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Natural history collections (NHCs) represent an enormous and largely untapped 
wealth of information on the Earth’s biota, made available through GBIF as digital 
preserved specimen records. Precise knowledge of where the specimens were collected 
is paramount to rigorous ecological studies, especially in the field of species distribution 
modelling. Here, we present a first comprehensive analysis of georeferencing quality for 
all preserved specimen records served by GBIF, and illustrate the impact that coordinate 
uncertainty may have on predicted potential distributions. We used all GBIF preserved 
specimen records to analyse the availability of coordinates and associated spatial 
uncertainty across geography, spatial resolution, taxonomy, publishing institutions and 
collection time. We used three plant species across their native ranges in different parts 
of the world to show the impact of uncertainty on predicted potential distributions. 
We found that 38% of the 180+ million records provide coordinates only and 18% 
coordinates and uncertainty. Georeferencing quality is determined more by country of 
collection and publishing than by taxonomic group. Distinct georeferencing practices 
are more determinant than implicit characteristics and georeferencing difficulty 
of specimens. Availability and quality of records contrasts across world regions. 
Uncertainty values are not normally distributed but peak at very distinct values, which 
can be traced back to specific regions of the world. Uncertainty leads to a wide spectrum 
of range sizes when modelling species distributions, potentially affecting conclusions 
in biogeographical and climate change studies. In summary, the digitised fraction of 
the world’s NHCs are far from optimal in terms of georeferencing and quality mainly 
depends on where the collections are hosted. A collective effort between communities 
around NHC institutions, ecological research and data infrastructure is needed to 
bring the data on a par with its importance and relevance for ecological research.
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Introduction

Natural history collections (NHCs) held in museums, 
botanical gardens and similar institutions constitute an 
enormous wealth of irreplaceable information on the 
Earth’s biota. Such information provides crucial baseline 
knowledge for understanding the present and past dis-
tributions of biodiversity on Earth and how it may be 
affected by global change (Allmon 1994, Shaffer  et  al. 
1998, Boakes et al. 2010, Lister 2011, Bradley et al. 2014, 
Meineke  et  al. 2018a). NHCs are especially valuable in 
research as they are evidence based and constitute the pri-
mary source of historical data on biodiversity, going back 
hundreds of years with broad taxonomic and geographic 
coverage. These data provide information about species 
associations and community assemblages through both 
space and time (James et al. 2018). As such, they consti-
tute a window to the evolutionary processes taking place 
in response to environmental change (Boakes et al. 2010, 
Pyke and Ehrlich 2010, Holmes et al. 2016). NHCs have 
provided invaluable data for studies in fields such as spe-
cies distribution modelling (SDM) (Gaubert  et  al. 2006, 
Mateo  et  al. 2010), ecophysiology (DeLeo  et  al. 2019, 
Tseng and Pari 2019), global change (Lang  et  al. 2019, 
Denney and Anderson 2020), phenology (Hart  et  al. 
2014, Kiat et al. 2019), ecological interactions (Kido and 
Hood 2019), invasion biology (Crawford and Hoagland 
2009, Jorissen et al. 2020), conservation (Drew et al. 2017, 
Lughadha et al. 2019) and public health and safety (Suarez 
and Tsutsui 2004, Komar et al. 2005).

Despite their immense potential, NHC data are still 
rather underused in eco-evolutionary and global change 
research and their potential is still largely untapped 
(Meineke et al. 2018b, Andrew et al. 2019, Bartomeus et al. 
2019), even though their use has been steadily growing dur-
ing recent decades (Lavoie 2013, Nelson and Ellis 2018, 
GBIF Secretariat 2021a, Heberling  et  al. 2021). In large 
measure, this recent growth has been enabled by monu-
mental digitisation efforts by an increasing number of 
individual institutions, supported by large-scale biological 
data mobilisation projects such as DISSCO (Distributed 
System of Scientific Collections) in Europe (<www.dis-
sco.eu>), iDigBio in North America (<www.idigbio.org>) 
and the Atlas of Living Australia (ALA) (<www.ala.org.
au>) together with the rest of its enabled living atlases 
(<https://living-atlases.gbif.org>). The Global Biodiversity 
Information Facility (GBIF, <www.gbif.org>) serves as the 
major gateway for accessing all of these digitised biological 
collections. Databasing and giving free and open access to 
NHCs is a critical step for leveraging the scientific value of 
these data (Krishtalka and Humphrey 2000, Boakes et al. 
2010, Cicero et  al. 2017). As of March 2021, GBIF pro-
vided access to over 180M digital records of natural history 

collection specimens. Easy access to these data has repre-
sented an increase in use of GBIF-mediated data in scien-
tific journals from 52 articles in 2008 to over 743 in 2020 
(GBIF Secretariat 2021a). This trend is expected to con-
tinue given that only a fraction of the estimated one to three 
billion global specimen holdings (Ariño 2010, Marcer et al. 
2021b) has been digitised.

