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ABSTRACT: A photoredox strategy for the synthesis of a wide range of allylic amines and ethers from carboxylic acids and alkynes 
has been developed. This approach relies on the perturbation of the ground-state electronical properties of terminal alkynes through 
the formation and photoexcitation of copper acetylide intermediates. This process takes place through cooperative copper and organic 
photoredox catalysis and can be carried out in stereodivergent manner. Thus, a systematic multivariate HTE screening spotlighted 
that a switch in the stereochemical outcome can be provoked by choosing an appropriate combination of ligand and base. The devel-
oped methodology has been applied to the stereoselective coupling of primary, secondary and tertiary alkyl radicals with (hetero)ar-
omatic terminal alkynes. As an additional practicality, similar reaction conditions allowed for the use of aromatic amines as radical 
precursors in a cross dehydrogenative coupling for the direct vinylation of inactivated C–H bonds. 

Over the last decade, the resurgence of visible-light photore-
dox catalysis has disclosed unprecedented opportunities in the 
generation of radical intermediates by selective activation of 
small organic molecules under mild reaction conditions. These 
open-shell intermediates are often formed by a photocatalyst 
mediated single-electron or by energy transfer and engaged in 
peculiar reaction pathways which are complementary to ther-
mal two-electron processes.1 

In this context, the radical additions to simple alkenes, sty-
renes, and α,β-unsaturated carbonyl compounds have been 
widely explored.2 In contrast and despite its attractiveness, the 
reaction of radicals with alkynes has been less exploited.3 In 
fact, alkynes are ubiquitous structural motifs and the ability of 
a photocatalyst to perform selective energy transfer to them may 
lay the foundations for unprecedented stereoselective pro-
cesses.4 From a mechanistic perspective, the reasons for the lim-
ited development of radical addition to alkynes can be probably 
assigned to the slow rate of C–C bond formation, this being in 
turn related to the larger singlet-triplet gap of triple bonds with 
respect to the corresponding double bonds.5 Nevertheless, Tang 
and co-workers have proposed an Ir-catalyzed Z-selective syn-
thesis of alkenes employing NHPI esters as radical sources, ter-
minal arylalkynes and a superstoichiometric amount of DIPEA 
under visible light irradiation (Scheme 1a).6 MacMillan,7 
Rueping8 and Wu9 circumvented the aforementioned lack of re-
activity adopting multicatalytic approaches. Thus, MacMillan 
and Rueping independently developed an Ir/Ni photocatalytic 
decarboxylative hydroalkylation of alkynes that takes 

advantage of a migratory insertion step to afford terminal and 
internal alkenes (Scheme 1b), while Wu proposed a Ni–H cata-
lyzed hydroalkylation of phenylacetylenes and enynes with 
photocatalytically generated α-heteroatom radicals (Scheme 
1c). 
Scheme 1. Photoredox-catalyzed hydroalkylation of alkynes.6-9 
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Figure 1. Multivariate-HTE screening of solvents, bases, ligands and copper sources for the hydroalkylation of 2a under standard 

conditions [1a (15 µmol), 2a (10 µmol), Base (20 µmol), Copper Source (2 µmol), Ligand (4 µmol if monodentate, 2 µmol if biden-
tate), 4CzIPN (0.25 µmol), solvent (0.1 mL), blue LEDs irradiation, room temperature, 18 hours]. Yields (%) and (Z:E) ratios [GC-
FID analysis on the reaction crude using 1,1’-biphenyl as internal standard] for selected entries: A8: 79% (20:80), A9: 71% (71:29), 
A12: 69% (25:75), E8: 73% (19:81), E9: 71% (63:39), E12: 71% (23:77). 

Here we report a dual copper and photoredox catalyzed de-
carboxylative hydroalkylation of alkynes leading to Z- or E-en-
riched alkenes in a diastereodivergent manner from simple car-
boxylic acids as radical sources10 and an organic photocatalyst 
(Scheme 1d). 

