
Large-Scale Performance Evaluation of the IETF
Internet of Things Protocol Suite for Smart City Solutions

Javier Isern, August Betzler*, Carles Gomez†,
Ilker Demirkol†, Josep Paradells†

Urbiotica, Barcelona, Spain
*I2CAT Foundation, Barcelona, Spain

†Department of Network Engineering, UPC, Barcelona, Spain
javier.isern@urbiotica.com
august.betzler@i2cat.net

{carlesgo, ilker.demirkol, josep.paradells}@entel.upc.edu

ABSTRACT
The Internet of Things (IoT) intends to interconnect mas-
sive amount of heterogeneous, smart devices, with the goal
of interweaving the virtual world with the physical world.
Smart Cities are typical IoT application domains, compris-
ing networks with large number of sensors that survey en-
vironmental data in order to provide different services, such
as City Mobility solutions that facilitate on-street parking
and traffic flow monitoring. Standards and specifications
defined by the Internet Engineering Task Force (IETF), like
IPv6, the IPv6 over Low power Wireless Personal Area Net-
works (6LoWPAN) adaptation layer, and the IPv6 Routing
Protocol for Low-Power and Lossy Networks (RPL) are cor-
nerstones of the IoT. In this paper we carry out large-scale
experimental evaluations in an IoT testbed of 251 nodes to
analyze the performance of the IETF IoT protocol suite in
such a large-scale network. We define a City Mobility Solu-
tion application, using traces from a commercial Smart City
deployment and the commonly employed Contiki implemen-
tation of IETF IoT protocol suite. The results show that
the out of the box Contiki IoT protocol stack is not capa-
ble of delivering a satisfying performance. However, after a
thorough analysis of the initial results, a set of improved pa-
rameter configurations is derived that allows the network to
achieve much higher performance. Among others, improve-
ments of 60.39% in PDR and 63.67% in delay are achieved.
Furthermore, the paper presents and discusses the techni-
cal solutions and best-practice guidelines for a specific City
Mobility solution being developed by Urbiotica, a company
with ample expertise in Smart City deployments.

Keywords
Internet of Things, 6LoWPAN, RPL, CoAP, Smart City,
City Mobility, Contiki

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
During the last decade, the Internet of Things (IoT) has

experienced a significant growth, fueled by the evolution
of wireless technologies and the development of miniatur-
ized, low-cost wireless devices that are capable of connect-
ing to the Internet. In IoT communications, devices inter-
change information, such as sensor readings, often finding
their main applications in automatized large scale deploy-
ments. One salient scenario for such large scale deployments
are Smart Cities [10], which benefit from the standardization
process led by the Internet Engineering Task Force (IETF)
for protocols that are used in the IoT.

One decade ago, the IETF decided that IPv6 would be
used as the network protocol for constrained devices such as
the aforementioned ones. IPv6 offers an address space large
enough to support the plethora of devices that form the IoT
and it has built-in support for network auto configuration.
Further, to support IPv6 on constrained, low-power devices
with limited hardware capacities, the IETF has specified
the IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN) adaptation layer [12], which enables fragmenta-
tion of IPv6 frames and IPv6 header compression. The rout-
ing mechanisms proposed by the IETF to establish multihop
network topologies is the IPv6 Routing Protocol for Low-
Power and Lossy Networks (RPL) [14]. At the application
layer, the IETF has developed a lightweight RESTful pro-
tocol called the Constrained Application Protocol (CoAP)
[13].

To our best knowledge, no experimental large-scale eval-
uations of IoT stacks in testbeds or real Smart City envi-
ronments have been published so far. Several studies carry
out evaluations in network simulators or discuss existing de-
ployments. For example, a proposal for the use of an IoT
Stack in an urban environment is made by Zanella et al. in
[15]. After providing a survey of the technologies required
for an urban IoT system, an existing Smart City deployment
is discussed. Yet, the authors only describe the deployment,
rather than carrying out an experimental performance anal-
ysis. Rothenpieler et al. [11] follow a different approach:
They propose an architecture for point-to-point networks,
where personal devices (like smart phones) dynamically con-
nect to each other to manage the transport of sensor data.
While this proposal is discussed throughly, the authors do
not implement their approach to validate it in a real deploy-
ment.



In order to determine whether a common IoT commu-
nication protocol stack is capable of delivering a satisfying
performance for Smart Cities, and to provide a reference for
future Smart City deployments as part of the IoT, in this
paper we perform large-scale experimental evaluations for a
City Mobility solution that is composed of on-street park-
ing [2] and traffic flow monitoring applications. The first
one monitors the availability of parking spaces, whereas the
second quantifies the number, speed and type of vehicles
driving in the streets. We choose this City Mobility solution
for our evaluations, since it is based on communications be-
tween constrained devices and it generates large amount of
data when comparing with other type of City solutions such
as pollution, waste, sound or lighting monitoring.