In a process called retrospective georeferencing, coor-
dinates are assigned to specimens by interpreting the tex-
tual location descriptions, written in their associated tags 
(Chapman and Wieczorek 2020). This is a critical, dif-
ficult, time-consuming and potentially error-prone pro-
cess, which must be conducted with care (Chapman 2005, 
Guralnick  et  al. 2006, Hill  et  al. 2009, Chapman and 
Wieczorek 2020). This is because a specimen’s locational 
data, along with its taxonomic identification and time of 
collection, constitutes the crucial information that deter-
mines its value in ecological research. The newly inter-
preted digital spatial representation can be used to extract 
environmental information from where the specimen lived 
using readily available data (e.g. WorldClim ver. 2 (Fick 
and Hijmans 2017, <www.worldclim.org>) and CHELSA 
(Karger  et  al. 2017, <https://chelsa-climate.org>), for 
global climate data; or the Copernicus Global Land Service, 
<https://land.copernicus.eu/global>, for land cover data). 
According to a recent survey of NHCs worldwide (784 
respondents from 73 countries; Marcer et al. 2021b), 44% 
of the reported collections have reached 50% digitisation, 
of which approximately 60% have coordinates for less than 
50% of their records, despite the fact that most specimens 
carry tagged information on the location where they were 
collected (Beaman et al. 2004).

However, a pair of coordinates does not suffice to georef-
erence a specimen. Optimally, the result of the georeferenc-
ing process would be coordinate-based geometries precisely 
defined with its corresponding reference system and uncer-
tainty (Wieczorek  et  al. 2004, Chapman and Wieczorek 
2020) or more informative uncertainty imprints based on 
probability distributions (Guo et al. 2008). Explicit knowl-
edge of uncertainty around the location of a specimen is 
needed to adequately approximate the relation of an organ-
ism to its habitat (but see Smith et al. 2021). Otherwise, erro-
neous inferences can lead to committing substantial errors 
(Chapman and Wieczorek 2020). GBIF’s data schema pro-
vides three specific Darwin Core dataset elements that relate 
to this information, namely geodeticDatum, coordinatePreci-
sion and coordinateUncertaintyInMeters (<https://dwc.tdwg.
org>, Wieczorek et al. 2012). Yet, despite the digitisation 
programs and the availability of standards and protocols for 
georeferencing (Wieczorek et al. 2004, 2012, Chapman and 
Wieczorek 2006, 2020, Bloom  et  al. 2018), as of March 
2021, uncertainty was provided by only one third of the 
preserved specimen records aggregated in GBIF that have 
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coordinates. Therefore, NHC data become very difficult to 
incorporate into robust research frameworks, which require 
clear-cut knowledge on the reliability of the records’ loca-
tion. By exploring the scientific literature it is relatively easy 
to find SDM articles where either coordinate uncertainty is 
not taken into account, or it is not mentioned as part of the 
data filtering process, or the number of coordinate decimals 
is used as a surrogate for coordinate uncertainty instead of 
the actual coordinate uncertainty (McMichael et al. 2014, 
Biber-Freudenberger  et  al. 2016, Wicaksono  et  al. 2017, 
MacDonald et al. 2020, Mayani-Parás et al. 2021).

The main objective of this study was to provide a first 
global comprehensive view on the state of the georeferencing 
of the world’s NHCs which is also a measure of the complete-
ness of digitisation programmes or initiatives. We analysed 
the differences in georeferenced data across a range of factors, 
including NHC holding institutions, the countries in which 
they are held, the date and location of the collection event, 
and higher taxonomy. In addition, we framed the results in 
the context of ecological research and the implications for it. 
To this end, we provided three modelling examples to illus-
trate the importance of considering uncertainty when infer-
ring species distributions from NHC data. These examples 
correspond to three plant species chosen from very distinct 
parts of the world to illustrate varying degrees of environ-
mental heterogeneity driven by their respective latitudinal 
range and their topographic variation.

Material and methods

Dataset preparation and analyses

On 11 March 2021, we downloaded all preserved 
specimen records from NHCs (filtered by basisOfRe-
cord = ‘PRESERVED_SPECIMEN’) held at GBIF (derived 
dataset GBIF.org, data available at <https://doi.org/10.15468/
dd.9ched4>), which we stored in an sqlite database (ver. 
3.29.0, <www.sqlite.org>) for querying purposes. We kept 
fields relevant for the objectives of our analysis, namely: 
gbifID, occurrenceID, institutionCode, datasetName, hasCo-
ordinate, decimalLongitude, decimalLatitude, coordinateUncer-
taintyInMeters, coordinatePrecision, verbatimCoordinateSystem, 
verbatimSRS, georeferencedDate, georeferenceProtocol, hasGeo-
spatialIssues, issue, eventDate, continent, countryCode, kingdom, 
phylum, class, order, family, genus and acceptedScientificName. 
Among these, the values of the following fields are interpreted 
by GBIF from the original data provided by the sources: has-
Coordinate, decimalLatitude, decimalLongitude, coordinateUn-
certaintyInMeters, coordinatePrecision, hasGeospatialIssues, issue, 
countryCode, kingdom, phylum, class, order, family, genus. When 
dealing with preserved specimens by country of collection and 
by publishing country, we created a subset of data in order to 
make them fit for graphical illustration while preserving rep-
resentativity of the whole. In both cases, we used the criterion 
of the minimum list of countries which together represented 
80% of all records.