Our approach to address this synthetic challenge is based on 
the perturbation of the ground-state electronic properties of ter-
minal alkynes through the formation and photoexcitation of the 
corresponding copper acetylides. The irradiation of copper acet-
ylides with visible light results in a ligand-to-metal charge 
transfer (LMCT) increasing the electrophilicity on the alkyne 
moiety.11 Hwang and coworkers, instead, exploited the ability 
of such copper complexes to act as excited-state single-electron 
reductants, and then be engaged in cross-coupling reactions and 
functional group transformations.12 

Considering all the variables involved in the designed pro-
cess, we considered a multivariate high-throughput experimen-
tation (HTE) approach to screen the ligand, base, copper source 
and solvent in a rapid and cost-effective manner (Figure 1). We 
chose N-Boc Proline (1a) and phenylacetylene (2a) as model 
substrates, and 4CzIPN13 as a photocatalyst. It emerged that the 
best results in terms of yield and Z:E ratio were achieved em-
ploying either CuOAc or Cu(OAc)2, (1R,2R)-trans-1,2-dia-
minocyclohexane (L1) as ligand14 and CsOAc as base under 
blue LEDs irradiation for 18 hours (wells A9 and E9, Figure 1). 
Translation of the optimal conditions to synthetically relevant 
scale allowed us to isolate the desired product (3a) in 82% yield 
with a Z:E ratio of 78:22. Moreover, the HTE screening also 
revealed that the reaction can be performed in a diastereodiver-
gent manner just by switching the ligand and the base to oleyla-
mine (L4) and CsHCO3 (wells A8 and E8, Figure 1), the E 

isomer being preferentially obtained under these conditions 
with minimal erosion of the yield (entry 2, Table 1).  
Table 1. Control experiments for the hydroalkylation of 2a.a 

 

Entry Deviation from standarda 
conditions[a] 

Yield (%)b Z:Ec 

1 None 82  78:22 

2 L4 (40 mol%) instead of L1. 
CsHCO3 instead of CsOAcd 

72 23:77 

3 No Cu(OAc)2 19 78:22 

4 CuCl instead of Cu(OAc)2 78 77:23 

5 No L1 58 69:31 

6 No photocatalyst 0 n.d. 

7 Dark 0 n.d. 

8 3 mmol scale 76 67:33 
aStandard conditions: 1a (0.3 mmol), 2a (0.2 mmol), CsOAc (0.4 
mmol), DMA (2.0 mL), blue LEDs (4.5 W, Irradiation Setup 1). 
bIsolated yield. cDetermined by GC-FID analysis on the reaction 
crude. d36 hours, Irradiation Setup 2 (see SI for further details). 

The choice of the ligand turned out to be key for the stereose-
lectivity switch, since the combination of L4 and CsOAc also 
provided 3a as an E-enriched product (wells A12 and E12, Fig-
ure 1). Control experiments showed that copper, photocatalyst 
and light are fundamental for the reaction efficiency (entries 3, 
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4, 6 and 7, Table 1) and the nature of the ligand is important for 
the selectivity of the transformation (entries 2 and 5, Table 1). 
Interestingly, work at 3 mmol scale (entry 8) is well tolerated.  

The scope of this transformation was next investigated under 
the optimal reaction conditions (Figure 2). Sources of primary, 
secondary, tertiary α-amino radicals as well as secondary α-oxy 
radicals were tested in the Z-selective coupling. In all cases the 
desired products were isolated in synthetically useful yields 
ranging from moderate to good. It is worth mentioning that the 
standard purification procedure by flash chromatography af-
fords in some instances completely separated Z:E stereoiso-
mers. These results have been highlighted in green in Figure 2. 
For comparison purposes, the combined yield is also given in 
these cases. As a general trend, a clear selectivity towards the Z 
isomer is recorded except for the reactions in which a quater-
nary carbon is formed: in these circumstances (with the notable 
exception of 3j) the selectivity is reversed in favor of the E iso-
mer likely because of steric factors. In the two cases where ste-
reocenters with defined configuration were already present in 
the carboxylic acids, the corresponding products (3n and 3o) 
were isolated with very high diastereoselectivity (3n >20:1; 3o 
>12:1). In the exploration of the scope of the alkyne partner we 
first examined terminal phenylacetylenes bearing electron with-
drawing and electron donating groups in ortho or para position. 
In the case of electron-rich aromatic rings, a reverse stoichiom-
etry of both coupling partners was needed in order to achieve 
good yields. Besides this, all products were obtained in good 
yields regardless of the nature and position of the substituents 
(Figure 2). Also, more challenging heteroaromatic alkynes 
could be employed in the reaction (4j-l) as well as an enyne 
(4m), albeit the reaction took place in this case with moderate 
yield and E-selectivity. Other non-conjugated alkynes (1-
hexyne and tert-butyldimethylsilylacetylene) turned out to be 
unsuitable substrates for this transformation and failed to afford 
the corresponding decarboxylative hydroalkylation products. 
We then tested on selected substrates (3a, 3c, 4b and 4i) the 
applicability of the stereo-complementary approach. Notably, 
all of them were obtained in good yields and E-selectivities. 

