomial if it has degree less than or equal to
t. If the degree is greater than t, then the codeword cannot be corrected (there are
more than t errors).

Let us work out an example. Given our sample codeword (0000000001000001100
101000100010) we introduce three errors as if it were a corrupt received codeword,
v(x) = 0001000011000001100100000100010. Now we set to work computing syn-
drome components. Remember that the check polynomials are, with their binary
equivalents,

• m1(x) = m2(x) = m4(x) = x5 + x2 + 1 (100101),

• m3(x) = m6(x) = x5 + x4 + x3 + x2 + 1(111101),

• m5(x) = x5 + x4 + x2 + x+ 1(110111),

; so we have three divisions to do to find six syndrome components. These are
done by simple binary division, as above, details omitted.

• S1(x) = v(x) mod m1(x) = x2

• S2(x) = v(x) mod m2(x) = x2

• S3(x) = v(x) mod m3(x) = x4 + x3 + x+ 1

• S4(x) = v(x) mod m4(x) = x2

• S5(x) = v(x) mod m5(x) = x4 + x

• S6(x) = v(x) mod m6(x) = x4 + x3 + x+ 1

We find Si(α
i) by substituting αi into the equations above, reducing using the

table we derived for GF(32) when necessary. Remember that α5 = α2 + 1.
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• S1(α) = α2

• S2(α
2) = α4

• S3(α
3) = (α3)4 + (α3)3 + (α3) + 1 = α14

• S4(α
4) = α8

• S5(α
5) = (α5)4 + (α5) = α29

• S6(α
6) = (α6)4 + (α6)3 + (α6) + 1 = α28

Using the algorithm, we fill in the table.

Set µ = 0. We see that dµ 6= 0, so we choose ρ = −1/2, and:

σ(µ+1)(x) = σ(µ)(x)+dµd
−1
ρ x2(µ−ρ)σ(ρ)(x) = σ(0)(x)+d0d

−1
−1/2x

2(0+1/2)σ(−1/2)(x) =

1 + (α2)(1)(x)(1) = α2x+ 1.
Then, lµ+1 = deg(σ(µ+1)(x)) = deg(α2x+ 1) = 1.

Finally, dµ+1 = S2µ+3+σ
(µ+1)
1 S2µ+2+σ

(µ+1)
2 S2µ+1+...+σ

(µ+1)
L S2µ+3−L = S3+σ

(1)
1 S2 =

(α14) + α2(α4) = α26.

Set µ = 1. We see that dµ 6= 0, so we choose ρ = 0, and:

σ(µ+1)(x) = σ(µ)(x)+dµd
−1
ρ x2(µ−ρ)σ(ρ)(x) = σ(1)(x)+d1d

−1
0 x2(1−0)σ(0)(x) = (α2x+

1) + (α26)(α2)−1x2(1) = (α2x+ 1) + (α24)x2 = α24x2 + α2x+ 1.
Then, lµ+1 = deg(σ(µ+1)(x)) = deg(α24x2 + α2x+ 1) = 2.

Finally, dµ+1 = S2µ+3+σ
(µ+1)
1 S2µ+2+σ

(µ+1)
2 S2µ+1+...+σ

(µ+1)
L S2µ+3−L = S5+σ

(2)
1 S4+

σ
(2)
2 S3 = (α29) + α2(α8) + α24(α14) = α20.

Set µ = 2. We see that dµ 6= 0, so we choose ρ = 1, and:

σ(µ+1)(x) = σ(µ)(x) + dµd
−1
ρ x2(µ−ρ)σ(ρ)(x) = σ(2)(x) + d2d

−1
1 x2(2−1)σ(1)(x) =

(α24x2 +α2x+1)+(α20)(α26)−1x2(α2x+1) = (α24x2 +α2x+1)+(α25)x2(α2x+1) =
α24x2 + α2x+ 1 + α27x3 + α25x2 = α27x3 + α11x2 + α2x+ 1.

The final error locator polyonomial is σ(µ)(x) = α27x3 + α11x2 + α2x+ 1.
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We next find the roots of σ(µ)(x) in GF(32) by trial and error substitution.
(There is a search algorithm due to Chen that is more efficient.) The roots are
α4, α9, and α22. The bit positions of the error locations correspond to the inverses
of these roots, or α27, α22, and α9, respectively. A polynomial corresponding to the
error pattern would then be e(x) = x27 + x22 + x9. Adding e(x) to the received
codeword corrects the errors. Examining the original corrupt codeword we created,

and it is clear that the calculated error pattern matches the actual error pattern
and c(x) matches our original codeword.

If there are no errors, then the syndromes all work out to zero. One to three errors
produce the corresponding number of bits in e(x). More than three errors typically
results in an error locator polynomial of degree greater than t = 3. However, it is
again possible that seven bit errors could occur, resulting in a zero syndrome and
a false conclusion that the message is correct. That is why most error correction
systems take other steps to ensure data integrity, such as using an overall check code
on the entire sequence of codewords comprising a message.

In practice, error correction is done in either software or hardware. The Berlekamp
algorithm is complex and not too attractive when considered for high-speed com-
munications systems, or operation on power limited microprocessors. One version
of the BCH code is used in pagers and another in cell phones, so optimization of the
algorithm for the application is important. A cursory scan of the literature shows
efforts are being made to discover alternative methods of decoding BCH codes.



Chapter 4

Low-Density Parity-Check
(LDPC)

4.1 Introduction

LDPC codes are one of the hottest topics in coding theory today. Originally
invented in the early 1960’s, they have experienced an amazing comeback in the last
few years. Unlike many other classes of codes LDPC codes are already equipped with
very fast (probabilistic) encoding and decoding algorithms. The question is that of
the design of the codes such that these algorithms can recover the original codeword
in the face of large amounts of noise. New analytic and combinatorial tools make it
possible to solve the design problem. This makes LDPC codes not only attractive
from a theoretical point of view, but also perfect for practical applications. In this
note I will give a brief overview of the origins of LDPC codes and the methods used
for their analysis and design.

At the beginning, they started using Turbo-Codes. These were discovered in
1992 being finally a reliable codification scheme at the end of the 90s, when they
were used in spacial applications. But finally, some years later, the great advances
achieved in LDPC codes have made them become way better than Turbo-Codes. As
a matter of fact, in 2003, DVB made some trials and LDPC managed to beat up to
six different Turbo-Codes, thus being LDPC adopted for the second generation of
DVB standards. At the end of this chapter we will see some comparisons between
both types of coding.

This note constitutes an attempt to highlight some of the main aspects of the
theory of low-density parity-check (LDPC) codes.

41
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4.2 Shannon’s Theorem

The year 1948 marks the birth of information theory. In that year, Claude E.
Shannon, as i commented in chapter 1 (see page 12), published his epoch making
paper on the limits of reliable transmission of data over unreliable channels and
methods on how to achieve these limits. Among other things, this paper formalized
the concept of information, and established bounds for the maximum amount of
information that can be transmitted over unreliable channels. A communication
channel is usually defined as a triple consisting of an input alphabet, an output al-
phabet, and for each pair (i, o) of input and output elements a transition probability
p(i, o). Semantically, the transition probability is the probability that the symbol o
is received given that i was transmitted over the channel.

Given a communication channel, Shannon proved that there exists a number,
called the capacity of the channel, such that reliable transmission is possible for
rates arbitrarily close to the capacity, and reliable transmission is not possible for
rates above capacity.

The notion of capacity is defined purely in terms of information theory. As
such it does not guarantee the existence of transmission schemes that achieve the
capacity. In the same paper Shannon introduced the concept of codes as ensembles
of vectors that are to be transmitted. It is clear that if the channel is such that
even one input element can be received in at least two possible ways (albeit with
different probabilities), then reliable communication over that channel is not possible
if only single elements are sent over the channel. This is the case even if multiple
elements are sent that are not correlated (in a manner to be made precise). To
achieve reliable communication, it is thus imperative to send input elements that
are correlated. This leads to the concept of a code, defined as a (finite) set of vectors
over the input alphabet. We assume that all the vectors have the same length, and
call this length the block length of the code. If the number of vectors is K = 2k,
then every vector can be described with k bits. If the length of the vectors is n,
then in n times use of the channel k bits have been transmitted. We say then that
the code has a rate of k/n bits per channel use, or k/n bpc.

Suppose now that we send a codeword, and receive a vector over the output
alphabet. How do we infer the vector that we sent? If the channel allows for
errors, then there is no general way of telling which codeword was sent with absolute
certainty. However, we can find the most likely codeword that was sent, in the
sense that the probability that this codeword was sent given the observed vector is
maximized. To see that we really can find such a codeword, simply list all the K
codewords, and calculate the conditional probability for the individual codewords.
Then find the vector or vectors that yield the maximum probability and return one
of them. This decoder is called the maximum likelihood decoder. It is not perfect:
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it takes a lot of time (especially when the code is large) and it may err; but it is the
best we can do.

Shannon proved the existence of codes of rates arbitrarily close to capacity for
which the probability of error of the maximum likelihood decoder goes to zero as the
block length of the code goes to infinity. (In fact, Shannon proved that the decoding
error of the maximum likelihood decoder goes to zero exponentially fast with the
block length, but we will not discuss it here.)

Codes that approach capacity are very good from a communication point of view,
but Shannon’s theorems are non-constructive and don’t give a clue on how to find
such codes. More importantly, even if an oracle gave us sequences of codes that
achieve capacity for a certain rate, it is not clear how to encode and decode them
efficiently. Design of codes with efficient encoding and decoding algorithms which
approach the capacity of the channel is the main topic of this note.

Before I close this section, let me give an example of two communication channels:
the binary erasure channel (BEC), and the binary symmetric channel (BSC). These
channels are described in figure 4.1. In both cases the input alphabet is binary, and
the elements of the input alphabet are called bits. In the case of the binary erasure
channel the output alphabet consists of 0, 1, and an additional element denoted e
and called erasure. Each bit is either transmitted correctly (with probability 1− p),
or it is erased (with probability p). The capacity of this channel is 1− p.

Figure 4.1: Two examples of channels: (a) The Binary Erasure Channel (BEC)
with erasure probability p, and (b) The Binary Symmetric Channel (BSC) with
error probability p.

In the case of the BSC both the input and the output alphabet is F2. Each bit is
either transmitted correctly with probability 1− p, or it is flipped with probability
p. This channel may seem simpler than the BEC at first sight, but in fact it is
much more complicated. The complication arises since it is not clear which bits are
flipped. (In the case of the BEC it is clear which bits are erased.) The capacity of
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this channel is 1 + p · log2(p) + (1− p) · log2(1− p). Maximum likelihood decoding
for this channel is equivalent to finding, for a given vector of length n over F2, a
codeword that has the smallest Hamming distance from the received word. It can be
shown that maximum likelihood decoding for the BSC is NP-complete. In contrast,
for linear codes maximum likelihood decoding on the BEC is polynomial time, since
it can be reduced to solving a system of equations.

4.3 Algorithmic Issues

Soon after Shannon’s discoveries researchers found that random codes are ca-
pacity achieving. In fact, this is implicit in Shannon’s treatise itself. But achieving
capacity is only part of the story. If these codes are to be used for communication,
one needs fast algorithms for encoding and decoding. Note that random codes of
rate R bpc are just 2Rn random vectors of length n over the input alphabet. We
need some description of these vectors to be able to embed information into them,
or we need to write all of them down into a so-called codebook describing which
sequence of Rn bits gets mapped to which codeword. This requires a codebook of
size 2Rn, which is too big for any reasonably sized code (say of length 1000 and rate
0.5, which yields 2500 vectors—too large to handle).

If the input alphabet has the structure of a field (for example the binary alphabet
which yields the field F2), then one can do better, at least as far as encoding goes.
Elias and Golay independently introduced the concept of linear codes of block length
n and dimension k defined as subspaces of the vector space F 2

n . Such codes have
rate k/n (we will omit the unit bpc for binary codes from now on), and since they
are linear, they can be described in terms of a basis consisting of k vectors of length
n. A codebook can now be implicitly described in a natural manner by mapping
a bit vector (x1, ..., xk) to the vector obtained by taking linear combinations of the
basis vectors given by the coefficients x1, ..., xk.

The class of linear codes is very rich. Shannon’s arguments can be used (almost
Verbatim) to show that there are sequences of linear codes with rates arbitrarily
close to capacity and for which the error probability of the maximum likelihood
decoder approaches zero (exponentially fast) as the block length goes to infinity.
Moreover, it can also be shown that random linear codes achieve capacity. Unlike
their non-linear brethren, linear codes can be encoded in polynomial time, rather
than exponential time. This is good news.