The experimental evaluations of the City Mobility solu-
tion are carried out in the large-scale IoTLab testbed [5],
using 251 nodes and a testbed layout matching real world
Smart City deployments, permitting an accurate analysis of
Smart City scenarios. Use of such public and remotely ac-
cessible IoT testbed also permits the reproducibility of the
experiments. Traffic patterns have been derived from ac-
tual smart city deployments. To our best knowledge, this is
the first time that such a large-scale IoT-based experimental
evaluation of the IETF IoT protocol suite is investigated.

The node operating system is Contiki, a widely used plat-
form that provides the de-facto implementation of the IETF
IoT protocol suite. We analyzed the effect of several IoT
stack parameters on different performance metrics including
application layer metrics such as the packet delivery ratio
(PDR), the end-to-end delay and lower layer metrics such
as frame drop rate and topology change rate.

The results show that stability and network performance
strongly depend on the settings of the protocol stack pa-
rameters and that the out of the box configuration of the
analyzed communication protocol stack is not capable of
delivering the necessary performance required by the evalu-
ated Smart City use case. We then derive a set of improved
parameter configurations for the communication protocol
stack that allows the network to achieve a high performance
for a wide-range of traffic load investigated. With the rec-
ommended parameter configuration, we improve PDR by
60.39% and delay by 63.67%, reaching the values of 96.06%
and 788 ms of PDR and delay, respectively.

The remainder of the paper is organized as follows: In
Section 2 we define the Smart City use case considered for
the communication protocol analysis in this paper. The de-
scription of how the use case is implemented in the testbed
is described in Section 3. In Section 4 the experimental re-
sults for the default configuration of the protocol stack are
presented. Also, changes to increase the performance of the
protocol stack are proposed and the results for these im-
proved settings are exposed. Conclusions and proposals for
future lines of work are given in Section 5.

2. CITY MOBILITY SCENARIO
The evaluations carried out in this paper focus on the

experimental analysis of a Mobility solution for Smart Cities.
In this section we identify typical network characteristics
of this use case based on topology and traffic information
obtained from real Smart City deployments.

In this process we determine a representative network
topology, identify different logical roles of the devices in the
network that comprises the City Mobility solution, and de-

rive a set of exemplary data traffic patterns. In the follow-
ing subsections we carry out a detailed evaluation of each
of these characteristics, eventually explaining how they are
carried over to our experimental evaluations performed in
the IoTLab testbed.

2.1 Use Case and Topology
A prevalent use case for Smart City networks is the large-

scale deployment of wireless sensor nodes (SNs) to carry
out monitoring tasks, such as the detection of vehicle traffic
flows, the supervision of available parking spaces, or the
collection of environmental data such as noise, temperature
or air pollution.

For these purposes, SNs are strategically deployed on the
streets, buildings, or other physical structures, such as traffic
lights or lamp posts. For the experimental evaluations car-
ried out in this paper, we choose a City Mobility scenario
that combines two use cases: The monitoring of on-street
parking spaces [2] and the measurement of traffic flows.
In this scenario, the SNs use their sensors to detect vehi-
cles based on the changes these cause in magnetic fields.
Equipped with low-power radios, the SNs transmit this data
over the air to a border router (BR) that is the gateway re-
sponsible of forwarding the data to servers located in the
cloud for further processing.

The deployment of such a solution imposes several chal-
lenges on the design of the network. For instance, the SNs
are placed underneath the surface of the street, which strongly
limits their radio transmission range. Furthermore, the SNs
are reduced function devices (or leaf nodes), thus they are
not serving as possible relay for other nodes’ data. Since the
SNs are battery-powered devices, they apply Radio Duty
Cycling (RDC) to reduce consumption and to operate for as
many years as possible.

In order to connect all the SNs of the network to the BR,
a backbone of routing-capable transport nodes (TNs) is de-
ployed in such Smart City solutions. The TNs serve as relay
nodes for data packets that need to travel across the net-
work. To achieve the largest coverage possible and at the
same time network stability, the TNs are placed strategi-
cally, so that every SN can connect to one or more TNs or
directly to the BR.

The location of the nodes in a deployment therefore de-
pends on their transmission ranges and the layout of the
streets. In modern cities, the layout of the streets often
follows the pattern of a grid with horizontal and vertical
streets intersecting at angles of 90 degrees and where ‘isles’
of buildings are located between the streets. Examples for
such street layouts are the Manhattan district of New York
or the Eixample in Barcelona, and similar layouts can be
found in many other cities.

2.2 Data Generation Model
In this subsection we define the type and volume of data

that will be generated in the experimental evaluations across
the network. The data traffic patterns are based on statistics
from real deployments of on-street parking and traffic flow
applications.