In order to visualise spatial resolutions typically used in 
SDM studies, we classified values in the coordinateUncertain-
tyInMeters field into a new UNC.CAT field with categories 
resulting from binning uncertainty values using the following 
cutoff points: < 1, < 10, < 100, < 250 m, < 1, < 5, < 10, < 
50, < 100, ≥ 100 km. In this study, we considered data fit for 
use at a given resolution (grid size) when uncertainty was less 
than or equal to that grid size. Records at longitude = 0 and 
latitude = 0 were filtered out as this is a known source of error 
(Zizka et al. 2019). We assessed uncertainty via the explicit 
coordinateUncertaintyInMeters field, excluding records with 
implicit uncertainty information through the footprintWKT 
field (0.26% of records). We will refer to subsets of records as: 
records without coordinates, records with coordinates for those 
records with only coordinates and records with uncertainty 
for those records with both coordinates and uncertainty. As 
there is no information on the reliability of uncertainty mea-
sures themselves as mediated by GBIF, we assume that the 
given uncertainties are bonafide estimates of true uncertainty 
given the resources available to georeferencers. All analyses 
were done with the R statistical computing environment ver. 
4.0.3. (<www.r-project.org>).

Species distribution modelling

To illustrate the importance of considering uncertainty, 
we modelled the potential distribution of three plant spe-
cies across their native ranges in different parts of the 
world: Rhododendron groenlandicum (northern Canada and 
Greenland), Guazuma ulmifolia (from northern Mexico to 
northern Argentina) and Eucalyptus gongylocarpa (south-
western Australia). For each species, the number of available 
occurrences with both coordinates and uncertainty were: 
1000, 585 and 325, respectively. We filtered these to one 
per 30 arc-second grid cell, selecting always the occurrence 
with the least uncertainty. After this process, the number 
of occurrences available for the models were 726, 477 and 
207, respectively. For predictors, we used the set of bio-
climatic variables in WorldClim ver. 2 (Fick and Hijmans 
2017) and the percentage of tree cover (Hansen et al. 2013). 
These models are to illustrate the issues with coordinate 
uncertainty. Full models would use a larger set of predic-
tors and a more systematic approach (Williams et al. 2012). 
Potential multicollinearity in predictor variables did not 
represent a problem since the objective of this modelling 
exercise was only illustrative with respect to predictions. 
However, to optimise the number of predictors used, we 
automatically selected a subset of predictors for each species 
(Supporting information) with a variance inflation factor 
below 10 (Dormann  et  al. 2013). The selection was done 
using the function vifstep from the usdm R package ver. 1.1-
18 (Naimi et al. 2014). All predictor variables were used at 
30 arc-seconds resolution (approx. 1 km).

In order to measure the effects of uncertainty on predic-
tions of potential distributions, we generated 500 possible 
occurrence datasets taking into account the positional uncer-
tainty of occurrences. For each occurrence in each dataset and 
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following a uniform probability distribution, we randomly 
selected one grid cell from within its uncertainty boundary 
and extracted the cell’s environmental values for all predictors. 
We then randomly split each dataset into 80% occurrences 
for model training and 20% for testing model accuracy with 
the area under the receiver-operator curve (AUC) which is fit 
for our modelling settings (Merow et al. 2013); i.e. same land-
scape and background sample for each species. Background 
samples consisted of a single selection of 10 000 random 
points per modelled species, i.e. models were trained with 
the same background selection. These were sampled from 
their respective native areas which correspond to the areas on 
which predictions were made. Finally, we used the whole set of 
occurrences and background to generate the 500 models and 
their predictions using Maxent ver. 3.4.1 within the R dismo 
package ver. 1.3-3 (Hijmans et al. 2020). We chose Maxent 
with its default parameters (Phillips et al. 2006) for our illus-
trative modelling example since it is the tool most widely-used 
(Santini et al. 2021) by the SDM community. Since our goal 
was only to predict species’ potential distributions, we let 
Maxent select the predictive features automatically as is usu-
ally done in machine learning approaches (Phillips et al. 2006, 
Elith et al. 2011, Merow et al. 2013). In order to ascertain 
the variability in the predicted modelling ranges, we binarised 
Maxent continuous models using the maximum sum of speci-
ficity and sensitivity (maxSSS) which is a good method when 
using presence-only data (Liu et al. 2013). To avoid report-
ing the variability based on extreme cases, i.e. minimum and 
maximum predicted ranges, we also provide the 5th and 95th 
percentiles of the predictions ordered by range area. Finally, 
to further explore the influence of uncertainty on predic-
tions of potential distributions, we analogously prepared 500 
additional datasets per species and per a selected set of maxi-
mum uncertainty thresholds, i.e. only occurrences below each 
threshold were used for modelling. The thresholds were cho-
sen based on peaks of reported uncertainty values in GBIF 
data. We chose 3536 m as the starting threshold and then we 
selected three more, each a factor of 2 × of the previous one, 
i.e. 7071, 14 142 and 28 284.