How about decoding? The decoding problem seems much tougher. As was
mentioned above, the maximum likelihood problem on the BSC has been shown to be
NP-hard for many classes of linear codes (e.g., general linear codes over Fq for any q).
It is therefore unlikely to find polynomial time algorithms for maximum likelihood
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decoding of general linear codes. One way to get around this negative result is to try
to repeat the success story for the encoding problem and to specialize to subclasses
of general linear codes. However, we have not been able to find subclasses of linear
codes for which maximum likelihood decoding is polynomial time and which achieve
capacity.

Another possiblity is to look at sub-optimal algorithms that are polynomial time
by construction. This is the path we will follow in the next section.

4.4 LPCD Codes

LDPC codes were invented by Robert Gallager in his PhD thesis. Soon after
their invention, they were largely forgotten, and reinvented several times for the
next 30 years. Their comeback is one of the most intriguing aspects of their history,
since two different communities reinvented codes similar to Gallager’s LDPC codes
at roughly the same time, but for entirely different reasons.

LDPC codes are linear codes obtained from sparse bipartite graphs. Suppose
that G is a graph with n left nodes (called message nodes) and r right nodes (called
check nodes). The graph gives rise to a linear code of block length n and dimension
at least n−r in the following way: The n coordinates of the codewords are associated
with the n message nodes. The codewords are those vectors (c1, ..., cn) such that for
all check nodes the sum of the neighboring positions among the message nodes is
zero. Figure 4.2 gives an example.
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Figure 4.2: An LDPC code.

The graph representation is analogous to a matrix representation by looking at
the adjacency matrix of the graph: let H be a binary r × n-matrix in which the
entry (i, j) is 1 if and only if the ith check node is connected to the jth message
node in the graph. Then the LDPC code defined by the graph is the set of vectors
c = (c1, ..., cn) such that H · cT = 0. The matrix H is called a parity check matrix
for the code. Conversely, any binary r × n-matrix gives rise to a bipartite graph
between n message and r check nodes, and the code defined as the null space of
H is precisely the code associated to this graph. Therefore, any linear code has
a representation as a code associated to a bipartite graph (note that this graph is
not uniquely defined by the code). However, not every binary linear code has a
representation by a sparse bipartite graph1. If it does, then the code is called a
low-density parity-check (LDPC) code.

The sparsity of the graph structure is key property that allows for the algorithmic
efficiency of LDPC codes. The rest of this note is devoted to elaborating on this
relationship.

1To be more precise, sparsity only applies to sequences of matrices. A sequence of m × n-
matrices is called c-sparse if mn tends to infinity and the number of nonzero elements in these
matrices is always less than cmax(m,n).



4. Low-Density Parity-Check (LDPC) 47

4.5 Decoding Algorithms: Belief Propagation

Let me first start by describing a general class of decoding algorithms for LDPC
codes. These algorithms are called message passing algorithms, and are iterative
algorithms. The reason for their name is that at each round of the algorithms
messages are passed from message nodes to check nodes, and from check nodes back
to message nodes. The messages from message nodes to check nodes are computed
based on the observed value of the message node and some of the messages passed
from the neighboring check nodes to that message node. An important aspect is
that the message that is sent from a message node v to a check node c must not
take into account the message sent in the previous round from c to v. The same is
true for messages passed from check nodes to message nodes.

One important subclass of message passing algorithms is the belief propagation
algorithm. This algorithm is present in Gallager’s work, and it is also used in
the Artificial Intelligence community. The messages passed along the edges in this
algorithm are probabilities, or beliefs. More precisely, the message passed from a
message node v to a check node c is the probability that v has a certain value given
the observed value of that message node, and all the values communicated to v in
the prior round from check nodes incident to v other than c. On the other hand,
the message passed from c to v is the probability that v has a certain value given all
the messages passed to c in the previous round from message nodes other than v.

It is easy to derive formulas for these probabilities under a certain assumption
called independence assumption, which I will discuss later. It is sometimes ad-
vantageous to work with likelihoods, or sometimes even log-likelihoods instead of
probabilities. For a binary random variable x let L(x) = Pr[x = 0]/Pr[x = 1] be
the likelihood of x. Given another random variable y, the conditional likelihood of x
denoted L(x|y) is defined as Pr[x = 0|y]/Pr[x = 1|y]. Similarly, the log-likelihood
of x is lnL(x), and the conditional log-likelihood of x given y is lnL(x|y).

If x is an equiprobable random variable, then L(x|y) = L(y|x) by Bayes’ rule.
Therefore, if y1, ..., yd are independent random variables, then we have:

lnL(x|y1, ..., yd) =
d∑
i=1

lnL(x|yi) (4.1)

Now suppose that x1, ..., xl are binary random variables and y1, ..., yl are random
variables. Denote addition over F2 by ⊕. We would like to calculate lnL(x1 ⊕ ...⊕
xl|y1, ..., yl). Note that if p = 2Pr[x1 = 0|y1] − 1 and q = 2Pr[x2 = 0|y2] − 1, then
2Pr[x1⊕x2 = 0|y1, y2]−1 = pq. (Why?) Therefore, 2Pr[x1⊕ ...⊕xl = 0|y1, ..., yl]−
1 =

∏l
i=1 (2Pr[xi = 0|yi]− 1). Since Pr[xi = 0|yi] = L(xi|yi)/(1+L(xi|yi)), we have

that 2Pr[xi = 0|yi] − 1 = (L − 1)/(L + 1) = tanh(l/2), where L = L(xi|yi) and
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l = lnL. Therefore, we obtain:

lnL(x1 ⊕ ...⊕ xl|y1, ..., yl) = ln
1 +

∏l
i=1 (tanh(li/2)

1−∏l
i=1 (tanh(li/2)

(4.2)

; where li = lnL(xi|yi). The belief propagation algorithm for LDPC codes can
be derived from these two observations. In round 0, the check nodes send along all
the outgoing edges their log-likelihoods conditioned on their observed value. For
example, if the channel used is the BSC with error probability p, then the first
message sent to all the check nodes adjacent to a message node is ln(1 − p) − lnp
if the node’s value is zero, and it is the negative of this value if the node’s value
is one. In all the subsequent rounds of the algorithm a check node c sends to an
adjacent message node v a likelihood according to 4.2. A message node v sends
to the check node c its log-likelihood conditioned on its observed value and on the
incoming log-likelihoods from adjacent check nodes other than c using the relation
4.1.

Let mvc
(l) be the message passed from message node v to check node c at the lth

round of the algorithm. Similarly, define m(l)
vc . At round 0, m(0)

vc is the log-likelihood
of the message node conditioned on its observed value, which is independent of c.
We denote this value by mv. Then the update equations for the messages under
belief-propagation can be described as:

; where Cv is the set of check nodes incident to message node v, and Vc is the
set of message nodes incident to check node c.

The computations at the check nodes can be simplified further by performing
them in the log- domain. Since the value of tanh(x) can be negative, we need to
keep track of its sign separately. Let γ be a map from the real numbers [−∞,∞] to
F2 x [0,∞] defined by γ(x) := (sgn(x),−lntanh(|x|/2)) (we set sgn(x) = 1 if x ≥ 1
and sgn(x) = 0 otherwise.) It is clear that γ is bijective, so there exists an inverse
function γ−1. Moreover, γ(xy) = γ(x) + γ(y), where addition is component-wise
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in F2 and in [0,∞]. Then it is very easy to show that the last equation above is
equivalent to:

We will use this representation when discussing density evolution later. In prac-
tice, belief propagation may be executed for a maximum number of rounds or until
the passed likelihoods are close to certainty, whichever is first. A certain likelihood
is a likelihood in which lnL(x|y) is either∞ or−∞. If it is∞,then Pr[x = 0|y] = 1,
and if it is −∞, then Pr[x = 1|y] = 1.

One very important aspect of belief propagation is its running time. Since the
algorithm traverses the edges in the graph, and the graph is sparse, the number of
edges traversed is small. Moreover, if the algorithm runs for a constant number of
times, then each edge is traversed a constant number of times, and the algorithm
uses a number of operations that is linear in the number of message nodes!

Another important note about belief propagation is that the algorithm itself is
entirely independent of the channel used, though the messages passed during the
algorithm are completely dependent on the channel.

One question that might rise is about the relationship of belief propagation and
maximum likelihood decoding. The answer is that belief propagation is in general
less powerful than maximum likelihood decoding. In fact, it is easy to construct
classes of LDPC codes for which maximum likelihood decoding can decode many
more errors than belief propagation (one example is given by biregular bipartite
graphs in which the common degree of the message nodes is very large).

4.6 Asymptotic Analysis of Belief Propagation and

Density Evolution

The messages passed at each round of the belief propagation algorithm are ran-
dom variables. If at every round in the algorithm the incoming messages are statis-
tically independent, then the update equation correctly calculates the corresponding
log-likelihood based on the observations. (This is what I meant by the independence
assumption above.) This assumption is rather questionable, though, especially when
the number of iterations is large. In fact, the independence assumption is correct
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for the l first rounds of the algorithm only if the neighborhood of a message node
up to depth l is a tree.

Nevertheless, belief propagation can be analyzed using a combination of tools
from combinatorics and probability theory. The first analysis for a special type of
belief propagation appeared in, and was applied to hard decision decoding of LDPC
codes. The analysis was vastly generalized in to belief propagation over a large class
of channels.

The analysis starts by proving that if l is fixed and n and r are large enough,
then for random bipartite graphs the neighborhood of depth l of most of the message
nodes is a tree. Therefore, for l rounds the belief propagation algorithm on these
nodes correctly computes the likelihood of the node. Let us call these nodes the
good nodes. We will worry about the other nodes later.

Next the expected behavior of belief propagation is calculated by analysing the
algorithm on the tree, and a martingale is used to show that the actual behavior
of the algorithm is sharply concentrated around its expectation. This step of the
analysis is rather standard, at least in Theoretical Computer Science.

Altogether, the martingale arguments and the tree assumption (which holds for
large graphs and a fixed iteration number l) prove that a heuristic analysis of belief
propagation on trees correctly mirrors the actual behavior on the full graph for a
fixed number of iterations. The probability of error among the good message nodes
in the graph can be calculated according to the behavior of belief propagation. For
appropriate degree distributions this shows that the error probability of the good
message nodes in the graph can be made arbitrarily small. What about the other
(non-good) message nodes? Since their fraction is smaller than a constant, they
will contribute only a subconstant term to the error probability and their effect will
disappear asymptotically, which means that they are not relevant for an asymptotic
analysis.

The analysis of the expected behavior of belief propagation on trees leads to
a recursion for the density function of the messages passed along the edges. The
general machinery shows that, asymptotically, the actual density of the messages
passed is very close to the expected density. Tracking the expected density during
the iterations thus gives a very good picture of the actual behavior of the algorithm.
This method, called density evolution, is one of the crown jewels of the asymptotic
theory of LDPC codes. In the following, I will briefly discuss this.

As a first remark note that if X1, ..., Xd are i.i.d. random variables over some
(additive) group G, and if f is the common density of the Xi, then the density F
of X1 + ...+Xd equals the d-fold convolutional power of f . (For any two integrable
functions f and g defined over G the convolution of f and g, denoted f ⊗ g, is
defined as (f ⊗ g)(τ) =

∫
G f(σ)g(τ − σ)dG, where dG is the Haar measure on G.)
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If G is the group of real numbers with respect to multiplication, then f ⊗ g is the
well-known convolution of real functions.

Let now g denote the common density function of the messages m(i)
cv sent from

check nodes to message nodes at round i of the algorithm, and let f denote the
density of the messages mv, i.e., the likelihood of the messages sent at round 0 of
the algorithm. Then the update rule for the densities in the equation above implies
that the common density fi+1 of the messages sent from message nodes to check
nodes at round i+ 1 conditioned on the event that the degree of the node is d
equals f ⊗ g⊗(d−1)i .

Next we assume that the graph is random such that each edge is connected
to a message node of degree d with probability λd, and each edge is connected to
a check node of degree d with probability ρd. Then the expected density of the
messages sent from message nodes to check nodes at round i+ 1 is f ⊗ λ(gi), where

λ(gi) =
∑
d λdg

⊗(d−1)
i . (All this of course assumes the independence assumption.)