We define two types of SNs, which generate notification
messages that report either the change of a parking space
availability or the detection of a vehicle in a street lane,
depending on the type of sensor. The number of packets
sent by a SN depends on how many cars enter or leave a



0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Daytime (h)

N
o
rm

a
liz

e
d
 D

e
g
re

e
 o

f 
T

ra
ff
ic

Figure 1: Average number of SN events measured during
one day, averaged over a week and normalized with respect
to the maximum number of events detected.

Table 1: Number of Events per Hour Originated by Each
Node for LOW, MEDIUM, and HIGH Traffic Loads.

Type of Node LOW MEDIUM HIGH

Parking Space 5.76 9.6 14.4
Traffic Flow 42.35 80 360

Transport Node 6 6 6

parking space or the amount of cars that circulate in the
streets, respectively.

Figure 1 depicts the normalized number of events regis-
tered commonly by nodes per hour during a day in a real
Smart City deployment of Urbiotica company 1. Consider
that the maximum value depends on the type of SN. From
these statistics we derive 3 degrees of traffic loads (LOW,
MEDIUM, and HIGH): During night time, the notifications
produced by both type of sensors are LOW since there are
almost no cars circulating on the streets, nor parking or
leaving parking spaces. In the morning hours the number
of detected vehicles increases and reaches a peak value. A
peak is also measured during the late afternoon. We as-
sociate these peaks to HIGH traffic. As MEDIUM traffic
we define the mean number of packets transmitted over the
course of one day. Apart from the traffic generated by the
SNs, each TN generates control messages containing differ-
ent types of network statistics every 10 minutes. Table 1
indicates the number of packets generated by the SNs and
the TNs.

All the messages are sent to the BR where, in the real
deployments, the data is forwarded to the servers. The time
between the generation of notification messages in the exper-
imental evaluations carried out are based on an exponential
distribution, using the values provided in Table 1 as mean
values.

3. EXPERIMENTAL SETUP AND CONFIG-
URATION OF THE CONTIKI STACK

In the previous section the use case, the network topology
and the traffic patterns of the City Mobility solution to be
evaluated in this paper have been specified. In this section
we introduce the IoTLab testbed and the experimental setup
used for the large-scale evaluations of the Contiki IoT stack

1http://www.urbiotica.com/

CoAP
UDP

IPv6, RPL

6LoWPAN

CSMA
ContikiMAC

IEEE 802.15.4

Figure 3: The IoT communication protocol stack imple-
mented in Contiki.

and we explain how the Smart City use case deployment is
mapped to the testbed.

3.1 The Grenoble IoTLab Testbed
The experimental evaluations are carried out in the indoor

IoTLab testbed located in Grenoble, France [5]. The Greno-
ble testbed is composed of a total of 938 motes, of which 384
are M3 Open Nodes [4], representing the largest available
fraction of motes of the same type in the testbed. The M3
nodes incorporate an IEEE 802.15.4-based AT86RF231 ra-
dio transceiver operating at 2.4 GHz and the STM32F103RE
MCU that offers 64 kByte of RAM and 512 kByte of ROM.

The large number of M3 nodes available to carry out ex-
periments and their sufficient memory capacities provide an
ample play for large-scale network evaluations. More impor-
tantly, the layout of the M3 testbed favors the analysis of
Smart City scenarios, since the lanes of nodes in the testbed
represent intersecting streets with nodes similar to real de-
ployments. Figure 2 shows a graphical representation of the
locations of the M3 motes in the testbed that are used for
the experiments.

All the nodes are located in an environment vulnerable
to external conditions, for example interference from other
wireless devices and/or moving obstacles or persons that
affect the radio links. Similar phenomena are characteristic
of real Smart City deployments.

3.2 The Contiki Protocol Stack
The nodes in the testbed are programmed with Contiki,

implementing a fully IPv6-based IETF protocol suite for the
IoT. The protocol layers implemented by Contiki are de-
picted in Fig. 3. In the following, we introduce each of the
protocol layers of the Contiki stack and explain its mecha-
nisms from top to bottom.

Contiki comes with Erbium CoAP [7], which implements
CoAP as detailed in RFC 7252 [13]. CoAP is a Represen-
tational State Transfer style (RESTful) protocol designed
for IoT communications. It is a lightweight alternative to
HTTP with its own set of options and mechanisms well
suited for networks of constrained devices that have very
limited hardware capacities in terms of memory, process-
ing power, and radio technology. CoAP offers the methods
GET, PUT, POST, and DELETE to manipulate resources
on servers. CoAP operates over UDP, which in Contiki is
implemented by the uIP TCP/IP stack. Since UDP does
not provide reliability at the transport layer, CoAP allows
the option of confirmable messages, requiring an acknowl-



Border Router (BR)

Transport Nodes (TNs)

On-Street Parking Nodes

Traffic Flow Nodes

Figure 2: Map of the M3 motes in the Grenoble testbed that have been used for the experiments.

edgment (ACK) to confirm the reception at the destination.
If no ACK is received the CoAP message is retransmitted.
By default, up to 4 retransmissions are allowed before the
CoAP message is dropped.