Results

Overall numbers and trends

We retrieved over 180 million records for preserved speci-
men records available via GBIF at the time of download 
(Table 1). Records without coordinates formed the larg-
est part (43.62%), followed by records with coordinates 
(38.23%) and records with coordinates and uncertainty 
measures (18.15%). These numbers reflect a steep increase in 
aggregated records in GBIF. Since 2015, more than 80 million 
specimen records have been added (Fig. 1). Georeferencing 
efforts increased, too; in January 2015, 38 505 358 records 
had coordinates, representing 38.2% of a total of 100 913 
930. In 2021, this number increased to 103 625 307 records, 
representing 56.4% of a total of 183 795 180. However, this 

positive trend is not followed by the data on uncertainty. In 
2015, 15 668 937 records had uncertainty information, rep-
resenting a total of 40.7% of the records with coordinates, 
while in March 2021, despite the absolute number increasing 
to 33 352 275, the percentage went down to 32.2% of the 
records with coordinates. These results indicated an acceler-
ating pace of coordinate digitisation, but at the expense of 
leaving out crucial uncertainty information.

Distribution of georeferencing and uncertainty

At a global level
The distribution of records with coordinates was uneven 
between and within continents (Fig. 2a). The highest den-
sities of records occurred in Europe, the southern half of 
North America, Central America, scattered parts of South 
America (e.g. the north–east and the Atlantic coast), south-
ern Africa and Madagascar, Southeast Asia including Japan 
and Australia. The lowest densities mainly corresponded to 
Siberia and parts of central Asia, the Sahara and Sahel in 
Africa, the Arabian desert, Greenland and Antarctica. Oceans 
showed a pattern ranging from very low densities in areas 
far from the continents, towards higher densities close to the 
coasts. The northern Atlantic Ocean and the Southern Ocean 
south of Australia showed much higher densities than the rest 
of the oceans. Linear patterns corresponding to oceanic expe-
ditions can be observed.

We found a contrasting distribution of records with 
uncertainty with respect to records with coordinates, with 
georeferencing practices clearly differing among regions with 
respect to their degree of completeness (Fig. 2b). Clusters 
of records with uncertainty in percentages above 80% (blue 
colour) can be observed in southern Alaska, eastern Iberian 
Peninsula, the Alps, Belgium, Finland, Norway, northeastern 
Russia, northern India and Australia. The Southern Ocean 
also showed high percentages of records with uncertainty, but 
corresponding to relatively lower numbers of specimens. The 
United States also stood out as an area of relatively high den-
sity of records with uncertainty, except for parts of the south 
and midwest. At the lower end of the distribution, several 
regions stood out: Central America, Canada and parts of the 
eastern United States, South America, Africa, most of Asia, 
parts of Europe and the North Atlantic.

By country
A total of 24 countries represented the minimum set with 
80% of all preserved land specimen records (Fig. 3a). South 
Korea, the Netherlands, Brazil, Japan and Indonesia are the 

Table 1. Number and percentages of preserved specimen records split 
between those without coordinates, records with coordinates and 
records with uncertainty, downloaded from GBIF on 11 March 2021.

Subset No. Percentage

Total 183 795 180 100.0 
Records without coordinates 80 169 873 43.62 
Records with coordinates 70 273 032 38.23 
Records with uncertainty 33 352 275 18.15 
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countries with over half of their records without coordinates. 
On the other hand, Costa Rica, Australia, Finland, Canada, 
Switzerland and Norway had the highest rates of georeferenc-
ing, all above 80%. With respect to uncertainty, countries 
for which more than half of their specimen records pro-
vided uncertainty were: Switzerland, Finland, Norway and 
Australia. Despite the United States not reaching 50%, its 
25.9% of records with uncertainty was noteworthy given its 
very large number of preserved specimens. The remainder of 
countries in Fig. 3a had less than a fourth of their records with 
uncertainty, except for Spain with a 34.6%. Costa Rica stood 
out with the highest percentage of records with coordinates 
combined with the lowest percentage of records with uncer-
tainty. In absolute terms, the United States, Australia, Brazil, 
Mexico and Canada represented the areas where most speci-
mens have been collected (Supporting information), which is 
in part determined by the size of these countries. However, 
other large countries, e.g. Russia and China, showed substan-
tially fewer numbers of digitised collected specimens.

By publishing country
Eighty percent of the total number of preserved specimens 
were kept in the institutions of only 13 countries (Supporting 
information). Institutions in the United States, with a total 
of 62 623 334 (34.1%) records hold the highest number of 
preserved specimens, followed by Australian institutions with 
12 536 148 (6.8%), and United Kingdom institutions with 

10 811 413 (5.9%) (Fig. 3b). Over 90% of the records from 
institutions in Costa Rica, Australia and Mexico are records 
with coordinates. Institutions in Norway and Australia have 
the highest prevalence of assigning uncertainty to coordinates.

By taxonomy
The great majority, 92.7%, of digitised preserved specimen 
records were from just two kingdoms: Animalia with 46.7% 
of records and Plantae with 46.0%. Fungi were a distant third 
with 3.8% (Fig. 4a) and the remaining kingdoms comprised 
3.5% of the database. The Animalia kingdom had the highest 
percentage of records with coordinates (66.8%) and records 
with uncertainty (21.4%), followed by Plantae with 47.1% 
and 15.5%, respectively, and Fungi with 54.9% and 21.9%, 
respectively. The taxonomic schema for kingdoms and phyla 
used in this work is that of the GBIF Backbone Taxonomy 
(GBIF Secretariat 2021b).