To assess the evolution of the densities at the check nodes, we need to use the
operator γ introduced above. For a random variable X on [−∞,∞] with density F
let Γ(F ) denote the density of the random variable γ(X). γ(X) is defined on the
group G := F2 x [0,∞]. Therefore, the density of γ(X) + γ(Y ) is the convolution
(over G) of Γ(F ) and Γ(H), where H denotes the density of Y . Following the
equation above and assuming independence via the independence assumption, we
see that the common density gi of the messages passed from check to message nodes
at round i is Γ − 1(ρ(Γ(fi))), where ρ(h) =

∑
d ρdh

⊗(d−). All in all, we obtain the
following recursion for the densities fi:

fi+1 = f ⊗ λ(Γ−1(ρ(Γ(fi)))) (4.3)

This recursion is called density evolution. The reason for the naming should be
obvious. I have not made the recursion very explicit. In fact, the operator Γ has
not been derived at all.

Density evolution can be used in conjunction with Fourier Transform techniques
to obtain asymptotic thresholds below which belief propagation decodes the code
successfully, and above which belief propagation does not decode successfully.

Density evolution is exact only as long the incoming messages are independent
random variables. For a finite graph this can be the case only for a small number
of rounds.
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4.7 Decoding on the BEC

Perhaps the most illustrative example of belief propagation is when it is applied
to LDPC codes over the BEC with erasure probability p. In fact, almost all the
important and interesting features of the belief propagation algorithm are already
present on the BEC. A thorough analysis of this special case seems thus to be a
prerequisite for the general case.

It is sufficient to assume that the all-zero codeword was sent. The log-likelihood
of the messages at round 0, mv, is +∞ if the corresponding message bit is not erased,
and it is 0 if the message bit is erased. Moreover, consulting the update equations
for the messages, we see that if v is not erased, then the message passed from v to
any of its incident check nodes is always +∞.

The update equations also imply that mcv is +∞ if and only if all the message
nodes incident to c except v are not erased. In all other cases mcv is zero.

If v is an erased message node, then mv = 0. The message mvc is +∞ if and only
if there is some check node incident to v other than c which was sending a message
+∞ to v in the previous round.

Because of the binary feature of the messages, belief propagation on the erasure
channel can be described much easier in the following:

1. Initialization: Initialize the values of all the check nodes to zero.

2. Direct recovery: For all message nodes v, if the node is received, then add its
value to the values of all adjacent check nodes and remove v together with all
edges emanating from it from the graph.

3. Substitution recovery: If there is a check node c of degree one, substitute its
value into the value of its unique neighbor among the message nodes, add that
value into the values of all adjacent check nodes and remove the message nodes
and all edges emanating from it from the graph.

This algorithm was first proposed though connections to belief propagation were
not realized then. It is clear that the number of operations that this algorithm
performs is proportional to the number of edges in the graph. Hence, for sparse
graphs the algorithm runs in time linear in the block length of the code. However,
there is no guarantee that the algorithm can decode all message nodes. Whether or
not this is the case depends on the graph structure.

The decoding algorithm can be analyzed along the same lines as the full belief
propagation. First, we need to find the expected density of the messages passed
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at each round of the algorithm under the independence assumption. In this case,
the messages are binary (either +∞ or 0), hence we only need to keep track of one
parameter, namely the probability pi that the messages passed from message nodes
to check nodes at round i of the algorithm is 0. Let qi denote the probability that
the message passed from check nodes to message nodes at round i of the algorithm
is 0. Then, conditioned on the event that the message node is of degree d, we have
pi+1 = p · qd−1i . Indeed, a message from a message i node v to a check node c is 0 iff

waserasedandallthemessagescomingfromtheneighboringchecknodesotherthan

are 0, which is qd−1i under the independence assumption. Conditioned on i the event
that the check node has degree d we have qi = 1 − (1 − pi)d−1: the check node c
sends a message +∞ to the message node v iff all the neighboring message nodes
except for v send a message +∞ to c in the previous round. Under the independence
assumption that probability is (1− pi)d−1, which shows the identity.

These recursions are not in a usable form yet since they are conditioned on the
degrees of the message and the check nodes. To obtain a closed form we use again
the numbers λd and ρd defined above. Recall that λd is the probability that an edge
is connected to a message node of degree d, and ρd denotes the probability that an
edge is connected to a check node of degree d. Defining the generating functions
λ(x) =

∑
d λdx

d−1 and ρ(x) =
∑
d ρdx

d−1 we obtain the following recursion using the
formula for the total probability:

pi+1 = p · λ(1− ρ(1− pi)) (4.4)

Under the independence assumption, and assuming that the underlying graph is
random with edge degree distributions given by λ(x) and ρ(x), decoding is successful
if pi+1 < (1− ε)pi for all i and some 0 < ε ≤ 1. This yields the condition:

p · λ(1− ρ(1− x)) < xforx ∈ (0, p) (4.5)

for successful decoding which was first proved and later reproduced. It is a useful
and interesting exercise for the reader to show that 4.5 is identical to 4.3 in the case
of the BEC.

Condition 4.5 was proved in a completely different way than explained here. A
system of differential equations was derived whose solutions tracked the expected
fraction of nodes of various degrees as the decoding process evolved. One of the
solutions corresponds to the fraction of check nodes of reduced degree one during
the algorithm. By keeping this fraction above zero at all times, it is guaranteed
that in expectation there are always check nodes of degree one left to continue
the decoding process. To show that the actual values of the random variables are
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sharply concentrated around their computed expectations, a large deviation result
was derived which is not unsimilar to Azuma’s inequality for martingales.

Condition 4.5 can be used to calculate the maximal fraction of erasures a ran-
dom LDPC code with given edge degree distributions can correct using the simple
decoding algorithm. For example, consider a random biregular graph in which each
message node has degree 3 and each check node has degree 6. (Such a graph is
called a (3, 6)-biregular graph.) In this case λ(x) = x2 and ρ(x) = x5. What is
the maximum fraction of erasures p? (In fact, this value is a supremum.) You can
simulate the decoder on many such random graphs with a large number of message
nodes. The simulations will show that on average around 42.9% erasures can be
recovered. What is this value? According to 4.5 it is the supremum of all p such
that p(1− (1− x)5)2 < x on (0, p). The minimum of the function x/(1− (1− x)5)2

on(0,1) is attained at the unique root of the polynomial 9x4−35x3+50x2−30x+5 in
the interval (0,1), and this is the supremum value for p. This value can be computed
exactly, using formulas for the solution of the quartic.

As a side remark, I would like to mention an interesting result. First, it is not
hard to see that the ratio r/n between the message and the check nodes equals∫ 1
0 ρ(x)dx/

∫ 1
0 λ(x)dx. The rate of the code is at least 1−r/n, and since the capacity

of the erasure channel with erasure probability p is 1− p, 4.5 should imply that p ≤∫ 1
0 ρ(x)dx/

∫ 1
0 λ(x)dx in a purely mechanical way (without using the interpretations

above).

4.8 Hard Decision Decoding on the BSC

The belief propagation algorithm is the best algorithm among message passing
decoders, and the accompanying density evolution provides a tool for analysing the
algorithm. However, for practical applications on channels other than the BEC the
belief propagation algorithm is rather complicated, and often leads to a decrease in
the speed of the decoder. Therefore, often times a discretized version of the belief
propagation algorithm is used. The lowest level of discretization is achieved when
the messages passed are binary. In this case one often speaks of a hard decision
decoder, as opposed to a soft decision decoder which uses a larger range of values.
In this section I will describe two hard decision decoding algorithms on the BSC,
both due to Gallager.

In both cases the messages passed between the message nodes and the check
nodes consist of 0 and 1. Let me first describe the Gallager A algorithm: in round
0, the message nodes send their received values to all their neighboring check nodes.
From that point on at each round a check node c sends to the neighboring message
node v the addition (mod 2) of all the incoming messages from incident message
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nodes other than v. A message node v sends the following message to the check
node c: if all the incoming messages from check nodes other than c are the same
value b, then v sends the value b to c; otherwise it sends its received value to c.

An exact analysis of this algorithm was first given. The analysis is similar to
the case of the BEC. We first find the expected density of the messages passed at
each round. Again, we can assume that the all-zero word was transmitted over
the BSC with error probability p. Since the messages are 0 and 1, we only need
to track pi, the probability that the message sent from a message node to a check
node at round i is 1. Let qi denote the probability that the message sent from a
check node to a message node at round i is 1. Conditioned on the event that the
message node is of degree d, and under the independence assumption, we obtain
pi+1 = (1 − p)qd−1i + p · (1 − (1 − qi)d−1). To see i this, observe that the message 1
is passed from message node v to check node c iff one of these two cases occurs: (a)
the message node was received in error (with probability p) and at least one of the
incoming messages is a 1 (with probability 1− (1− qi)d−1), or (b) the message was
received correctly (probability 1 − p) and all incoming messages are 1 (probability
qd−1i ). To assess the evolution of i, qi in terms of pi, note that a check node c sends
a message 1 to message node v at round i iff the addition mod 2 of the incoming
messages from message nodes other than v in the previous round is 0. Each such
message is 1 with probability pi, and the messages are independent. Conditioned
on the event that the check node is of degree l, there are l − 1 such messages. The
probability that their addition mod 2 is 1 is qi = (1− (1− 2pi)l − 1)/2 (why?).

These recursions are for the conditional probabilities, conditioned on the degrees
of the nodes. Introducing the generating functions λ(x) and ρ(x) as above, we obtain
the following recursion for the probabilities themselves:

pi+1 = (1− p) · λ(
1− ρ(1− 2pi)

2
) + p · (1− λ(

1 + ρ(1− 2pi)

2
)) (4.6)

If λ(x), ρ(x), and p are such that pi is monotonically decreasing, then decoding
will be successful asymptotically with high probability, as long as the independence
assumption is valid. For example, consider a (3,6)-biregular graph. In this case
λ(x) = x2 and ρ(x) = x5, and the condition becomes:

(1− p) · (1− (1− 2x)5

2
)2 + p · (1− (

1 + (1− 2x)5

2
)2) < x (4.7)

for x
∫

(0, p). A numerical calculation shows that the best value for p is around
0.039.

By Shannon’s theorem the maximum error probability that a code of rate 1/2
can correct is the maximum p such that 1 + p · log2(p) + (1 − p) · log2(1 − p) =
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0.5. A numerical approximation shows that p is around 11%, which means that
the Gallager A algorithm on the biregular (3, 6)-graph is very far from achieving
capacity. Bazzi shows that for rate 1/2 the best graph for the Gallager A algorithm
is the biregular (4, 8)-graph for which the maximum tolerable error probability is
roughly 0.0475—still very far from capacity. This shows that this algorithm, though
simple, is very far from using all the information that can be used.

Gallager’s algorithm B is slightly more powerful than algorithm A. In this al-
gorithm, for each degree j and each round i there is a threshold value bi,j (to be
determined) such that at round i for each message node v and each adjacent check
node c, if at least bi,j neighbors of v excluding c sent the same information in the
previous round, then v sends that information to c; otherwise v sends its received
value to c. The rest of the algorithm is the same as in algorithm A.

It is clear that algorithm A is a special case of algorithm B, in which bi,j = j− 1
independent of the round.

This algorithm can be analyzed in the same manner as algorithm A, and a
recursion can be obtained for the probability pi that a message node is sending the
incorrect information to a check node at round i:

; where the value of bi,j is the smallest integer that satisfies:

The above one parameter recursions can be used to design codes that asymptot-
ically perform very well for a given amount of noise. The method of choice in these
cases is linear programming.
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4.9 Completing the Analysis: Expander Based

Arguments

Density evolution and its instantiations are valid only as long as the incoming
messages are independent. The messages are independent for l rounds only if the
neighborhoods of depth l around the message nodes are trees. But this immediately
puts an upper bound on l (of the order log(n), where n is the number of message
nodes). But this number of rounds is usually not sufficient to prove that the decoding
process corrects all errors. A different analysis is needed to complete the decoding.

One property of the graphs that guarantees successful decoding is expansion. A
bipartite graph with n message nodes is called an (α, β)-expander if for any subset
S of the message nodes of size at most αn the number of neighbors of S is at least
β · as · |S|, where aS is the average degree of the nodes in S. In other words, if there
are many edges going out of a subset of message nodes, then there should be many
neighbors.

Expansion arguments have been used by many researchers in the study of de-
coding codes obtained from graphs. Later, they used expander based arguments to
show that the erasure correction algorithm on the BEC and Gallager’s hard deci-
sion decoding algorithm will decode all the erasures/errors if the fraction of errors
is small and the graph has sufficient expansion. Burshtein and Miller generalized
these results to general message passing algorithms.