The Contiki implementation of RPL is the mechanism
used to establish the multihop network topology. RPL con-
structs a Destination Oriented Directed Acyclic Graph (DODAG)
and uses this graph to route data traffic, applying the Trickle
algorithm [6] to regulate the transmission of DODAG Infor-
mation Objects (DIOs), used for the DODAG construction
and maintenance. RPL has been designed and optimized to
route data (e.g. obtained by sensors) through the DODAG
towards a special node called the root, which collects the
data. RPL nodes use Objective Functions (OFs) to com-
pute the network topology and routes.

In order to join a DODAG, a node either can wait to
receive DIO messages from nearby nodes or it can send a
DODAG Information Solicitation (DIS) to request DIO mes-
sages from a subset of neighboring nodes. Each node in a
DODAG selects a DODAG parent set, which is composed of
the nodes that provide connectivity to the rest of the nodes
in the DODAG. An important concept in RPL is the Rank
property, which abstracts the distance between a DODAG
node and the DODAG root. In order to calculate the Rank
property, the OF is used, considering metrics and constraints
such as ETX, Latency, Hop-Count (HP), Link Quality Level
(LQL) or Remaining energy.

Contiki RPL operates in the so called storing mode, where
each node maintains the routing information necessary to
reach child nodes. In this mode, if a routing-capable node
receives a packet destined for another node it checks if it
knows the next hop towards the intended destination. Oth-
erwise, the packet is forwarded to its default parent, i.e., one
hop in direction of the DODAG root (in this case, the BR).
This process is repeated (up to reaching the BR), until a
node has a valid routing table entry for the intended des-
tination, and that node forwards the packet following the
routing table entry.

To support the use of IPv6 over the low-power IEEE
802.15.4 physical layer, Contiki implements the 6LoWPAN
adaptation layer, which provides IPv6 header compression,
fragmentation and reassembly, as well as an adapted version
of Neighbor Discovery. Underneath the 6LoWPAN layer,
Contiki implements an optional carrier sense multiple ac-

cess (CSMA) mechanism. To avoid collisions when sending
data frames, devices may use CSMA to sense the channel
for ongoing transmission and to back off the transmission in
case of detecting a busy channel. As default Radio Duty Cy-
cle (RDC) mechanism, Contiki implements ContikiMAC [3].
In ContikiMAC, the radio of the device is only turned on ei-
ther to start a data transmission or to periodically check for
possible incoming data. To transmit data with ContikiMAC,
packets are strobed until either a MAC layer ACK is received
or until the maximum burst duration limit is achieved. The
frequency with which the nodes check for data and the max-
imum duration of the data bursts is determined by the pa-
rameter Channel Check Rate (CCR). At the bottom of the
stack, Contiki implements the IEEE 802.15.4 physical layer
which allows a data transmission rate of 250 kbps in the 2.4
GHz band.

The Contiki protocol stack comes with a large set of de-
fault configuration parameters. For the first part of the
evaluations carried out in this paper we refer to the default
configuration of Contiki as the Default Configuration. In
Section 4 some of the most relevant parameters of the stack
are highlighted and their impact on the performance is eval-
uated.

3.3 Testbed Setup
As explained in Section 2.1, there are 4 types of nodes

in the City Mobility solution use case: the BR acts as the
bridge between the local network and the Internet; TNs form
the data transport backbone, and two variations of SNs (are
used for parking space and traffic flow monitoring). Except
for a few details, the configuration of the Contiki stack is
the same for all types of nodes.

The data generated by the nodes is transmitted as pay-
load of confirmable CoAP messages. If the data is not ac-
knowledged by the destination, the message is retransmit-
ted. This is necessary to compensate packet losses due to
congestion or bad links, given the fact that CoAP operates
over UDP that does not provide reliability. By default, up
to four retransmissions are allowed for each CoAP message.
We set the RPL routing table sizes and the maximum num-
ber of storable RPL neighbors to be large enough to avoid
the corresponding tables to fill, which can cause malfunc-
tioning of routing. Contrarily to the BR and TNs, SNs are
not mains powered, which requires them to apply a RDC



to save energy. By default, Contiki applies the Contiki-
MAC RDC mechanism, where nodes can enter the sleep
mode while not sensing the channel, receiving or transmit-
ting data. Whereas to maintain the communication compat-
ibility with the SNs, the BR and TNs also apply the frame
transmission pattern as defined by ContikiMAC, they can
keep their radio turned on permanently while they are not
transmitting. The nodes communicate over IEEE 802.15.4
channel 26 to avoid possible external interference sources like
Wi-Fi transmissions. The BR and TNs transmit at 3 dBm
since it is the maximum power available for this hardware.
On the other hand, to model the real case scenario where
SNs are buried into the streets as explained in Section 2.1,
we configure them to use 0 dBm of transmission power.