The same pattern is evident at the phylum level (Fig. 4b). 
For each kingdom, just two or three phyla represent the great 
majority of specimen records and the percentage of records 
with coordinates and records with uncertainty are similar to 
those seen at the kingdom level. Tracheophyta and Bryophyta 
represent 91.7% and 4.6% of all plant records, respectively. 
Arthropoda, Chordata and Mollusca made up 53, 33.4 and 
8.7% of all animal records, respectively. Ascomycota and 
Basidiomycota represent 62.5% and 36.5% of all Fungi 
records, respectively.

Figure 1. Temporal trend of the number of GBIF’s preserved specimen records. In grey are records without coordinates, in blue records with 
coordinates (CO), and in magenta records with uncertainty (CU). The blue dashed line shows the ratio of CU to CO + CU, a decreasing 
trend for uncertainty. The red line shows the ration of CU to CO. The ratio of records with coordinates that also have uncertainty is 
diminishing over time.
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Figure 2. Global distribution of preserved specimens with number of coordinates in one degree by one degree grid squares. (a) Number 
of records with coordinates (colour indexing is represented on a log scale). (b) Percentage categories for records with uncertainty (colour 
hue represents percentage categories while colour intensity represents number of records per square degree, i.e. darker colours represent 
high numbers).
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By collection year
Preserved specimen records in GBIF date back to the start of 
the 17th century, although in very sparse numbers until the 
late 19th century, when numbers started to rapidly increase 
(Fig. 5a). Before the 19th century, there were a total of 53 
754 registered records, of which 38 624 were records with-
out coordinates, 12 498 were records with coordinates, and 
2632 were records with uncertainty. Starting in the 19th 
century, digitised specimens increased until the end of the 
20th century when records in GBIF levelled off. The first two 
decades of the 21st century showed a sharp decrease in the 
number of records. Until the 21st century, we observed a lag 

in the increase of records with coordinates with respect to the 
total of digitised records. The 21st century showed a large 
increase in records with coordinates with respect to the total. 
Records with uncertainty slightly increased until the end of 
the 20th century, but diminish again in the 21st century. 
The number of records per unit of time peaked at the end 
of the 20th century and then started declining , even with 
a large percentage of records that still need to be digitized 
(Cocks et al. 2020, Hardisty et al. 2020). This may be due 
to a combination of reasons, among them an overall decline 
in collection activity across the world (Bradley et  al. 2014, 
Gardner  et  al. 2014, Tewksbury  et  al. 2014), the delay in 

Figure 3. Preserved specimens by (a) country of collection, and (b) publishing country. The minimum set of countries representing at least 
80% of the total number of specimens are shown. Number of specimens are expressed in millions (grey numbers) and records with 
coordinates and records with uncertainty are expressed as percentages of the total (dark blue and red numbers, respectively).
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getting new and backlogged material catalogued, digitised 
and published through GBIF (Gaiji  et  al. 2013), a global 
decline in the number of taxonomists and staff in collections 
institutions and resourcing issues (Noss 1996, Ferreira et al. 
2016), or even that the specimens that are easier to georefer-
ence have been added at a faster pace than the more difficult 
ones requiring more intensive manual work.

Records with lower uncertainties belonged to speci-
mens collected more recently (Fig. 5b), which would be in 

accordance with a relatively greater ease in the interpreta-
tion of labels than those collected in earlier centuries (e.g. 
recent labels are more likely to be typed rather than hand-
written), as well as the use of GPS-capable devices in the 
field. Another pattern was that, despite this observable 
improvement with respect to uncertainty in more recent 
records, the variability remained high with uncertainties 
in the last century encompassing all values from very high 
to very low. A decrease in records belonging to the higher 

Figure 4. Taxonomic distribution of total number of specimen records. (a) By kingdom, (b) by phylum (viruses and records with unknown 
kingdom are not represented). Numbers of specimens are expressed in millions (grey numbers) and records with coordinates and records 
with uncertainty are expressed as percentages of the total (dark blue and red numbers, respectively).
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Figure 5. (a) Distribution of overall number of records, records with coordinates, and records with uncertainty by collecting year. (b) 
Density of coordinate uncertainty values per collecting year.
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Figure 6. Uncertainty values distribution. (a) Density distribution for uncertainty values for all records with uncertainty. (b) Cumulative 
distribution of available records fit for research at different spatial resolutions. (c) Density maps of available records fit for research at 
different spatial resolutions.
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Figure 7. Potential distribution of the three studied species as affected by coordinate uncertainty in preserved specimens. (a) Occurrences 
with uncertainty boundaries. Small grey crosses represent records with coordinates (no uncertainty) while coloured circles represent classes 
of uncertainty range. (b) 5th percentile predicted range. (c) 95th percentile predicted range. (d) Distribution of predicted range areas for 
the 500 simulations. The red line expresses the incremental factor in range area of the 95th percentile with respect to the 5th percentile. The 
blue red line expresses the incremental factor in range area between the minimum and maximum simulated ranges. (e) Map of differences 
in predicted potential distributions between the 5th and 95th percentiles.
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uncertainty categories was not seen as we looked at increas-
ingly more recent records. This would be in accordance with 
retrospective georeferencing along with the georeferences 
that originated in digital form coming from the capture of 
GPS information.