To give the reader an idea of how these methods are used, I will exemplify them
in the case of the BEC. Choose a graph with edge degree distributions given by λ(x)
and ρ(x) at random. The analysis of the belief propagation decoder for the BEC
implies that if condition 4.5 is true, then for any ε > 0 there is an n0 such that for all
n ≥ n0 the erasure decoder reduces the number of erased message nodes below εn.
The algorithm may well decode all the erasures, but the point is that the analysis
does not guarantee that.

To complete the analysis of the decoder, we first note the following fact: if the
random graph is an (ε, 1/2)-expander, then the erasure decoding algorithm recovers
any set of εn or fewer erasures. Suppose that this were not the case and consider
a minimal counterexample consisting of a nonempty set S of erasures. Consider
the subgraph induced by S, and denote by Γ(S) the set of neighbors of S. No
node in Γ(S) has degree 1, since this neighbor would recover one element in S and
would contradict the minimality of S. Hence, the total number of edges emanating
from these nodes is at least 2|Γ(S)|. On the other hand, the total number of edges
emanating from S is aS · |S|, so aS∆|S| ≥ 2|Γ(S)| which implies |Γ(S)| ≤ aS∆|S|/2
and contradicts the expansion property of the graph.

It is shown that for a random bipartite graph without message nodes of degree
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one or two there is a constant ε depending on the rate of the induced code and on
the degrees of the message nodes such that the graph is an (ε, 1/2)-expander with
high probability. On random graphs without message nodes of degrees one or two
we see that the erasure decoding algorithm succeeds with high probability provided
condition 4.5 is satisfied.

4.10 Achieving Capacity

Recall Shannon’s theorem which states the existence of codes that come arbi-
trarily close to the capacity of the channel when decoded with maximum likelihood
decoding. LDPC codes were designed to have decoding algorithms of low complex-
ity, such as belief propagation and its variants. But how close can we get to capacity
using these algorithms?

There is no satisfactory answer to this question for arbitrary channels. What I
mean by a satisfactory answer is an answer to the question whether subclasses of
LDPC codes, for example LDPC codes with an appropriate degree distribution, will
probably come arbitrarily close to the capacity of the channel. Optimization results
for various channels, such as the Additive White Gaussian Noise (AWGN) channel
and the BSC have produced specific degree distributions such that the corresponding
codes come very close to capacity.

We call an LDPC code ε-close for a channel C with respect to some message
passing algorithm if the rate of the code is at least Cap(C) − ε and if the message
passing algorithm can correct errors over that channel with high probability. We
call a sequence of degree distributions (λ(n)(x), ρ(n)(x)) capacity-achieving over that
channel with respect to the given algorithm if for any ε there is some n0 such that for
all n ≥ n0 the LDPC code corresponding to the degree distribution (λ(n)(x), ρ(n)(x))
is ε-close to capacity. Using this notation, the following question is open:

Is there a nontrivial channel other than the BEC and a message passing algorithm
for which there exists a capacity-achieving sequence (λ(n)(x), ρ(n)(x))?

I believe that this question is one of the fundamental open questions in the
asymptotic theory of LDPC codes. Some authors describe capacity-achieving se-
quences for the BEC for any erasure probability p. Let ε > 0 be given, let D := [1/ε],
and set:

λ(x) =
1

H(D)

D∑
i=1

xi

i
, ρ(x) = eα(x−1) (4.8)

; where α = H(D)/p. (Technically, ρ(x) cannot define a degree distribution since
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it is a power series and not a polynomial. But the series can be truncated to obtain
a function that is arbitrarily close to the exponential.) We now apply 4.5:

pλ(1− ρ(1− x)) < − p

H(D)
ln(ρ(1− x)) =

αp

H(D)
x = x (4.9)

This shows that a corresponding code can decode a p-fraction of erasures with
high probability2.

What about the rate of these codes? Above, we mentioned that the rate of the
code given by the degree distributions λ(x) and ρ(x) is at least 1−

∫
0 1ρ(x)dx/

∫ 1
0 λ(x)dx.

In our case, this lower bound equals 1 − p(1 + 1/D)(1 − e−α) which is larger than
1− p(1 + ε).

The degree distribution above is called the Tornado degree distribution and the
corresponding codes are called Tornado codes. These codes have many applications
in computer networking which I will not mention here.

Tornado codes were the first class of codes that could provably achieve the ca-
pacity of the BEC using belief propagation. Since then many other distributions
have been discovered.

For the ending, in the figure 4.3 is illustrated a comparison of a LDPC with other
codes. As we can see, LDPC approximates very closely to Shannon limit.

2Actually, as was discussed before, 4.5 only shows that the fraction of erasures can be reduced
to any constant fraction of the number of message nodes. To show that the decoding is successful
all the way to the end, we need a different type of argument. Expansion arguments do not work
for the corresponding graphs, since there are many message nodes of degree 2.
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Figure 4.3: Example of approximation of LPDC to Shannon limit.

4.11 Graphs of Large Girth

As is clear from the previous discussions, if the smallest cycle in the bipartite
graph underlying the LDPC code is of length 2l, then independence assumption is
valid for l rounds of belief propagation. In particular, density evolution describes
the expected behavior of the density functions of these messages exactly for this
number of rounds.

The girth of a graph is defined as the length of the smallest cycle in the graph.
For bipartite graphs the girth is necessarily even, so the smallest possible girth is 4.
It is easy to obtain an upper bound for the girth of a biregular bipartite graph with
n message nodes of degree d and r check nodes of degree k: if the girth is 2l, then
the neighborhood of depth l− 1 of any message node is a tree with a root of degree
d, and in which all nodes of odd depth have degree k − 1, while all nodes of even
depth have degree d − 1 (we assume that the root of the tree has depth 0). The
number of nodes at even depths in the tree should be at most equal to the message
nodes, while the number of nodes at odd depths in the tree should be at least equal
to the check nodes. The number of nodes at even depths in the tree equals 1 for
depth 0, d(k − 1) for depth 2, d(k − 1)D for depth 4, d(k − 1)D2 for depth 6, etc.,
where D = (d− 1)(k − 1). The total number of nodes at even depths is equal to:

1 + d(k − 1)D
l
2−1
D−1
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This number has to be less than or equal to n, the number of message nodes.
This yields an upper bound on 2l, the girth of the graph. The bound has order
logD(n). Similar bounds can be obtained by considering nodes of odd depths in the
tree.

A similar bound as above can also be deduced for irregular graphs, but I will not
discuss it here.

As I said before, graphs of large girth are interesting because of the accuracy of
belief propagation. However, this is not interesting for practical purposes, since for
obtaining accuracy for many rounds the girth of the graph has to be large which
means that the number of nodes in the graph has to be very large.

There are other reasons to study graphs of large girth, however. From the point of
view of combinatorics graphs of large girth which satisfy (or come close to) the upper
bound on the girth are extremal objects. Therefore, to construct them, methods
from extremal graph theory need to be applied. From the point of view of coding
theory eliminating small cycles is very similar to eliminating words of small weight
in the code. This is because a word of weight d leads to a cycle of length 2d or less.
(Why?)

How does one construct bipartite graphs of large girth? There are a number
of known techniques with origins in algebra and combinatorics. For example, it is
very easy to construct optimal bipartite graphs of girth 6. Below I will give such
a construction. Let C be a Reed-Solomon code of dimension 2 and length n over
the field Fq. By definition, this code has q2 codewords and the Hamming distance
between any two distinct codewords is at least n−1. From C we construct a bipartite
graph with q2 message nodes and nq check nodes in the following way: The message
nodes correspond to the codewords in C. The check nodes are divided in groups of
q nodes each; the nodes in each such group corresponds to the elements of Fq. The
connections in the graph are obtained as follows: A message node corresponding to
the codewords (x1, ..., xn) is connected to the check nodes corresponding to x1 in
the first group, to x2 in the second group, ..., to xn in the last group. Hence, all
message nodes have degree n, and all check nodes have degree q, and the graph has
in total nq2 edges. Suppose that this graph has a cycle of length 4. This means
that there are two codewords (corresponding to the two message nodes in the cycle)
which coincide at two positions (corresponding to the two check nodes in the cycle).
This is impossible by the choice of the code C, which shows that the girth of the
graph is at least 6. To show the optimality of these graphs, we compare the number
of check nodes to the above bound. Let 2l denote the girth of the graph. If l = 3,
then 1+n(q−1) ≤ q2,which shows that n ≤ q + 1. By choosing n = q+1 we obtain
optimal graphs of girth 6.

If n < q + 1, the graphs obtained may not be optimal, and their girth may be
larger than 6. For n 6= 2 it is easy to see that the girth of the graph is indeed 6.
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For n = 2 the girth is 8. (A cycle of length 6 in the graph corresponds to three
codewords such that every two coincide in exactly one position. This is possible for
n > 2, and impossible for n = 2.)

There are many constructions of graphs without small cycles using finite geome-
tries, but these constructions are for the most part not optimal (except for cases
where the girth is small, e.g., 4, or cases where the message nodes are of degree 2).

The sub-discipline of combinatorics dealing with such questions is called extremal
combinatorics. One of the questions studied here is that of existence of graphs that
do not contain a subgraph of a special type (e.g., a cycle). I will not go deeper into
these problems here and refer the reader to appropriate literature.

A discussion of graphs of large girth is not complete without at least mentioning
Ramanujan graphs which have very large girth in an asymptotic sense. I will not
discuss these graphs at all in this note.

4.12 Encoding Algorithms

An encoding algorithm for a binary linear code of dimension k and block length n
is an algorithm that computes a codeword from k original bits x1, ..., xk. To compare
algorithms against each other, it is important to introduce the concept of cost, or
operations. For the purposes of this note the cost of an algorithm is the number of
arithmetic operations over F2 that the algorithm uses.

If a basis g1, ..., gk for the linear code is known, then encoding can be done by
computing x1g1 + ... + xkgk. If the straightforward algorithm is used to perform
the computation (and it is a priori not clear what other types of algorithms one
may use), then the number of operations sufficient for performing the computation
depends on the Hamming weights of the basis vectors. If the vectors are dense, then
the cost of the encoding is proportional to nk. For codes of constant rate, this is
proportional to n2, which may be too slow for some applications.

Unfortunately LDPC codes are given as the null space of a sparse matrix, rather
than as the space generated by the rows of that matrix. For a given LDPC code it
is highly unlikely that there exists a basis consisting of sparse vectors, so that the
straightforward encoding algorithm uses a number of operations that is proportional
to n2. However, we would like to design algorithms for which the encoding cost is
proportional to n.

At this point there are at least two possible ways to go. One is to consider
modifications of LDPC codes which are automatically equipped with fast encoding
algorithms. The other is to try to find faster encoding algorithms for LDPC codes.
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I will discuss both these approaches here, and outline some of the pro’s and con’s
for each approach.

One simple way to obtain codes from sparse graphs with fast encoding is to
modify the construction of LDPC codes in such a way that the check nodes have
values, and the value of each check node is the addition of the values of its adja-
cent message nodes. (In such a case, it would be more appropriate to talk about
redundant nodes, rather than check nodes, and of information nodes rather than
message nodes. But to avoid confusion, I will continue calling the right nodes check
nodes and the left nodes message nodes.) Figure 4.4 gives an example. The number
of additions needed in this construction is upper bounded by the number of edges.
So, efficient encoding is possible if the graph is sparse. The codewords in this code
consist of the values of the message nodes, appended by the values of the check
nodes.

Figure 4.4: Construction with fast encoder

This construction leads to a linear time encoder, but it has a major problem
with decoding. I will exemplify the problem for the case of the BEC. First, it
is not clear that the belief propagation decoder on the BEC can decode all the
erasures. This is because the check nodes can also be erased (in contrast to the
case of LDPC codes where check nodes do not have a value per-se, but only keep
track of the dependencies among the values of the message nodes). This problem
is not an artifact of the non-optimal belief propagation decoder. Even the error
probability of the maximum likelihood decoder is lower bounded by a constant in
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this case. Let me elaborate. Suppose that a codeword is transmitted over a BEC
with erasure probability p. Then an expected p-fraction of the message nodes and
an expected p-fraction of the check nodes will be erased. Let Λd be the fraction of
message nodes of degree d. Because the graph is random, a message node of degree
d will have all its neighbors in the set of erased check nodes with probability pd.
This probability is conditioned on the event that the degree of the message node is
d. So, the probability that a message node has all its neighbors within the set of
erased check nodes is

∑
d Λdp

d, which is a constant independent of the length of the
code. Therefore, no algorithm can recover the value of that message node.