In the topology studied, as depicted in Figure 2, the BR
is located at the center of the grid, as it should be in any
Smart City application. Further, to facilitate the connectiv-
ity between the SNs and the BR, TNs are placed in regular
intervals in lanes and at the crossings, like they would be
placed in the streets of a real deployment. Since the TNs
have a limited transmission range, it is necessary to guaran-
tee that the TNs are close enough to each other in order to
form the data transport backbone. Via experimental evalua-
tions, we determine that the guaranteed transmission range
of TNs is 10 grid nodes in a straight line. Thus, at least
every 10 grid nodes a TN is placed. Above that, at every
crossing as many TNs as the number of branches joining are
placed to increase connectivity between the lanes. This is
due to the fact that there are no nodes located at the inter-
sections in the testbed and some of the TNs are not within
line of sight of each other. After applying these settings to
our testbed topology, we end up with a network of 220 SNs
that rely on a transport backbone of 30 TNs to communicate
with the BR.

With the described network setup we measure an average
network depth of 3.3 hops during the experiments. We take
a snapshot of the network topology during a test run we
measure the distance of each node to the BR. Figure 4 de-
picts the percentage of nodes that are at a certain distance
from the BR.

4. EVALUATION RESULTS
This section presents the results of the experimental large-

scale evaluations of the Smart City application scenario.
First the results obtained for the Default Configuration are
presented, followed by a discussion of how its performance
can be improved for large-scale Smart City applications by
adapting the protocol stack settings. Based on this initial
analysis, a set of improved parameter settings for the Contiki
protocol stack is determined and experiments are repeated
with the updated settings. For each configuration analyzed,
experiments with a duration of 60 minutes are repeated 5
times.

4.1 Performance Metrics Used
The performance of the different communication protocol

stack configurations is measured in terms of two well-known
application-layer performance metrics: the end-to-end PDR
and the end-to-end delay. Other metrics, like the parent
change rate of RPL and the number of frame drops, are also
taken into account as performance indicators.

The overall PDR of a test run is calculated by dividing the
total number of successfully delivered CoAP packets at the

1 2 3 4 5 6 7
0 %

5 %

10%

15%

20%

25%

Number of Hops to the BR

P
e

rc
e

n
ta

g
e

 o
f 

N
o

d
e

s

1 2 3 4 5 6 7
0 %

5 %

10%

15%

20%

25%

Number of Hops to the BR

P
e

rc
e

n
ta

g
e

 o
f 

N
o

d
e

s

1 2 3 4 5 6 7
0 %

5 %

10%

15%

20%

25%

Number of Hops to the BR

P
e

rc
e

n
ta

g
e

 o
f 

N
o

d
e

s

Figure 4: Snapshot of the percentage of nodes with different
distance hops from the BR. Nodes that are 7 or more hops
away from the BR appear as 7 hops in the statistic.

Table 2: Results for the Default Configuration at MEDIUM
Traffic Load. The Average Frame Drops and Parent
Changes are Given per Minute and per Node. Average and
95% Confidence Intervals are Given for Each Metric.

Metric Result

PDR 59.89 +− 2.84%
Packet Delay 2164 +− 174 ms
Frame Drops 3.2 +− 1.96

Parent Changes 1.5 +− 0.08

application layer by the number of CoAP packets generated
by the SNs and TNs. The PDR describes how successful
the communication protocol stack is in transferring packets
through the network. On the other hand, the end-to-end
delay is the total time between the creation of a CoAP packet
and its processing at the destination node (in our setup, the
BR). The end-to-end delay indicates the time it takes for
the network to react to events, such as car presence, and is
an important metric for a real time monitoring.

Besides these two main performance metrics, we also mea-
sure the number of times nodes change their RPL parent,
where frequent changes are an indicator for instability. Fur-
ther, we count the number of frames dropped at the MAC
layer and use this information as an indicator for network
congestion.

4.2 Evaluation of the Default Configuration
We apply the default configuration parameters and run

the experiments for the MEDIUM traffic load, which corre-
sponds to the average traffic expected over the course of a
day. The results for these experiments are given in Table
2. A PDR of only 59.89% is achieved, meaning that a sub-
stantial part from the application layer data generated and
transmitted from SNs and TNs is lost, in spite of using re-
liability mechanisms. We also observe a long average delay
that exceeds 2 s. We identify two main reasons for the poor
performance of the Default Configuration: a high degree of
congestion that leads to a large amount of frame drops and



50 100 150 200 250 300 350
0

20

40

60

80

100

120

Node ID (t)

A
v
e
ra

g
e
 F

ra
m

e
 D

ro
p
s
 p

e
r 

M
in

u
te

Figure 5: Average frame drops per minute and per node for
the Default Configuration. The unique node IDs used are
assigned by the testbed. Nodes with 0 drops are either not
part of the experiment or do not suffer frame losses.