Distribution of uncertainty values

The distribution of uncertainty values clearly deviated from 
any normal distribution, being multimodal with peaks at 
very specific values (Fig. 6a). Three values clearly stood 
out as the most reported: 10 000, 1000 and 100 m. At a 
second level, values 3535, 2000, 707 and 500 m were also 
very apparent. Values ranged from as low as 1 cm to values 
higher than 1000 km and, along this range, density clearly 
peaked at very specific values (e.g. 1, 10, 50, 71, 100, …). 
Some peaks can be clearly attributed to specific georefer-
encing practices carried out in specific regions (Supporting 
information); e.g. 402 m (~ 1/4 of a mile) was almost exclu-
sive to the United States (Supporting information), 1415 m 
(half the diagonal of a square with side equal to 1 km) and 
14 143 m (half the diagonal of a square with side equal to 
10 km) were mostly assigned in Finland (Supporting infor-
mation) and 30 000 m was mostly concentrated in Australia 
(Supporting information). Peaks such as 14 135, 7071, 707, 
143 and 71 m related to default estimates of uncertainty 
calculated using grid diagonal metrics; e.g. 7071 and 707 
may correspond to half the diagonal of square grids of sizes 
5000 and 500 m, respectively. The dependence of uncer-
tainty values on georeferencing practices was also observed 
for density distributions of assigned uncertainties by pub-
lishing institutions in each country (Supporting informa-
tion). Different countries can be distinguished by different 
profiles. We found similar patterns by kingdom, in this case 
related to georeferencing practices among distinct research 
communities (Supporting information). However, patterns 
by taxonomy were much less specific than patterns by pub-
lishing countries.

Availability of records for research at different 
resolutions

The number of available records at different resolutions 
changes substantially if we consider unique taxon-location 
combinations, i.e. only one record per taxon and locality 
(Fig. 6b). This pattern seems mostly contributed by king-
dom Animalia (Supporting information). Nonetheless, 
in both cases, the number of records that were fit for use 
showed a sharp decrease from resolutions of 10 km down 
to 1 m. There were a total of 14.6 million records (8.7 mil-
lion unique taxon-location combinations) which were fit for 
use at 1 km resolution, a frequently used target resolution 
for regional level studies. Although this seems like a large 
number of records, we need to consider that this is the total 
number of records for the whole world and all species. The 
same pattern of decline of the number of species available 
at ever finer resolutions was observed when separated by 

kingdom (Supporting information), except for Fungi, which 
showed a much smoother decline in numbers towards finer 
resolutions. When looking at the records from a global spa-
tial view, the higher numbers of plant records over animals 
was observable (Supporting information). Global densities 
of records for animals and plants at fine 1 and 5 km resolu-
tions were similar, except for some regions of clear predomi-
nance of plants over animals such as the Iberian Peninsula, 
Scandinavia, parts of central Europe, Russia and Australia. 
For animals, the Southern Ocean between Australia and 
Antarctica showed a higher density of fine resolution records. 
On the other hand, Fungi have much more sparse records 
but two zones stand out with higher densities of fine resolu-
tion records: southern Scandinavia and Slovenia. Scattered 
locations in the Iberian Peninsula, the United States and 
Australia were also perceivable.

Effects of uncertainty on the prediction of potential 
distributions

Average predictive performance among the 500 models for 
each species and uncertainty threshold was good to excellent 
(Supporting information) according to AUC (Swets 1988). 
The predicted potential distribution for our three example 
species covered a wide range of sizes when uncertainty was 
taken into account. The 5th and 95th percentile distributions 
(Fig. 7b, c) from the 500 simulations for each species differ 
by a factor of 1.8 in the case of R. groenlandicum, 1.6 in the 
case of G. ulmifolia and 1.3 in the case of E. gongylocarpa 
(Fig. 7d, e). These differences are the result of the variation 
introduced in each dataset when choosing a random occur-
rence point within the uncertainty boundaries around each 
occurrence (Fig. 7a). The larger the circle, i.e. uncertainty 
boundary, the higher the possibility of picking occurrence 
locations with markedly different environmental predictor 
values. This is particularly true when the occurrence lies in a 
locally diverse zone such as a mountainous area (Supporting 
information). We estimated the predictors’ value range, i.e. 
differences between minimum and maximum values for each 
occurrence at different uncertainty values (Supporting infor-
mation). Higher uncertainties had a much wider dispersion 
of differences between minima and maxima within uncer-
tainty boundaries than occurrences with low uncertainty. 
Also, for all common predictors, E. gongylocarpa shows the 
least dispersion of values (Supporting information), which 
corresponds with the least variation in predicted ranges 
(Fig. 7d). The waste in the number of records that a con-
servative and robust modelling entails could also be appreci-
ated. For R. groenlandicum we could only use 1000 records 
with uncertainty out of a total 2228 with coordinates, for G. 
ulmifolia it was 585 out of 7382 and for E. gongylocarpa 325 
out of 385. Finally, there is still considerable variation in the 
predicted ranges even when using data which has been lim-
ited in occurrence uncertainty. Predicted range sizes between 
the 5th and 95th percentiles for all species and maximum 
uncertainty thresholds vary in percentage from 32% up to 
89% (Supporting information).
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Discussion