Then, we tested the developed methodology in the direct vi-
nylation of inactivated C–H bonds. Upon single-electron oxida-
tion and deprotonation, aromatic amines generate the corre-
sponding α-amino radicals15 that could be trapped by the excited 
copper acetylide complex thus forging a new C–C bond. How-
ever, when we tested the feasibility of the transformation using 
the optimized conditions to the cross dehydrogenative coupling 
between 1r and 2a, we were unable to achieve satisfactory re-
sults. Fortunately, a second HTE screening of photocatalysts 
and bases (See SI for further details) revealed that switching 
from 4CzIPN to [Ir(ppy)2(4,4’-dtbbpy)]PF6, the formation of 3r 
could be achieved in good yield (75%) and high Z-selectivity 
(82:18) (Scheme 2). 

From a synthetic perspective, it is important to note that sim-
ple stereoconvergent transformations of 3-4, such as the selec-
tive hydrogenation of the double bond would result in products 
formally arising from a very general decarboxylative hydroxy-
alkylation of alkenes, a process being actively developed these 
days.16 

Next, we performed a series of experiments aimed at shed-
ding light on key mechanistic aspects of this transformation. 
First, we questioned whether Cu(I) phenylacetylide (2a’) is an 
active intermediate in the reaction. To examine this hypothesis, 
we conducted the reaction under the standard conditions 

replacing Cu(OAc)2 with 0.2 equiv. of 2a’ and reducing the 
amount of phenylacetylene to 0.8 equiv. (Scheme 3a). 

 

 
Figure 2. Carboxylic acid and alkyne scope in the Copper/Photo-
redox catalyzed hydroalkylation of alkynes. All yields shown refer 
to isolated products. aReactions performed with carboxylic acid 
(0.3 mmol), alkyne (0.2 mmol), CsOAc (0.4 mmol), DMA (2.0 
mL), blue LEDs (4.5 W). bZ:E ratios determined by GC-FID on the 
reaction crude. Compounds isolated as pure stereoisomers con-
tained <1% of the alternative geometrical isomer. cReactions per-
formed with carboxylic acid (0.2 mmol), alkyne (0.7 mmol). 
dResults in boldface refer to reaction conditions favoring E selec-
tivity: L4 (40 mol%) instead of L1, CsHCO3 instead of CsOAc. 
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Scheme 2. Cross dehydrogenative coupling between 1q and 2a 
allowing the vinylation of inactivated C-H bonds. 

 

 
The corresponding product 3a was obtained in similar yield 

and Z-selectivity, supporting the intermediacy of Cu(I)-phe-
nylacetylide. On the other hand, the addition of TEMPO (1 
equiv.) completely quenches the reaction (Scheme 3b) and 
yields 3a’ indicating the involvement of α-amino/oxy radical 
intermediates in the transformation. Then, an E-enriched mix-
ture of 3a (0.1 M in DMA) was irradiated for 24 hours in the 
presence of 4CzIPN (2.5 mol%) being isomerized to the same 
Z:E value of the model reaction. This experiment suggests that 
the E/Z selectivity of the reaction arises from an energy transfer 
process mediated by the photocatalyst (Scheme 3c). The same 
result was obtained adding L4 (40 mol%) to the mixture, ex-
cluding that the E selectivity arises from quenching of the triplet 
state of 4CzIPN exerted by the double bond present in the lig-
and.  
Scheme 3. Mechanistic experiments. 