The following idea is used the to overcome this difficulty: the redundant nodes
will be protected themselves with another graph layer to obtain a second set of
redundant nodes; the second set will be protected by a third set, etc. This way a
cascade of graphs is obtained rather than a single graph. At each stage the number
of message and check nodes of the graphs decreases by a constant fraction. After a
logarithmic number of layers the number of check nodes is small enough so the check
nodes can be protected using a sophisticated binary code for which we are allowed
to use a high-complexity decoder. If any single graph in the cascade is such that
belief propagation can decode a p-fraction of errors, then the entire code will have
the same property, with high probability (provided the final code in the cascade has
that property, but this can be adjusted). All in all, this construction provides linear
time encodable and decodable codes.

The idea of using a cascade, though appealing in theory, is rather cumbersome
in practice. For example, in the case of the BEC, the variance of the fraction of
erasures per graph-layer will often be too large to allow for decoding. Moreover,
maintaining all the graphs is rather complicated and may lead to deficiencies in the
decoder.

Another class of codes obtained from sparse graphs and equipped with fast en-
coders are the Repeat-Accumulate (RA) codes of Divsalar. The construction of these
codes is somewhat similar to the construction discussed above. However, instead of
protecting the check nodes with another layer of a sparse graph, the protection is
done via a dense graph, and the check nodes of the first graph are never transmit-
ted. Dense graphs are in general not amenable to fast encoding. However, the dense
graph chosen in an RA code is of a special structure which makes its computation
easy.

More formally, the encoding process for RA codes is as follows. Consider an
LDPC code whose graph has n message nodes and r check nodes. The value of the
r check nodes is computed using the procedure introduced above, i.e., the value of
each check node is the addition of the values of its adjacent message nodes. Let
(y1, ..., yr) denote the values of these check nodes. The redundant values (s1, ..., sr)
are now calculated as follows: s1 = y1, s2 = s1 +y2, ..., sr = sr−1 +yr. (This explains
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the phrase “accumulate.”) An example of an RA code is given in figure 4.5 .

Figure 4.5: An irregular RA code. The left nodes are the information symbols, and
the rightmost nodes are the redundant nodes. The squares in between are check
nodes. Their values are computed as the addition of the values of their neighbors
among the information nodes. The values of the redundant nodes are calculated so
as to satisfy the relation that the values of the check nodes is equal to the addition
of the values of the neighboring redundant nodes.

The original RA codes used a (1, k)-biregular graph for some k as the graph
defining the LDPC code. (This explains the phrase “repeat.”) RA codes were gen-
eralized to encompass irregular RA codes for which the underlying graph can be
any bipartite graph. The same paper introduces degree distributions for which the
corresponding RA codes achieve capacity of the BEC.

We conclude this section by mentioning the work of Richardson and Urbanke
which provides an algorithm for encoding LDPC codes. They show that if the
degree distribution (λ(x), ρ(x)) is such that ρ(1− λ(x)) < x for x ∈ (0, 1), and such
that λ2ρ

′(1) > 1, then the LDPC code can be encoded in linear time. The condition
λ2ρ

′(1) > 1 has the following interpretation: consider the graph generated by the
message nodes of degree 2. This graph induces a graph on the check nodes, by
interpreting the message nodes of degree 2 as edges in that graph. Then λ2ρ

′(1) > 1
implies that this induced graph has a connected component whose number of vertices



66 4.13. Finite-Length Analysis

is a constant fraction of the number of check nodes. This will be explained further,
where this condition is actually used to devise a linear time encoding algorithm for
a certain type of graphs.

4.13 Finite-Length Analysis

Density evolution gives a somewhat satisfactory answer to the asymptotic per-
formance of random LDPC codes with a given degree distribution. It is possible to
refine the analysis of density evolution to obtain upper bounds on the error proba-
bility of the decoder in terms of the degree distributions, and in terms of the number
of message and check nodes. However, these bounds are very poor even when the
number of message nodes is several tens of thousands large. This is primarily due
to two reasons: density evolution is only valid as long as the neighborhood around
message nodes is a tree. For small graphs this corresponds to a very small number
of iterations, which is usually too small to reduce the fraction of errors in the graph
to a reasonable amount. The second source of inaccuracy for the error probability
is the set of tools used, since the bounds obtained from the probabilistic analysis
are too weak for small lengths.

For these reasons it is important to develop other methods for analyzing the
performance of message passing algorithms on small graphs. So far this has only
started for the case of the BEC. In this case the analysis is of a combinatorial flavor.
Given a bipartite graph, its associated code, and a set of erasures among the check
nodes, consider the graph induced by the erased message nodes. A stopping set in
this graph is a set of message nodes such that the graph induced by these message
nodes has the property that no check node has degree one. The number of message
nodes in the stopping set is called its size. It should be clear that belief propagation
for the BEC stops prematurely (i.e., without recovering all the message nodes) if
and only if this subgraph has a stopping set. Figure 4.6 gives some examples of
graphs that are themselves stopping sets. Since unions of stopping sets are stopping
sets, any finite graph contains a unique maximal stopping set (which may be the
empty set). For a random bipartite graph the probability that belief propagation on
the BEC has not recovered l message nodes at the point of failure (l can be zero) is
the probability that the graph induced by the erased message nodes has a maximal
stopping set of size l.
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Figure 4.6: Examples of graphs that are stopping sets.

I am not aware of similar analysis tools for channels other than the BEC. Gener-
alizing the concept of stopping sets to other channels would certainly be a worthwhile
effort.

4.14 Examples

4.14.1 Example 1

In this section I will exemplify most of the above concepts for a special type of
LDPC codes. The codes I will describe in this section certainly do not stand out
because of their performance. However, it is rather easy to derive the main concepts
for them and this warrants their discussion in the framework of this note. Moreover,
it seems that a thorough understanding of their behavior is very important for
understanding belief propagation for general LDPC codes. I will try to clarify this
more at the end of the section.

For given n and r let P(n,r) denote the ensemble of bipartite graphs with n
message nodes and r check nodes for which each message node has degree 2 and
its two neighbors among the check nodes are chosen independently at random. The
check node degrees in such a graph are binomially distributed, and if n and r are
large, then the distribution is very close to a Poisson distribution with mean 2n/r.
(This is a well-known fact). It turns out that the edge degree distribution of the
graph is very close to eα(x−1) where α = 2n/r is the average degree of the check
nodes.

First, let us see how many erasures this code can correct. The maximum fraction
of erasures is 1 - R, where R is the rate, which is at least 1 - r/n. We should therefore
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not expect to be able to correct more than an r/n-fraction of erasures, i.e., more
than a 2/α-fraction. We now apply Condition 4.5: p is the maximum fraction of
correctable erasures iff p · (1 − e−αx) < x for x ∈ (0, p). Replacing x by px, this
condition becomes:

1− e−βx < x, β = pα (4.10)

This latter condition has an interesting interpretation: the graph induced by
the p-fraction of erasures is a random graph in the ensemble P(e,r), where e is the
number of erasures, the expected value of which is en. For this graph the edge
distribution from the point of view of the check nodes is e−pα(x−1), and thus 4.5
implies 4.10.

Next, I will show that the maximum value of β for which Condition 4.10 holds is
β = 1. For the function 1− e−βx − x to be less than 0 in (0, 1), it is necessary that
the derivative of this function be non-positive at 0. The derivative is βe−βx− 1, and
its value at 0 is β − 1. Hence, β ≤ 1 is a necessary condition for 4.10 to hold. On
the other hand, if β = 1, then 4.10 is satisfied. Therefore, the maximum fraction of
correctable erasures for a code in the ensemble P(n, r) is r/(2n), i.e., the performance
of these codes is at half the capacity. So, the ensemble P(n,r) is not a very good
ensemble in terms of the performance of belief propagation on the BEC.

Figure 4.7: A graph with left degree 2 and its induced graph on the check nodes.

Before I go further in the discussion of codes in the ensemble P(n, r), let me give
a different view of these codes. A bipartite graph with n message nodes and r check
nodes in which each message node has degree 2 defines a (multi-)graph on the set of
check nodes by regarding each message node as an edge in the graph in the obvious
way. Multi-graphs and bipartite graphs with message degree 2 are in one-to-one
correspondence to each other. In the following we will call the graph formed on the
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check nodes of a bipartite graph G with message degree 2 induced by G. Figure 4.7
gives an example.

For a graph in the ensemble P(n, r) the corresponding induced graph is a random
graph of type Gr,n, where Gm,E denotes the random graph on m vertices in which E

edges are chosen randomly and with replacement among all the possible
(
m
2

)
edges

in the graph.

For a bipartite graph G with message degree 2 the stopping sets are precisely
the edges of a 2-core. Let me define this notion: For any graph and any integer k
the k-core of the graph is the unique maximal subgraph of G in which each node
has degree k. The k-core may of course be empty.

It is a well-known fact that a giant 2-core exists with high probability in a random
graph with E edges in m nodes iff the average degree of a node is larger than 1,
i.e., iff E ≥ m. (A giant 2-core in the graph is a 2-core whose size is linear in the
number of vertices of the graph.) Condition 4.10 is a new proof for this fact, as it
shows that if the average degree of the induced graph is smaller than 1, then with
high probability the graph does not contain a 2-core of linear size. It is also a well-
known fact that this is precisely the condition for the random graph to contain a
giant component, i.e., a component with linearly many nodes. Therefore, condition
4.10 can also be viewed as a condition on the graph not having a large component.
(This condition is even more precise, as it gives the expected fraction of unrecovered
message nodes at the time of failure of the decoder: it is p times the unique root
of the equation 1 − x − e−βx in the interval (0, 1); incidentally, this is exactly the
expected size of the giant component in the graph, as is well-known in random graph
theory.)

More generally, one can study graphs from the ensemble L(n, r, ρ(x)) denoting
random graphs with n message and r check nodes with edge degree distribution on
the check side given by ρ(x) =

∑
d ρdx

d−1 (i.e., probability that an edge is connected
to check node of degree d is ρd). The maximum fraction of tolerable erasures in this
case is the supremum of all p such that 1 − ρ(1 − px) − x < 0 for x ∈ (0, 1). This
yields the stability condition pρ′(1) < 1. This condition is also sufficient, since it
implies that pρ′(1 − px) < 1 on (0, 1), hence 1 − ρ(1 − px) − x is monotonically
decreasing, and since this function is 0 at x = 0, it is negative for x ∈ (0, 1).

The condition pρ′(1) < 1 is equivalent to the statement that the graph induced
on the check nodes by the bipartite graph has a giant component. According to
that paper, if a graph is chosen randomly on n nodes subject to the condition
that for each d the fraction of nodes of degree d is essentially Rd (see the paper
for a precise definition), then the graph has almost surely a giant component iff∑
d d(d−2)Rd > 0. Consider the graph obtained from the restriction of the message

nodes to a p-fraction, and consider the graph induced by this smaller graph on the
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check nodes. Then, it is not hard to see that the degree distribution for this graph is
R(px+1−p), where R(x) = c

∫
ρ(x)d and c is the average degree of the check nodes

in the smaller bipartite graph. Therefore, the condition for the induced graph to
have a giant component equals pR′′(1) < c, where R′′(x) is the second derivative of
R(x). This is precisely equal to pρ′(1) < 1, i.e., the stability condition is equivalent
to the statement that the induced graph has a giant component. Incidentally, this
is also equivalent to the condition that the graph does not have a giant 2-core,
since stopping sets are equivalent to 2-cores in this setting. The fraction of nodes
in the giant 2-core (if it exists) is equal to the unique solution of the equation
1− ρ(1− px)− x = 0 in (0, 1).

LDPC codes from graphs with left degree 2 play an important role. It states
that small amounts of noise are correctable by belief propagation for an LDPC
code with degree distribution given by λ(x) and ρ(x) if and only if λ2ρ

′(1) <
(
∫+∞
−∞ f(x)e−x/2dx)−1, where f(x) is the density of the log-likelihood of the channel.

For −∞ example, for the BEC with erasure probability p we obtain λ2ρ
′(1) < 1/p,

and for the BSC with error probability p we obtain λ2ρ
′(1) < 1/

√
p(1− p). The

stability condition is actually the condition that belief propagation is successful on
the subgraph induced by message nodes of degree 2. This is not surprising, since
these message nodes are those that are corrected last in the algorithm. (I do not
give a proof of this, but this should sound reasonable, since message nodes of degree
2 receive very few messages in each round of iteration, and hence get corrected only
when all the incoming messages are reasonably correct.)