We analysed more than 180 million records from GBIF to 
provide a first detailed analysis of the world’s preserved speci-
men records in terms of georeferencing quality across conti-
nents, taxonomy, publishing country and year of collection. 
Georeferencing quality is crucial for ecological research as it 
allows to rigorously retrieve the environmental conditions 
of where the species lived and the specimen was collected. 
We illustrated this with the three plant species by showing 
the effects that the incorporation of uncertainty in species 
distribution modelling can have in predicted species ranges 
and the waste in records which can not be incorporated into 
modelling due to incomplete georeferencing. The three spe-
cies were selected from three different parts of the world to 
illustrate varying degrees of environmental heterogeneity 
driven by their respective latitudinal range and their topo-
graphic variation.

Digitisation efforts make it possible to easily retrieve 
NHC data via GBIF. Yet, most of the occurrence records 
of the world’s NHCs remain in analogue form. Despite 
this relatively large number of available records, not all are 
ready to use in ecological research that requires informa-
tion on the environment in which these specimens lived. 
Only 104 million records have coordinates, and only 
33 million also have information on coordinate uncer-
tainty. The trends (Fig. 1) indicate the prospects are also 
not good for a short term improvement. While georefer-
encing seems to keep pace with digitisation, the ratio of 
records with coordinate uncertainty to coordinate-only 
diminishes. This trend probably reflects the prioritisation 
of quantity over completeness in a rush to bring online as 
many digital specimens as fast as possible. Georeferencing 
is difficult to automate and labour intensive to do well. 
Rate estimates for complete, high quality georeferencing, 
considering median-type specimens in terms of complex-
ity and optimal conditions of access to digital cartographic 
resources, range between 16.6 sites per hour per georef-
erencer (Wieczorek et al. 2004) and 30 when using tools 
that are more recent, such as GeoLocate (<www.geo-locate.
org/default.html>) (Wieczorek pers. comm.). A back-
of-the-envelope calculation with these rates would mean 
somewhere between five months and more than three 
years to georeference one million specimens with a team 
of 10 georeferencers, depending on the degree of reuse of 
already georeferenced sites (Supporting information). This 
gives an idea of the huge task ahead to fully georeference 
the world’s billions of preserved specimens (Ariño 2010, 
Marcer  et  al. 2021a). In addition, the disquieting situa-
tion of the current state of georeferences in the existing 
global digital dataset does not make things any better. 
Currently, incorrect or incomplete georeferences can only 
be corrected at the source, and corrected records have to 
be uploaded again to GBIF. At present, there are no stable 
identifiers for occurrence records, without which there is 
no way to annotate occurrence records by a third party sys-
tem in a stable or lasting way (John Waller, pers. comm.). 

On another level, GBIF holds over 1.6 billion records of 
human observations, mainly from community science ini-
tiatives such as the Cornell Lab of Ornithology (<www.
birds.cornell.edu>), representing the great majority of 
records and a fast growing source of data on species occur-
rences which may help in increasing the number of records 
available for biogeographical studies. However, the nature 
of these data is quite different and care needs to be taken 
when using them.

Coordinates do not suffice to know confidently and rig-
orously the environmental conditions of a specimen’s pre-
ferred habitat (Gábor  et  al. 2019). In fact, the knowledge 
of the degree of uncertainty with which these coordinates 
have been determined is crucial to determine the fitness of 
data for a particular research objective. We also need explicit 
documentation of the reference system, including the datum, 
on which the coordinates are based. Without this informa-
tion, there is a risk of committing substantial errors. For 
example, coordinates are interpreted by GBIF as decimal 
degrees in WGS84. If the coordinate reference system is not 
documented or recognizable in the original record, GBIF 
automatically assigns WGS84 and flags the corresponding 
record as datum assumed. This is an important issue to be 
considered when using GBIF-mediated data since the incor-
rect assumption of the datum can potentially lead to signifi-
cant additional uncertainty (Chapman and Wieczorek 2020, 
Konowalik and Nosol 2021). In some cases, such as records 
using old datums, the error derived from misspecifying the 
datum can amount to values over 5 km in certain parts of 
the world (Chapman and Wieczorek 2020, Wieczorek and 
Wieczorek 2021).