an unstable behavior of RPL that increments congestion.
The MAC layer provides a limited queue size for frames

that are about to be transmitted over the radio. Similarly,
it limits the number of neighbors for which frames can be
stored. If either of these limits is exceeded when a new
frame needs to be transmitted, the new frame is dropped.
In the analyzed scenario, the types of frames that are gen-
erated are either CoAP frames at the application layer or
RPL frames required to maintain routing information. A
high degree of frame losses at the MAC layer therefore not
only causes a malfunction of the application, it also prevents
RPL from working correctly, i.e., the correct execution of its
routing mechanisms. Figure 5 shows the average number of
frames dropped per minute by each one of the nodes, where
the majority of the nodes with large number of frame drops
are TNs. Mainly, TNs suffer from congestion since they act
as relay nodes that forward packets for other nodes. Some
of these TNs suffer from heavy packet losses of up to 128
packet drops per minute, which indicates that there is heavy
congestion in their neighborhood. Nodes that interconnect
branches or are close to the BR are more affected than oth-
ers.

Also, a high number of RPL parent changes is observed,
which can heavily impact the network performance: After
every parent change, the Trickle timer is reset, therefore
increasing the DIO generation rate for the affected node.
If many nodes keep changing their parents throughout the
experiments, the number of DIOs is permanently high (the
network does not reach or maintain a ‘stable state’).

As a result of the MAC layer drops and the frequent parent
changes, the Default Configuration is offering poor perfor-
mance in the analyzed use case. In the following section we
address the issues observed to provide improved settings for
the Contiki stack in order to enhance the performance.

4.3 Evaluation of the Smart City Protocol Stack
Contiki’s Default Configuration of IETF IoT protocol suite

performs poorly in the analyzed City Mobility application
as a result of two major issues: MAC layer packet drops
and RPL instability. In order to improve the performance

CCR = 8 CCR = 16 CCR = 32 CCR = 64
0  %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

O
v
e
ra

ll
 P

D
R

Figure 6: Average PDR values and 95% confidence intervals
measured for different settings of CCR at MEDIUM traffic.

of the Contiki stack, we propose alternative settings of the
stack that are adapted to the characteristics of the analyzed
network.

4.3.1 Determining a Recommended Configuration
A closer look at the behavior of the MAC layer mech-

anisms reveals that the setting of the Channel Check Rate
(CCR) parameter heavily determines the performance of the
MAC layer. Carrying out experiments with a MEDIUM
traffic load and with the CCR parameter set to the default
value of 8 and the alternative values of 16, 32, and 64, re-
veals that the performance in terms of PDR can be greatly
improved with larger CCR values, as shown in Fig. 6.

The increase of PDR observed with each doubling of the
CCR can mainly be related to the fact that the nodes wake
up more frequently to check for transmissions, increasing the
responsiveness of the nodes and decreasing one-hop delays.
Apart from that, the transmission burst duration is reduced,
decreasing the potential time a node occupies the medium
until it obtains a MAC layer ACK, effectively reducing the
degree of channel congestion.

However, the increase of performance by incrementing the
CCR comes at an important cost: with higher CCRs, the
duty cycles of the SNs become noticeably longer, since the
SNs wake up more often to check for incoming data packets.
This applies even if the network is silent and there are no
ongoing transmissions.

To determine an optimized setting of the CCR parameter
for our evaluations, we refer to work by Dunkels [3] and Ali
[1] who analyze the effect of the CCR on the performance of
IoT networks in detail. Both sources come to the conclusion
that a value of 16 is either an optimal setting (Dunkels) or
that it should be the upper limit (Ali). Increasing the CCR
further would heavily decrease the longevity of the nodes
due to a much higher duty cycling. Since the SNs deployed
in the Smart City scenario network need to achieve very
long lifetimes to avoid costly battery replacements, we follow
these guidelines and use a CCR of 16.

In the next step, we determine improved configurations for
RPL parameters in order to reduce the number of control
messages generated during the experiments.



The Trickle algorithm [9] is the main responsible mecha-
nism for determining when and whether RPL messages need
to be transmitted. To decrease the RPL traffic overhead,
there are several parameters of the Trickle algorithm that
can be adjusted and that have a direct impact on the num-
ber of generated routing packets. We focus on a subset of
Trickle parameters that have the most relevant impact on
the amount of generated messages: The minimum Trickle
interval size (Imin), the RPL DIO redundancy constant (K )
and the Parent Switch Threshold (PST) defined by the Ob-
jective Function used, which is the Minimum Rank with
Hysteresis Objective Function [8].

Trickle controls a timer that determines the size of the
interval during which a node may perform a DIO transmis-
sion. The value of the interval is set to Imin during the
initialization of the algorithm or after a node changes its
RPL parent. By default, Imin in Contiki is set to 4.096 s.
Each time the Trickle timer expires, if no inconsistencies (i.e,
topology changes) are detected, the interval is doubled, up
to the maximum value determined by Imax2. This means
that as time passes and if the network is stable, the number
of messages generated by Trickle continuously decreases.