4.14.2 Example 2

4.14.2.1 Encoding

As we said before, LDPC codes are defined by a sparse parity-check matrix.
This sparse matrix is often randomly generated, subject to the sparsity constraints.
These codes were first designed by Gallager in 1962.

Below is a graph fragment of an example LDPC code using Forney’s factor graph
notation. In this graph, n variable nodes in the top of the graph are connected
to (n − k) constraint nodes in the bottom of the graph. This is a popular way
of graphically representing an (n, k) LDPC code. The bits of a valid message,
when placed on the T’s at the top of the graph, satisfy the graphical constraints.
Specifically, all lines connecting to a variable node (box with an ’=’ sign) have the
same value, and all values connecting to a factor node (box with a ’+’ sign) must
sum, modulo two, to zero (in other words, they must sum to an even number).
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Ignoring any lines going out of the picture, there are 8 possible 6-bit strings
corresponding to valid codewords: (i.e., 000000, 011001, 110010, 101011, 111100,
100101, 001110, 010111). This LDPC code fragment represents a 3-bit message
encoded as six bits. Redundancy is used, here, to increase the chance of recovering
from channel errors. This is a (6, 3) linear code, with n = 6 and k = 3.

Once again ignoring lines going out of the picture, the parity-check matrix rep-
resenting this graph fragment is:

In this matrix, each row represents one of the three parity-check constraints,
while each column represents one of the six bits in the received codeword. In this
example, the eight codewords can be obtained by putting the parity-check matrix
H into this form [−P T |In−k] through basic row operations:

From this, the generator matrix G can be obtained as [Ik|P ] (noting that in the
special case of this being a binary code P = −P ), or specifically:
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Finally, by multiplying all eight possible 3-bit strings by G, all eight valid code-
words are obtained. For example, the codeword for the bit-string ’101’ is obtained
by:

4.14.2.2 Decoding

As with other codes, optimally decoding an LDPC code on the binary symmetric
channel is an NP-complete problem, although techniques based on iterative belief
propagation used in practice lead to good approximations. In contrast, belief prop-
agation on the binary erasure channel is particularly simple where it consists of
iterative constraint satisfaction.

For example, consider that the valid codeword, 101011, from the example above,
is transmitted across a binary erasure channel and received with the first and fourth
bit erased to yield ?01?11. Since the transmitted message must have satisfied the
code constraints, the message can be represented by writing the received message
on the top of the factor graph.

In this example, the first bit cannot yet be recovered, because all of the con-
straints connected to it have more than one unknown bit. In order to proceed with
decoding the message, constraints connecting to only one of the erased bits must be
identified. In this example, either the second or third constraint suffices. Examining
the second constraint, the fourth bit must have been 0, since only a 0 in that posi-
tion would satisfy the constraint. This procedure is then iterated. The new value
for the fourth bit can now be used in conjunction with the first constraint to recover
the first bit as seen below. This means that the first bit must be a 1 to satisfy the
leftmost constraint.

Thus, the message can be decoded iteratively. For other channel models, the
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messages passed between the variable nodes and check nodes are real numbers,
which express probabilities and likelihoods of belief. This result can be validated by
multiplying the corrected codeword r by the parity-check matrix H:

Because the outcome z (the syndrome) of this operation is the 3× 1 zero vector,
the resulting codeword r is successfully validated.

4.15 Comparative: LDPC vs TC

A brief comparison of Turbo codes and LDPC codes will be given in this section,
both in term of performance and complexity. The reader can find further information
in appendix B (It is not included in the thesis since Turbo-codes are not used in the
DVB standards). In order to give a fair comparison of the codes, we use codes of
the same input word length when comparing. The rate of both codes is R = 1/2.

Figures 4.8 and 4.9 show the performance of Turbo codes and the LDPC codes
with information length 1784 and 3568 respectively. The Turbo codes defined in the
CCSDS (see bibliography) were used for obtaining the performance curves. For both
code lengths the LDPC codes are better until a certain S/N is reached, respectively
Eb/No = 1.15 and 1.1 dB. This characteristic ’error floor’ or ’knee’ was also typical
of Turbo codes in earlier years, but this has become less of a problem lately due to
the definition of good permutation matrices.
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Figure 4.8: Turbo code and LDPC codes: I = 1784.

Figure 4.9: Turbo code and LDPC codes: I = 3568.

In order to compare the complexity of the codes, the number of multiplications,
additions and complex operations like log, tanh, e and tanh−1 were counted in both
codes. Figure 4.10 shows the number of operations per iteration for the LDPC and
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Turbo codes of length I = 1784 and 3568.

Figure 4.10: Complexity: The figure shows Additions (Add.), Multiplications
(Mult.) and Complex operations (Komp.) per iteration for LDPC and Turbo codes
for I = 1784 and I = 3568.

The number of iterations used may vary in the case of the LDPC codes, as the
decoding quality may easily be checked, i.e. that if a valid code word is decoded, the
decoding may be stopped. Hence, there will be less and less iterations performed
the higher the S/N. Hence, in order to characterize the complexity, a representative
number of operations per code word was computed at Eb/No = 1 dB. The maximum
number of iterations was set to 100 for the smaller code and to 45 for the larger code.
This was chosen in order to give a fair comparison with Turbo codes: With the above
parameters the bit error rate for the LDPC code was 0.0038 and 0.00054 for the I
= 1784 and I = 3568 codes respectively, whereas for the Turbo code the bit error
rate was 0.0043 and 0.00062 respectively, i.e. the error rates were sufficiently similar
for a fair comparison to be given. In the case of Turbo codes, the computation of
complexity is simpler since the number of iterations used is pre-determined.

Figure 4.11 shows the number of operations per code word, separated into the
different categories of operations. The total number of operations per code word is
given in figure 4.12.
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Figure 4.11: Complexity: The figure shows Additions (Add.), Multiplications
(Mult.) and Complex operations (Komp.) per code word for LDPC and Turbo
codes for I = 1784 and I = 3568.

Figure 4.12: Complexity: The Figure shows the total number of operations (Addi-
tions + Multiplications + Complex operations) per code word for LDPC and Turbo
codes for I = 1784 and I = 3568.
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4.15.1 Conclusions

The results in the previous section show that LDPC codes have a significantly
lower complexity than Turbo codes at the code lengths, performance and S/N that
were considered here.

Turbo codes have a fixed number of iterations in the decoder. This implies that
the time spent in the decoding and the bit rate out of the decoder, are constant
entities. In contrast, the LDPC decoder stops when a legal code word is found,
implying that there is potential for significantly reducing the amount of work to
be done relative to Turbo codes. This also implies that the bit rate out of the
decoder will vary, and a buffer system must be designed in order to make the bit
rate constant. The LDPC decoder will become faster the higher the S/N.

An advantage with LDPC codes is that the decoders may be implemented in
parallel. This has significant advantages when considering long codes.

4.16 Comparative: LDPC vs DBTC (Duo-Binary

Turbo codes)

The performance comparison (figure 4.13) underlines the fact that the selection
of an appropriate coding technique depends crucially on the target block length.
For a code rate of 1/2, DBTC3 outperform LDPC for block lengths up to 1728 (0.2
dB gain over LDPC for N = 576). Then LDPC start to progressively outperform
DBTC (0.1 dB better for N = 4308).

3DBTC differ from classical by the fact that the information bits are encoded pair wise.
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Figure 4.13: Performance comparison between DBTC and QC-BLDPCC, Rc=1/2.

In general, the performance loss by going from large to small block sizes is lower
for DBTC than for LDPC. The threshold (in terms of block length) that separates
these two regimes, however, depends on the code rate. When increasing the code
rate to Rc = 3/4, a block length of 1152 is sufficient for the BDLPCC to achieve the
same performance as the DBTC, and the difference observed for N = 576 is very
small (figure 4.14).

Figure 4.14: Performance comparison between DBTC and QC-BLDPCC, Rc=3/4.
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4.16.1 Complexity-Performance Trade-Off

In the following figures 4.15 and 4.16, a packet length of N = 2304 bits is rep-
resented by purple markers, and N = 576 bits by blue markers. Diamond markers
indicate results for DBTC. In the case of LDPC, we have to differentiate between the
maximum complexity (maximum number of iterations, 20 in the considered setup)
which will be represented by a circle marker. A triangle marker is used for the
average complexity (average number of iterations).

Energy and Cycles are distinguished then by the use of non- filled or filled marker,
respectively. For DBTC these figures coincide, as only simple arithmetic operations
(ADD, etc.) are used. This will be illustrated by the use of a green edge color.

Figure 4.15: Complexity-Performance Trade-Off for QC-LDPCC and DBTC,
Rc=1/2.

For the case of Rc=1/2, depicted in figure 4.15 above, DBTC offer a better
complexity-performance trade-off than LDPC for low block sizes (N = 576), as they
perform better at only slightly more energy consumption (w.r.t. the maximum
iteration case for LDPC). However, for a higher block length (N = 2304), LDPC
become more suitable, since their energy consumption saving is achieved at the
expense of only minor performance degradation.
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Figure 4.16: Complexity-Performance Trade-Off for QC-LDPCC and DBTC,
Rc=3/4.

These two trends are reinforced throughout the remaining results, in figure 4.16
above. Indeed, the higher the code rate the less energy/cycles are required by LDPC
(provided that the high code rate is achieved by using a code of a different rate rather
than puncturing the rate 1/2 code). It might be worth mentioning that DBTC still
outperform LDPC for lower block lengths, but their higher energy consumption in
the present case of 8 internal decoder iterations seems to be the price to be paid for
such performance. The presented complexity/performance trade-off is a necessary
step towards fair comparison of these two main channel coding candidates DBTC
and LDPC.

Although these results are quite informative, they are not yet sufficient for a
further technological decision. Indeed, the number of gates and the memory size
requirements, together with robustness to quantization (fixed point simulations),
still have to be investigated. Based on current assessment and know-how, these two
channel coding techniques look more like complementary than concurrent solutions
(w.r.t. block length).

4.16.2 Conclusions

Codes based on sparse graphs and iterative decoding have made near Shan-
non limit error correction performance available also for practical applications. A
large number of possible options have been identified and discussed in research and
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standardization activities. However, the huge amount of codes available is render-
ing a selection difficult, not the least because practical implementation constraints
(parallelization, fixed point implementation) are often neglected in the code design.
Comparison results for different types of codes are also scarce.

This contribution provides a detailed comparison of the two techniques in terms
of complexity, performance, and a number of implementation issues (parallelization,
suitability for H-ARQ, etc.). However, we have to stress that iterative decoding
schemes still suffer from quite low performance at short block lengths. Therefore,
convolutional codes should still considered an option with block lengths below 200
information bits. Further improved DBTC or non-binary LDPCC might replace
them in the future.

All codes show the same high degree of flexibility in terms of block sizes and
code rates and support the construction of rate compatible code sets.

The domain of suitability (for a target BLER of 1%) of all candidates is sum-
marized in figure 4.17 above. LDPCC are favored over DBTC for large block sizes
due to their superior error correction performance in this regime (lower required bit
SNR to achieve BLER of 1%). DBTC or alternatively CC should be used for small
block sizes.

Figure 4.17: Complexity-Performance Trade-Off for QC-LDPCC and DBTC,
Rc=3/4.

Recent improvements in the code design have increased the flexibility of LDPC
and DBTC in terms of block sizes and code rates to an extent that the impact of
choosing one or another of these FEC technique on the overall design of a wire-
less is becoming more and more limited, as soft-input soft-output versions of the
decoder algorithms also exist for all techniques presented in figure 4.17. The FEC
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en/decoding subblocks can hence be regarded as a “black box” by the rest of the
system, and system designers can decide in favor of the coding technique that best
suits the desired performance- (implementation) complexity trade-off only at the
end of the design process.



Chapter 5

Functionality of BCH-LDPC in
the new DVB standards

As we saw in chapter 2, all the new specifications of the new DVB standards make
use of LDPC (Low-density parity-check) codes in combination with BCH (Bose-
Chaudhuri-Hocquengham) to protect against high noise levels and interference (see
figure 5.1). In comparison, the old standards, which made use of convolutional
coding and Reed-Solomon, two further code rates have been added. Let’s see how
they function.

Figure 5.1: Bit Interleaved Coding and Modulation (BICM) in DVB-T2.

The FEC sub-system shall perform outer coding (BCH), Inner Coding (LDPC)
and Bit interleaving. The input stream shall be composed of BBFRAMEs and the
output stream of FECFRAMEs.