  
Finally, we investigated the source of vinylic hydrogens in 

the final product and consequently the process involved in their 
incorporation. To do so, we designed experiments choosing 
deuterated compounds able to exchange deuterium via a polar 
or a radical process (deuterium atom abstraction). We selected 
deuterium oxide as deuterons exchanger and performed the 
model reaction adding increasing amounts of D2O. These ex-
periments show that there is a correlation between the amount 
of D2O and the incorporation of deuterium in both positions of 
the double bond (Scheme 4, a). On the other hand, experiments 
using other deuterated solvents such as DMF-d7 and N,N-dieth-
ylacetamide-d3 (chosen as deuterium atoms donors) furnished 
the desired product with no significant deuterium incorporation 
(Scheme 4, b). 
Scheme 4. Deuterium labelling experiments. 

 
Scheme 5. Proposed reaction mechanism. 

 

 
Taking all these results into account, the tentative mechanis-

tic proposal shown in Scheme 5 was formulated. Upon irradia-
tion, the photocatalyst 4CzIPN can reach its excited state PC* 
(E1/2 PC·+/PC* = -1.04 V vs SCE and E1/2 PC*/PC·− = +1.35 V 
vs SCE)11 and it is able to reduce the Cu(II) complexes present 
in solution (e.g., E1/2 Cu(II)/Cu(I) = -0.363 V vs SCE for 
[Cu(L1)2](ClO4)2)15,17,18 as well as to oxidize α-amino and α-
oxy carboxylates (e.g., Boc-Pro-OCs, E1/2

ox = +0.95 V vs 
SCE).19 Stern-Volmer studies indicates that the reductive 
quenching of the catalyst exerted by the Boc-Pro-OCs is faster 
(KSV = 2.9·10-2 M-1) than the one exerted by [Cu(L1)2](OAc)2 
(KSV = 1.4·10-2 M-1).20 The Cu(I) complex generated either by 
disproportionation of the Cu(II) source or SET by PC* (or PC·− 
[PC/PC·− = -1.21 V vs SCE])  can form  complex A (the struc-
ture of A might be either a monomeric or a polymeric form or 
both) with the assistance of a base (CsOAc).21 Direct photoex-
citation of A (λabs = 476 nm for Cu(I) phenylacetylide)12f to A* 
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could determine a depletion of charge on the alkyne moiety 
through ligand-to-metal charge transfer (LMCT), accelerating 
the attack of the radical E (formed upon deprotonation and sin-
gle electron oxidation of D either by PC* or PC·+ [PC·+/PC = 
+1.52 V vs SCE]). This addition results in the formation of the 
vinyl radical B which forms the corresponding vinyl anion C 
oxidizing PC·−. Anion protonation and proto-demetallation of 
the Cu–C bond afford the desired product 3a, regenerating the 
Cu(I) species. Taking into account the outcome of the E-selec-
tive methodology, and the control experiment previously 
shown, it is reasonable to assume that the product is formed as 
an E-enriched mixture and then is isomerized via energy trans-
fer (ET (4CzIPN) = 60 kcal·mol-1)22 mediated by the photocata-
lyst. 

In summary, we have developed a catalytic method for inter-
molecular hydroalkylation of terminal alkynes with carboxylic 
acids. The use of a widely available and stable copper-based 
catalyst allows the overcoming of the intrinsic kinetic barrier 
associated with the addition of radicals to triple bonds. At the 
same time, this transformation exploits the ability of an organic 
photocatalyst to generate alkyl radicals from in situ generated 
carboxylates and isomerize the formed alkene to the less stable 
Z isomer. In this work, HTE screening of reaction conditions 
revealed that the proper choice of copper ligand and base makes 
possible the selective shutdown of the latter process without 
compromising the efficiency of the former thereby paving the 
way to the stereodivergency of the reaction. These aspects, 
along with the low cost and abundance of the starting materials 
as well as catalysts, suggest that this synthetic methodology can 
complement other photoredox hydroalkylation reactions of al-
kynes relying upon the use of iridium catalysts and PR func-
tionalized substrates. 
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Synopsis TOC (if needed) 

A dual copper and organic photoredox catalysis approach for the synthesis of allylic amines and ethers from carboxylic acids and alkynes has been 
developed. This approach relies on the perturbation of the ground-state electronical properties of terminal alkynes via visible-light excitation of 
copper acetylide intermediates. HTE spotlighted the stereodivergency of this reaction by choosing an appropriate combination of ligand and base. 