Thus, by increasing the Imin value, it is possible to reduce
the number of DIO messages not only during the network
initialization phase, but also when there are RPL message
drops. While the initialization of the network is a unique
event during an experiment, changes of parents are observed
repeatedly over the course of an experiment. In order to
reduce the network congestion as reaction to such an event,
we increase Imin to 8.192 s, the upper limit recommended
by Ali et al. [1].

Another important parameter that passively determines
the number of generated control messages is the RPL DIO
redundancy constant (K ). Each TN keeps track of the num-
ber of DIO transmissions in its vicinity and each TN’s own
DIO transmissions are suppressed if at least K DIO trans-
missions are overheard within the current interval.

Therefore, a reduction of K potentially decreases the RPL
control overhead by limiting the number of transmitted DIOs
within a neighborhood [6]. In a dense network with static
nodes it is reasonable to assume that the network topology
is close to stable, thus a lower DIO dissemination rate seems
acceptable. In Contiki, as in the RPL specification, K is set
to 10 by default. According to the Trickle specification [9],
in general a value between 1 and 5 is suggested. We choose
a value of 3 for the improved settings.

Finally, the PST parameter controls the hysteresis used
when deciding which node is the preferred parent. There-
fore, it can be used to reduce the rate of parent changes
and hence, to increase the network stability. Table 3 gives a
summary of how the improved values discussed in this sub-
section are set in comparison to the Default Configuration.
We name this configuration the Recommended Configura-
tion.

4.3.2 Recommended Configuration Results
We run tests with the Recommended Configuration for

the 3 traffic loads defined in Table 1 for the City Mobility
solution, the results of which are given in Table 4.

Comparing with the MEDIUM traffic PDR results, using
the Default configuration in Fig. 6, the PDR of the Rec-
ommended Configuration improves by 60.39%. At the same

2In Contiki up to 10 interval doublings are allowed.

Table 3: Contiki Default Parameter Changes to Reach the
Recommended Configuration Proposed.

Parameter Default New Config.

IMIN 12 13
K 10 3

PST ETX DIVISOR/2 ETX DIVISOR/1

MAC Frame Queue 8 10
MAC Neighbor Queue 2 5

Table 4: Results for the Recommended Parameter Config-
uration. Average Values are Given with 95% Confidence
Intervals. Frame Drops and Parent Changes are Given per
Minute and per Node.

Traffic Low Medium High

PDR 95.88 +− 0.65% 96.06 +− 0.72% 96.07 +− 0.06%
Delay (ms) 745 +− 54 788 +− 53 859 +− 64

Frame Drops 0.63 +− 0.33 0.58 +− 0.34 0.64 +− 0.37
Parent Changes 0.86 +− 0.05 0.91 +− 0.05 0.98 +− 0.04

time, the delays decrease by 1.38 s, representing an improve-
ment of 63.67%. These results evidence significant network
performance improvements.

The results also indicate that, even though delay and drop
rates increase as the traffic load increases, the PDR only
decreases marginally. This is due to the application layer
reliability mechanism. At a higher traffic load, a greater
number of retries is necessary due to frame losses. These
retries allow to maintain a high PDR, at the expense of a
delay increase.

The network stability is also improved as the parent change
rate decreases because of the adjusted value of the RPL Ob-
jective Function PST. The average parent change rate for
each node decreases by 39.33% in comparison with the re-
sults measured for MEDIUM traffic with the Default Con-
figuration. Again, the different traffic loads do not lead to
noticeable differences in the mean parent changes rate. As a
further benefit, the Recommended Configuration also helps
reducing RPL overhead since a parent change leads the in-
volved node to reset its RPL interval to Imin, thus increasing
the RPL DIO message count.

5. CONCLUSIONS AND FUTURE WORK
Configuring an IoT stack to achieve a satisfying perfor-

mance in a Smart City environment is not a trivial task.
Evaluations performed of IoT networks in real large-scale
testbeds or deployments are not available in the literature.
In this paper we carry out an experimental evaluation of
a large-scale City Mobility application with different traf-
fic loads and node roles. We performed it in a large-scale
testbed to carry out experiments with the Contiki commu-
nication protocol stack.

The results obtained demonstrate that with the default
configuration parameters used by Contiki the network does
not achieve an acceptable performance in the analyzed City
Mobility solution losing more than the 40% of the informa-
tion generated. We find the ContikiMAC and RPL layers of
the Contiki protocol stack to have a significant effect on the
overall network performance.

By combining the modifications of the ContikiMAC and
RPL layers, a recommended stack configuration with im-



proved parameter settings is derived for the analyzed City
Mobility solution. This Recommended Configuration achieves
a PDR and end-to-end delays of 96.06% and 788 ms re-
spectively for the MEDIUM traffic load. This represents an
improvement of more than 60% in both performance met-
rics when comparing with the Default Configuration analy-
sis. Further, we achieve to improve the network stability by
reducing the parent change rate in 39.33%. These results
demonstrate that networks based on the IETF IoT proto-
col suite are adequate for being incorporated in the City
Mobility solution.