Each BBFRAME (Kbch bits) shall be processed by the FEC coding subsystem,
to generate a FECFRAME (Nldpc bits). The parity check bits (BCHFEC) of the
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systematic BCH outer code shall be appended after the BBFRAME, and the parity
check bits (LDPCFEC) of the inner LDPC encoder shall be appended after the
BCHFEC field, as shown in figure 5.2.

Figure 5.2: Format of data before bit interleaving (Nldpc = 64 800 bits for normal
FECFRAME, Nldpc = 16 200 bits for short FECFRAME).

Table 5.3 gives the FEC coding parameters for the normal FECFRAME (Nldpc

= 64 800 bits) and table 5.4 for the short FECFRAME (Nldpc = 16 200 bits).

Figure 5.3: Coding parameters (for normal FECFRAME Nldpc = 64 800).
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Figure 5.4: Coding parameters (for short FECFRAME Nldpc = 16 200).

Note: For Nldpc = 64 800 as well as for Nldpc =16 200 the LDPC code rate is
given by Kldpc/Nldpc. In table 5.3 the LDPC code rates for Nldpc = 64 800 are given
by the values in the ’LDPC Code’ column. In table 5.4 the LDPC code rates for
Nldpc = 16 200 are given by the values in the ’Effective LDPC rate’ column, i.e. for
Nldpc = 16 200 the ’LDPC Code identifier’ is not equivalent to the LDPC code rate.

5.1 Outer encoding (BCH)

A t-error correcting BCH (Nbch, Kbch) code shall be applied to each BBFRAME
to generate an error protected packet. The BCH code parameters for Nldpc = 64 800
are given in table 5.3 and for Nldpc = 16 200 in table 5.4. The generator polynomial of
the t error correcting BCH encoder is obtained by multiplying the first t polynomials
in table 5.5 for Nldpc = 64 800 and in table 5.6 for Nldpc = 16 200.



86 5.1. Outer encoding (BCH)

Figure 5.5: BCH polynomials (for normal FECFRAME Nldpc = 64 800).

Figure 5.6: BCH polynomials (for short FECFRAME Nldpc = 16 200).

The bits of the baseband frame form the message bits M = (mKbch−1,mKbch−2, ...,
m1,m0) for BCH encoding, where mKbch−1 is the first bit of the BBHEADER and
m0 is the last bit of the BBFRAME (or padding field if present). BCH encoding of
information bits M = (mKbch−1,mKbch−2, ...,m1,m0) onto a codeword is achieved as
follows:

• Multiply the message polynomial
m(x) = mKbch−1x

kbch−1 +mKbch−2x
kbch−2 + ...+m1x+m0 by xNbch−Kbch .

• Divide xNbch−Kbchm(x) by g(x), the generator polynomial.
Let d(x) = dNbch−Kbch−1x

Nbch−Kbch−1 + ...+ d1x+ d0 be the remainder.
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• Construct the output codeword I, which forms the information word I for the
LDPC coding, as follows:
I = (i0, i1, ..., iNbch−1) =
(mKbch−1,mKbch−2, ...,m1,m0, dNbch−Kbch−1, dNbch−Kbch−2, ..., d1, d0).

Note: The equivalent codeword polynomial is c(x) = xNbch−Kbchm(x) + d(x).

5.2 Inner encoding (LDPC)

The LDPC encoder treats the output of the outer encoding, I = (i0, i1, ..., iKldpc−1),
as an information block of size Kldpc = NBCH , and systematically encodes it onto
a codeword ∧ of size Nldpc, where:

∧ = (λ0, λ1, λ2, ..., λNldpc−1) = (i0, i1, ..., iKldpc−1
, p0, p1, ...pNldpc−Kldpc−1).

The LDPC code parameters (Nldpc, Kldpc) are given in tables 5.3 and 5.4.

5.2.1 Inner coding for normal FECFRAME

The task of the encoder is to determineNldpc−Kldpc parity bits (p0, p1, ..., pnldpc−kldpc−1)
for every block of kldpc information bits, (i0, i1, ..., iKldpc−1). The procedure is as fol-
lows:

• Initialize p0 = p1 = p2 = ... = pNldpc−Kldpc−1 = 0

• Accumulate the first information bit, i0, at parity bit addresses specified in
the first row of the given tables. For example, for rate 2/3 (see table 5.7), (all
additions are in Galois Field):
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Figure 5.7: Rate 2/3 (Nldpc = 64 800).
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• For the next 359 information bits, im,m = 1, 2, ..., 359 accumulate im parity
bit addresses {x+ (m mod 360)×Qldpc} mod (Nldpc−Kldpc) where x denotes
the address of the parity bit accumulator corresponding to the first bit i0, and
Qldpc is a code rate dependent constant specified in table 5.8. Continuing with
the example, Qldpc = 60 for rate 2/3. So for example for information bit i1,
the following operations are performed:

Figure 5.8: Qldpc values for normal frames.
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• For the 361st information bit i360 , the addresses of the parity bit accumulators
are given in the second row of the given tables. In a similar manner the
addresses of the parity bit accumulators for the following 359 information bits
im,m = 361, 362, ..., 719 are obtained using the formula
{x+ (m mod 360)×Qldpc}mod(Nldpc−Kldpc) where x denotes the address of
the parity bit accumulator corresponding to the information bit i360 , i.e. the
entries in the second row of the given tables.

• In a similar manner, for every group of 360 new information bits, a new row
from the given tables are used to find the addresses of the parity bit accumu-
lators.

After all of the information bits are exhausted, the final parity bits are obtained
as follows:

• Sequentially perform the following operations starting with i = 1.

pi = pi ⊕ pi−1, i = 1, 2, ..., Nldpc −Kldpc − 1

• Final content of pi, i = 0, 1, .., Nldpc −Kldpc − 1 is equal to the parity bit pi.

5.2.2 Inner coding for short FECFRAME

Kldpc BCH encoded bits shall be systematically encoded to generate Nldpc bits
as described before, replacing table 5.8 with table 5.9, and the table 5.7 with the
corresponding given table.

Figure 5.9: Qldpc values for short frames.
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5.3 Example with DVB-S2

In this section, simulation results are presented that illustrate the performance of
the DVB-S2 LDPC code. Figure 5.10 shows the frame error rate (FER) performance
of the short frame size and figure 5.12 shows the FER performance of normal frame
size. In each case, up to 100 iterations of the log-domain sum-product algorithm
are executed. Table5.11 shows the Eb/No required to achieve a FER of 10−3 for
each rate and frame size. Because of the large size of the normal frame size code
and the steepness of the corresponding FER curve, results could not be simulated
all the way down to a FER 10−3 for every code rate. Thus, extrapolated results are
given for rates r = 1/3, 1/2, 2/3 and 5/6. Note that the results presented here are
only for the LDPC code. The outer BCH code used by DVB-S2 helps to clean up
additional errors at the output of the LDPC decoder and will improve the overall
performance.

Figure 5.10: Frame error rate performance of the n = 16,200 bit (short frame)
LDPC code used in DVB-S2. The decoder uses 100 iterations of the log-domain
sum-product algorithm.



92 5.3. Example with DVB-S2

Figure 5.11: The Eb/No required to achieve FER = 10−3 for the LDPC codes used
in DVB-S2. Values marked with an asterisk (*) are extrapolated from figure 5.12.

Figure 5.12: Frame error rate performance of the n = 64, 800 bit (normal frame)
LDPC code used in DVB-S2. The decoder uses 100 iterations of the log-domain
sum-product algorithm.

The DVB-S2 standard, which uses LDPC codes, represents a significant improve-
ment in the satellite downlink. However, for these technological improvements to
be a complete success several hurdles remain. Turbo and LDPC codes are still more
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complex than their convolutional and Reed Solomon brethren, and therefore signifi-
cant advances in implementation must still come to fruition. In addition, iteratively
decodable codes are more sensitive to channel estimation and synchronization errors
and therefore these issues must be dealt with carefully.
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Chapter 6

Conclusions and future lines

Once finalized the thesis, we can sum up some of the main ideas exposed and
extract conclusions.

About the introduction to the world of error-correcting codes, we can say:

• When encoding information, the minimal Hamming distance (dmin) among
the available codewords is recommended to be as large as possible in order to
detect and correct the maximum number of errors in the transmission.

– Detectable errors ≤ dmin

– Correctible errors (t): 2t+ 1 ≤ dmin

• The cost of decreasing the level of error of a message, is the increase of the
redundancy bits (lower efficiency), latency due to more complex algorithms,
and the economic factor.

• The fact of implementing an interleaver in the outcome of the encoding helps
to fight against burst errors.

• Cyclic redundancy checks (CRCs) is the type of coding that detects a larger
number of errors due to its use of polynomials and modular arithmetic.

• Block codes are less complex than convolutional codes, since they work on
fixed-size packets.

• Shannon theorem affirms that it is possible to transmit the information almost
without error in any way under a limiting rate, C, but it does not say how.
Actually, this maximum capacity is not reachable, since the Shannon formula
assumes some conditions which in practice do not exist. It does not take into
account the impulsive noise, neither the attenuation or distortion.

95



96

About the overview of the new DVB standards:

• They all use a concatenation of BCH outer codes and LDPC inner codes
in their FEC encoding block, although there exists a variation among the
different rates used by them, since the conditions of the channels are very
different (terrestrial, cable and satellite).

About Bose and Chauduri Hocquenghem (BCH):

• It is a multilevel cyclic variable-length digital error-correcting code used to
multiple random error patterns.

• Its principal advantage is the ease with which it can be decoded, by the alge-
braic method known as syndrome decoding.

• It allows very simple electronic hardware, and it is also high flexible, allowing
control over block length and acceptable error thresholds.

• It works with Galois fields, and the optimum generator polynomial must be
primitive, minimal and taken from a combination of several polynomials corre-
sponding to several powers of a primitive element in GF (2m). For its selection
there exist some tables implemented by Lin and Costello.

• Locating errors implies an algorithm by Berlekamp that builds the error locator
polynomial iteratively. That is why it is not too attractive when considered
for high-speed applications.

• In order to ensure a high performance of the whole encoding, it is recommended
to concatenate BCH with LDPC.

About Low-density parity-check (LDPC):

• LDPC are linear codes obtained from sparse bipartite graphs. This graph has
n left nodes (message) and r right nodes (check), and its sparsity allows for
the algorithmic efficiency.

• The graph can also be represented as a parity check matrix, which creats the
available codewords.

• The decoder finds the correct codeword by a complex method called belief
propagation, by Gallager. This iterative algorithm treats the messages as ran-
dom variables and is based on some probability theorems such as Bayes’ rule.
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– One of the main advantages is its running time (due to the sparsity), and
the fact that the number of operations is linear in the number of message
nodes.

– It is independent of the channel used.

– On the contrary, it is in general less powerful than maximum likelihood
decoding.

• Comparing to Turbo Codes, we can say:

– LDPC has significantly lower complexity. TC has a fixed number of
iterations in the decoder, but in contrast, LDPC decoder stops when
a legal codeword is found, reducing the amount of work to be done.
However, this also implies the need of a buffer system in order to make
the bit rate constant.

– LDPC decoders may be implemented in parallel, which is good when
considering long blocks.

– TC offers a better complexity-performance for low block sizes (due to
the iterative decoding in LDPC), but for a higher block length LDPC
becomes more suitable.

– The higher the code rate the less energy/cycles are required by LDPC.
TC outperforms for lower block length but its higher energy consumption
is the price to be paid.

BCH and LDPC codes, represent a significant improvement in the channel down-
link. However, for these technological improvements to be a complete success several
hurdles remain. Turbo and LDPC codes are still more complex than their convolu-
tional and Reed Solomon brethren, and therefore significant advances in implemen-
tation must still come to fruition. In addition, iteratively decodable codes are more
sensitive to channel estimation and synchronization errors and therefore these issues
must be dealt with carefully.
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Appendix A

GF(2m) Field Generator
Computer Program

/* GENFIELD.C

This program generates fields of 2^m elements using polynomial arithmetic.