Not appropriately documenting the location informa-
tion of a specimen during the georeferencing process leads 
to a waste of effort as the records cannot be confidently 
used in research, despite some concrete use case scenarios 
(Smith et al. 2021). In case of doubt, the lack of metadata 
may leave the final user with the only choice of discard-
ing the record if the given coordinate and uncertainty 
cannot be checked against original source and methods. 
Having correct georeferences with their associated metadata 
is especially relevant in the field of species distribution or 
environmental niche modelling, a fast-growing ecological 
research area (Pecchi  et  al. 2019). Models depend on the 
assumption that the occurrences’ coordinates truly reflect 
the habitat where the modelled species lives and are used 
to extract that information from other spatial data layers. 
When the uncertainty is larger than the target resolution 
of the study, point estimates of environmental conditions 
are not sufficient. At any given predictor resolution, a coor-
dinate with an uncertainty larger than the resolution will 
certainly encompass more than one raster grid cell. In other 
words, the larger the uncertainty in relation to the resolu-
tion, the larger the number of grid cells and the larger the 
differences between possible values (Fig. 7 and Supporting 
information). This will be especially true in environmen-
tally diverse landscapes such as mountainous areas, while 
in extensive topographically homogeneous areas (e.g. large 
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parts of the Amazon basin) uncertainty will result in a lesser 
effect due to the higher homogeneity of climate surfaces 
(Supporting information). This can result in pronounced 
differences between the different range estimates that result 
from models using different combinations of environmental 
values that come from the many different possible configu-
rations of occurrences.

In our modelling examples, with 500 simulations we 
detected notable differences between the 5th and 95th 
percentiles of predicted ranges for each species. The least 
difference represented a factor of increase of 1.3 for E. gon-
gylocarpa and the maximum difference represented a factor 
of 1.8 for R. groenlandicum (Fig. 7d). Moreover, limit-
ing the degree of uncertainty in occurrence data does not 
necessarily result in less variation in predicted potential 
distributions (Supporting information). Even using occur-
rences limited to a maximum uncertainty of 3536 m may 
still result in considerable variation in predicted distribu-
tions. These results indicate that not taking uncertainty into 
consideration may profoundly mislead biogeographical, 
conservation or global change studies. On another level, a 
different source of error which may affect biogeographical 
studies is the pervasive bias that exists in species observation 
data from repositories such as GBIF (Hughes et al. 2021), 
and, in the case of species distribution modelling from 
NHC data, especially the spatial bias of collected specimens 
(Phillips et al. 2009). Finally, the SDM results presented in 
this work need to be carefully interpreted as they are simpli-
fied examples of the effects of spatial uncertainty on SDMs. 
Real case studies of species distributions should follow a sys-
tematic approach for the selection of relevant environmen-
tal predictors in order to deliver robust predictive models 
(Williams et al. 2012).

Clear and detailed guidelines for quality georeferenc-
ing have long existed (Chapman and Wieczorek 2006, 
2020). However, our exploration clearly shows that GBIF-
mediated data are clearly not on a par with them, as shown 
recently (Marcer  et  al. 2021a, b). Specimens with coor-
dinates and with both coordinates and uncertainty are 
not evenly spread across the world. Some areas stand out 
as rich with uncertainty information, mainly in North 
America, Europe and Australia (Fig. 2a, b). Only Australia, 
Switzerland, Norway and Finland have over half of their 
records documented with uncertainty (Fig. 3). The United 
States stands out because of its absolute number of records. 
We observe similar percentages of records with uncertainty 
among taxonomic kingdoms. Georeferencing quality seems 
more related to different georeferencing practices between 
country cultures, when georeferencing occurred, than taxo-
nomic communities; i.e. communities of georeferencers are 
more different between countries than between taxonomic 
kingdoms (Supporting information).

The overall distribution of uncertainty values is multi-
modal (Fig. 6a), peaking at very specific values which can be 
traced back to localised practices (see the examples given in 
the Results section and in the Supporting information, e.g. 
q, u, y). As a result, the availability of records at different 

resolutions that can be used in ecological research studies is 
very dependent on the geographic region (Fig. 6b, c). The 
available records at different resolutions and their global spa-
tial pattern is similar for the major taxononomic kingdoms, 
i.e. Animalia, Plantae and Fungi (Supporting information). 
Another potential factor in determining georeferencing qual-
ity is the year of the collection event. For example, a centuries 
old handwritten specimen tag is more difficult to interpret 
than a modern tag as it may refer to places that changed name 
and are more difficult to georeference. However, although 
this is the case for coordinate-only records (Fig. 5a), it is not 
the case for records with uncertainty. Although there is a 
tendency of having lower uncertainty values in more recent 
specimens, probably due to the use of GPS technologies, the 
range of uncertainty values is well spread over the range of 
collecting years (Fig. 5b).

Conclusions

In summary, this study represents a first exploration of the 
global effort spent on georeferencing the world’s preserved 
specimens in NHCs and highlights the existing gap between 
currently available data and hoped-for full georeferencing 
information which can inform about the value for use in 
ecological research. This gap hinders the potential of global 
digitisation efforts for research and diminishes the return on 
investment in georeferencing projects. We advocate for NHC 
institutions to embrace and document uncertainty by follow-
ing best practices of georeferencing, even at the expense of 
diminishing the rate of sharing records with spatial informa-
tion. We also encourage the ecological research community 
to include uncertainty when downloading data from digital 
data repositories and to take it always into consideration when 
modelling species distributions. We also suggest to provide 
feedback to NHC institutions when downloaded datasets 
have been corrected or improved. To facilitate this, though, it 
is necessary to make an overhaul of the existing digital infra-
structure in order to allow repatriation of data improved by 
users back to the original databases, benefitting both research-
ers and the NHC community (Cicero et al. 2017).
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