Finally, we derive a series of guidelines that should be
taken into account when constructing the TN-backbone for
a Smart City scenario:

• The position of the BR and TNs is critical for the net-
work performance. If the backbone network built by
the TNs is too dense, bad positioned or too disperse,
it can heavily decrease the PDR. Main causes can be
high degrees of congestion if the backbone is too dense
or a missing variety of links if the nodes are bad posi-
tioned or dispersed.

• The TNs located close to the BR should be stable and
there should be a variety of TNs to ensure that even
in case that one fails, the rest of the network remains
reachable. This is critical due to the chain-like net-
work that is automatically constructed by RPL and
due to the generally linear layout of streets, where few
alternative routes are available.

• The density of the TN backbone network depends on
the transmission ranges that can be achieved from one
TN to another. If the connection quality between
two TNs is not sufficient to establish a stable connec-
tion, inserting another TN in between those two nodes
might be necessary to assure connectivity.

It can be demonstrated that with the improved settings
proposed in this paper, the basic requirements for a large-
scale IoT City Mobility solution are met. Yet, the perfor-
mance analysis reveals that there seems to be enough room
for further improvements via the adjustment of other proto-
col stack parameters. In future work, we plan to carry out
a comprehensive study considering a wide set of parameter
and mechanism settings at all protocol stack layers, looking
at various Smart City network topologies and use cases. Fur-
ther improvements, such as a higher reduction of RPL traf-
fic overhead and advanced congestion control mechanisms,
not only could benefit the performance of the analyzed City
Mobility solution but the performance of large-scale IoT net-
works in general.

6. ACKNOWLEDGMENTS
This work was supported in part by the Spanish Gov-

ernment’s Ministerio de Economı́a y Competitividad under
grant number RYC-2013-13029, through project TEC2012-
32531, FEDER, the Spanish Government’s Ministerio de
Industŕıa, Enerǵıa y Turismo, under the program AEESD
2013, through the project Smart Gateway Evolution and by
the Generalitat de Catalunya, Departament d’Economia i
Coneixement through the project of Doctorat Industrial.

7. REFERENCES
[1] H. Ali. A Performance Evaluation of RPL in Contiki.

PhD thesis, MS thesis, Blekinge Institute of
Technology, 2012.

[2] J. Chinrungrueng, U. Sunantachaikul, and
S. Triamlumlerd. Smart parking: An application of
optical wireless sensor network. In Applications and
the Internet Workshops, 2007. SAINT Workshops
2007. International Symposium on, pages 66–66.
IEEE, 2007.

[3] A. Dunkels. The contikimac radio duty cycling
protocol. 2011.

[4] Fit/IoT-LAB. M3 Open Node.
https://github.com/iot-lab/iot-
lab/wiki/Hardware M3-node, June
2014.

[5] E. Fleury, N. Mitton, T. Noel, and C. Adjih. FIT
IoT-LAB: The Largest IoT Open Experimental
Testbed. ERCIM News, (101):14, Apr. 2015.

[6] H. Kermajani, C. Gomez, and M. H. Arshad.
Modeling the message count of the trickle algorithm in
a steady-state, static wireless sensor network.
Communications Letters, IEEE, 16(12):1960–1963,
2012.

[7] M. Kovatsch, S. Duquennoy, and A. Dunkels. A
low-power coap for contiki. In Proceedings of the 8th
IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS 2011), Valencia, Spain, Oct.
2011.

[8] P. Levis. The minimum rank with hysteresis objective
function. Technical report, 2012.

[9] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko.
The trickle algorithm (rfc 6206). Technical report,
2011.

[10] J. Paradells, C. Gomez, I. Demirkol, J. Oller, and
M. Catalan. Infrastructureless smart cities. use cases
and performance. In Smart Communications in
Network Technologies (SaCoNeT), 2014 International
Conference on, pages 1–6. IEEE, 2014.

[11] P. Rothenpieler, B. Altakrouri, O. Kleine, and
L. Ruge. Distributed crowd-sensing infrastructure for
personalized dynamic iot spaces. In Proceedings of the
First International Conference on IoT in Urban Space,
pages 90–92. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering), 2014.

[12] Z. Shelby and C. Bormann. 6LoWPAN: The wireless
embedded Internet, volume 43. John Wiley & Sons,
2011.

[13] Z. Shelby, K. Hartke, and C. Bormann. The
Constrained Application Protocol (CoAP) (RFC
7252). http://www.rfc-editor.org/info/rfc7252, June
2014.

[14] T. Winter. Rpl: Ipv6 routing protocol for low-power
and lossy networks. 2012.

[15] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and
M. Zorzi. Internet of things for smart cities. Internet
of Things Journal, IEEE, 1(1):22–32, 2014.