Hank Wallace 09-Mar-01 Revision 09-Mar-01

/* #define src_file 1

#include \process.h" #include \string.h" #include \conio.h" #include \math.h"

#include \ctype.h" #include \dos.h" #include \stdio.h" #include \stdlib.h"

typedef unsigned char typedef signed char typedef unsigned int typedef

unsigned long uchar; schar; uint; ulong;

/* ====================================================== */

char *tobinary(int number, int digits, char *s) /* This function converts an

integer to its binary representation and places it in in string s. */ {

int i;

number<<=16-digits; *s=0; for (i=0; i<digits; i++)

{

if (number & 0x8000) strcat(s,"1");

else strcat(s,"0");

number<<=1; return(s);

}

/* ====================================================== */

char *topoly(int number, int digits, char *s) /* This function converts an

integer to its polynomial representation and places it in in string s. */ {

int i;

number<<=16-digits; *s=0; for (i=0; i<digits; i++)

{

if (number & 0x8000) sprintf(&s[strlen(s)],"a^%d \, digits-i-1);

number<<=1; return(s);

}

/* ====================================================== */

}

}

void main(int argument_count, char *argument[]) {
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}

int i,// loop index order, // order of the generator polynomial x,// the

current field element n; // number of elements in the field

long poly, // polynomial entered by the user l; // scratch

char s[100]; // for string operations

// look for command line arguments if (argument_count != 2)

{

}

printf(\GF(2^m) Field Element Generator\n\n"); printf(\Usage:

GeneratorPoly(a^n...a^0)\n\n"); exit(0);

// read polynomial coefficients // polynomial is assumed to have a root alpha

not in GF(2) poly=atol(argument[1]);

// determine order of polynomial order=31; l=poly; while ((l & 0x80000000L) == 0)

{

}

order--; l<<=1;

// compute number of elements in the field n=1 << order;

// generate and print the field elements printf(\Field of %d elements

with generator polynomial %s\n",

n,topoly(poly,order+1,s));

// print the ever present zero and one elements printf(\0 %s\n",

tobinary(0,order,s)); printf(\1 %s\n",tobinary(1,order,s));

x=1; // initialize the current field element for (i=0; i<n-2; i++)

{

}

x<<=1; // multiply by the root, alpha

if (x & n) // arithmetic is modulo the polynomial {

// subtract (exclusive OR) the generator polynomial x^=poly;

}

printf(\a^%-2d %s \,i+1,tobinary(x,order,s));

printf(\%s\n",topoly(x,order,s));



Appendix B

Turbo Codes

B.1 Introduction

This part of the appendix is an introductory tutorial on turbo codes, a new
technique of error- correction coding developed in the 1990s. The reader is expected
to be familiar with the basic concepts of channel coding, although we briefly and
informally review the most important terms.

The paper starts with a short overview of channel coding and the reader is
re- minded the concept of convolutional encoding. Bottlenecks of the traditional
approach are described and the motivation behind turbo codes is explained. After
examining the turbo codes design more in detail, reasons behind their efficiency
are brought out. Finally, a real-world example of the turbo code used in the third
generation Universal Mobile Telecommunications System (UMTS) is presented.

The paper is mainly based on two excellent tutorials by Valenti and Sun, and
Barbulescu and Pietrobon. The scope of this paper does not cover implementation-
specific issues such as decoder architecture, modulation techniques and the like.

B.2 Channel coding

The task of channel coding is to encode the information sent over a communi-
cation channel in such a way that in the presence of channel noise, errors can be
detected and/or corrected. We distinguish between two coding methods:

• Backward error correction (BEC): requires only error detection: if an error
is detected, the sender is requested to retransmit the message. While this
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method is simple and sets lower requirements on the code’s error-correcting
properties, it on the other hand requires duplex communication and causes
undesirable delays in transmission.

• Forward error correction (FEC): requires that the decoder should also be ca-
pable of correcting a certain number of errors, i.e. it should be capable of
locating the positions where the errors occurred. Since FEC codes require
only simplex communication, they are especially attractive in wireless com-
munication systems, helping to improve the energy efficiency of the system.
In the rest of this paper we deal with binary FEC codes only.

Next, we briefly recall the concept of conventional convolutional codes. Con-
volutional codes differ from block codes in the sense that they do not break the
message stream into fixed-size blocks. Instead, redundancy is added continuously to
the whole stream. The encoder keeps M previous input bits in memory. Each output
bit of the encoder then depends on the current input bit as well as the M stored
bits. Figure B.1 depicts a sample convolutional encoder. The encoder produces two
output bits per every input bit, defined by the equations.

Figure B.1: A convolutional encoder.

y1,i = xi + xi−1 + xi−3

y2,i = xi + xi−2 + xi−3

For this encoder, M = 3, since the ith bits of output depend on input bit i, as
well as three previous bits i− 1, i− 2, i− 3. The encoder is nonsystematic, since the
input bits do not appear explicitly in its output.

An important parameter of a channel code is the code rate. If the input size (or
message size) of the encoder is k bits and the output size (the code word size) is n
bits, then the ratio k/n is called the code rate r. Since our sample convolutional
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en- n coder produces two output bits for every input bit, its rate is 1/2 . Code
rate expresses the amount of redundancy in the code—the lower the rate, the more
redundant the code.

Finally, the Hamming weight or simply the weight of a code word is the number
of non-zero symbols in the code word. In the case of binary codes, dealt with in this
paper, the weight of a code word is the number of ones in the word.

B.3 A need for better codes

Designing a channel code is always a tradeoff between energy efficiency and
band- width efficiency. Codes with lower rate (i.e. bigger redundancy) can usually
correct more errors. If more errors can be corrected, the communication system can
operate with a lower transmit power, transmit over longer distances, tolerate more
interference, use smaller antennas and transmit at a higher data rate. These proper-
ties make the code energy efficient. On the other hand, low-rate codes have a large
overhead and are hence more heavy on bandwidth consumption. Also, decoding
complexity grows exponentially with code length, and long (low-rate) codes set high
computational requirements to conventional decoders. According to Viterbi, this is
the central problem of channel coding: encoding is easy but decoding is hard.

For every combination of bandwidth (W), channel type, signal power (S) and
received noise power (N), there is a theoretical upper limit on the data transmission
rate R, for which error-free data transmission is possible. This limit is called channel
capacity or also Shannon capacity (after Claude Shannon, who introduced the notion
in 1948). For additive white Gaussian noise channels, the formula is:

R < W · log2(1 + S/N) [bits/second]

In practical settings, there is of course no such thing as an ideal error-free chan-
nel. Instead, error-free data transmission is interpreted in a way that the bit error
probability can be brought to an arbitrarily small constant. The bit error proba-
bility, or bit error rate (BER) used in benchmarking is often chosen to be 10−5 or
10−6.

Now, if the transmission rate, the bandwidth and the noise power are fixed, we
get a lower bound on the amount of energy that must be expended to convey one
bit of information. Hence, Shannon capacity sets a limit to the energy efficiency
of a code. Although Shannon developed his theory already in the 1940s, several
decades later the code designs were unable to come close to the theoretical bound.
Even in the beginning of the 1990s, the gap between this theoretical bound and



108 B.4. Encoding with interleaving

practical implementations was still at best about 3dB. This means that practical
codes required about twice as much energy as the theoretical predicted minimum.

Keeping these design methods in mind, we are now ready to introduce the concept
of turbo codes.

B.4 Encoding with interleaving

The first turbo code, based on convolutional encoding, was introduced in 1993
by Berrou. Since then, several schemes have been proposed and the term “turbo
codes” has been generalized to cover block codes as well as convolutional codes.
Simply put, a turbo code is formed from the parallel concatenation of two codes
separated by an interleaver.

The generic design of a turbo code is depicted in figure B.2. Although the general
concept allows for free choice of the encoders and the interleaver, most designs follow
the ideas presented in:

• The two encoders used are normally identical.

• The code is in a systematic form, i.e. the input bits also occur in the output
(see Figure B.2).

• The interleaver reads the bits in a pseudo-random order.

The choice of the interleaver is a crucial part in the turbo code design . The task
of the interleaver is to “scramble” bits in a (pseudo-)random, albeit predetermined
fashion. This serves two purposes. Firstly, if the input to the second encoder is
interleaved, its output is usually quite different from the output of the first encoder.
This means that even if one of the output code words has low weight, the other
usually does not, and there is a smaller chance of producing an output with very
low weight. Higher weight, as we saw above, is beneficial for the performance of
the decoder. Secondly, since the code is a parallel concatenation of two codes, the
divide-and-conquer strategy can be employed for decoding. If the input to the second
decoder is scrambled, also its output will be different, or “uncorrelated” from the
output of the first encoder. This means that the corresponding two decoders will
gain more from information exchange.
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Figure B.2: The generic turbo encoder.

We now briefly review some interleaver design ideas, stressing that the list is
by no means complete. The first three designs are illustrated in Figure B.3 with a
sample input size of 15 bits.

1. A “row-column” interleaver: data is written row-wise and read column- wise.
While very simple, it also provides little randomness.

2. A “helical” interleaver: data is written row-wise and read diagonally.

3. An “odd-even” interleaver: first, the bits are left uninterleaved and en- coded,
but only the odd-positioned coded bits are stored. Then, the bits are scrambled
and encoded, but now only the even-positioned coded bits are stored. Odd-
even encoders can be used, when the second encoder produces one output bit
per one input bit.

4. A pseudo-random interleaver defined by a pseudo-random number generator
or a look-up table.

There is no such thing as a universally best interleaver. For short block sizes, the
odd-even interleaver has been found to outperform the pseudo-random interleaver,
and vice versa. The choice of the interleaver has a key part in the success of the
code and the best choice is dependent on the code design.
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Figure B.3: Interleaver designs.

B.5 Some notes on decoding

In the traditional decoding approach, the demodulator makes a “hard” decision
of the received symbol, and passes to the error control decoder a discrete value,
either a 0 or a 1. The disadvantage of this approach is that while the value of some
bits is determined with greater certainty than that of others, the decoder cannot
make use of this information.

A soft-in-soft-out (SISO) decoder receives as input a “soft” (i.e. real) value
of the signal. The decoder then outputs for each data bit an estimate expressing
the probability that the transmitted data bit was equal to one. In the case of
turbo codes, there are two decoders for outputs from both encoders. Both decoders
provide estimates of the same set of data bits, albeit in a different order. If all
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intermediate values in the decoding process are soft values, the decoders can gain
greatly from exchanging information, after appropriate reordering of values. In-
formation exchange can be iterated a number of times to enhance performance. At
each round, decoders re-evaluate their estimates, using information from the other
decoder, and only in the final stage will hard decisions be made, i.e. each bit is
assigned the value 1 or 0. Such decoders, although more difficult to implement, are
essential in the design of turbo codes.

B.6 Performance

We have seen that the conventional codes left a 3dB gap between theory and
prac- tice. After bringing out the arguments for the efficiency of turbo codes, one
clearly wants to ask: how efficient are they?

Already the first rate 1/3 code proposed in 1993 made a huge improvement: the
gap between Shannon’s limit and implementation practice was only 0.7dB, giving
a less than 1.2-fold overhead. (In the authors’ measurements, the allowed bit error
rate BER was 10−5). In practice, the code rate usually varies between 1/2 and 1/6.
Let the allowed bit error rate be 10−6. For code rate 1/2, the relative increase in
energy consumption is then 4.80dB for convolutional codes, and 0.98dB for turbo
codes. For code rate 1/6, the respective numbers are 4.28dB and -0.12dB1. It can
also be noticed, that turbo codes gain significantly more from lowering the code rate
than conventional convolutional codes.

B.7 The UMTS Turbo Code

The UMTS turbo encoder closely follows the design ideas presented in 1993. The
starting building block of the encoder is the simple convolutional encoder depicted
in Figure B.1. This encoder is used twice, once without interleaving and once with
the use of an interleaver, exactly as described above.

In order to obtain a systematic code, desirable for better decoding, the following
modifications are made to the design. Firstly, a systematic output is added to the
encoder. Secondly, the second output from each of the two encoders is fed back to
the corresponding encoder’s input. The resulting turbo encoder, depicted in Figure
B.4, is a rate 1/3 encoder, since for each input bit it produces one systematic output
bit and two parity bits.

1Although the relative value is negative, it does not actually violate the Shannon’s limit. The
negative value is due to the fact that we allow for a small error, whereas Shannon’s capacity applies
for perfect error-free transmission.
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Figure B.4: The UMTS turbo encoder.

B.8 Conclusions

Turbo codes are a recent development in the field of forward-error-correction
channel coding. The codes make use of three simple ideas: parallel concatena- tion
of codes to allow simpler decoding; interleaving to provide better weight distribution;
and soft decoding to enhance decoder decisions and maximize the gain from decoder
interaction.

While earlier, conventional codes performed—in terms of energy efficiency or,
equivalently, channel capacity—at least twice as bad as the theoretical bound sug-
gested, turbo codes immediately achieved performance results in the near range of
the theoretically best values, giving a less than 1.2-fold overhead. Since the first
proposed design in 1993, research in the field of turbo codes has produced even
better results. Nowadays, turbo codes are used in many commercial applications,
including both third generation cellular systems UMTS and cdma2000.
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