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ABSTRACT: A remote catalytic reductive sp2 C–H car-
boxylation of arenes with CO2 (1 bar) via 1,4-Ni migra-
tion is disclosed. This protocol constitutes the first cata-
lytic 1,4-Ni migration reported to date, thus offering new 
vistas in the Ni-catalyzed reductive coupling arena while 
providing an unconventional new platform for incorpo-
rating electrophilic sites at remote sp2 C–H linkages. 

The recent years have witnessed the design of catalytic 
reductive carboxylations of aryl (pseudo)halides with 
CO2 en route to benzoic acids,1 privileged motifs in bio-
logically-active molecules.2 Although remarkable levels 
of sophistication have been reached, prefunctionalization 
at the targeted sp2 reaction site is required prior to CO2 
insertion (Scheme 1, path a).1 Beyond any doubt, the pur-
suit of an alternative catalytic carboxylation at previously 
unfunctionalized sp2 C–H sites might constitute, concep-
tuality and practicality aside, a worthwhile endeavor for 
chemical invention (path b).3 
Scheme 1. sp2 Carboxylation Reactions with CO2.	

	

Prompted by a seminal work of Fujiwara with stoichio-
metric amounts of Pd complexes,4 significant efforts have 
been made to unlock the potential of sp2 C–H carboxyla-
tions by employing either acidic sp2 C–H linkages5 or 
strategies requiring chelating groups (Scheme 1, bot-
tom).6 However, extensions to non-acidic sp2 C–H bonds 
are beyond reach in the former, whereas the absence of 

chelating groups results in site-selectivity issues, invaria-
bly requiring noble metals and/or stoichiometric organo-
metallic reagents (bottom left).7 These observations have 
contributed to the perception that a de novo catalytic sp2 
C–H carboxylation strategy without recourse to noble 
metals or organometallics might provide fundamentally 
new knowledge in both sp2 C–H functionalization and 
carboxylation processes. Under this premise, we won-
dered whether a new catalytic blueprint could be designed 
via a cascade-type process based on a site-selective 1,4-
Ni migration,8 thus setting the basis for a formal CO2 in-
sertion at remote sp2 C–H bonds (Scheme 2). At the outset 
of our investigations, however, it was unclear whether 
such a strategy could be implemented, as (1) catalytic 1,4-
Ni translocation9 remains an unknown cartography in 
cross-coupling reactions,10-14 and (2) site-selectivity is-
sues might come into play due to competitive catalytic 
carboxylation at the sp3 C–Br site15 or at the alkyne mo-
tif.16 If successful, we recognized that such a scenario 
might offer a conceptually new reactivity mode in the re-
ductive cross-coupling arena for tackling the functionali-
zation of otherwise inaccessible sp2 C–H reaction sites.17 
Herein, we report the successful realization of this goal. 
Our protocol is characterized by its mild conditions, wide 
substrate scope – including challenging substrate combi-
nations – without the need for handling air- or moisture 
sensitive reagents, and an exquisite site-selectivity pattern. 

Scheme 2. sp2 C–H carboxylation via 1,4–Ni Migration. 
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Our investigations began by evaluating the remote sp2 C–
H carboxylation of 1a with CO2 (Table 1). As expected, 
conditions previously employed for the reductive carbox-
ylation of aryl halides failed to provide even traces of 
2a,18 mainly resulting in statistical mixtures of carboxylic 
acids arising from CO2 insertion at the vinyl motif (E,Z-
2a’). After judicious choice of the reaction parameters, a 
combination of NiBr2·diglyme, L5 and Mn89Cr11 was 
found to be critical for success,19 delivering 2a in 77% 
yield with an excellent site-selectivity profile (94:6).20 As 
shown in entries 2-5, subtle changes in the electronic or 
steric environment of the 2,2’-bipyridine core had a non-
negligible impact on reactivity.21 Strikingly, erosion in 
both yield and site-selectivity was observed when em-
ploying metal reductants other than Mn89Cr11 (entries 6-
8).22 While one might argue that the presence of Cr atoms 
might dictate the site-selectivity pattern, the results 
shown in entries 7 and 8 indicate otherwise.14 At present 
we have no explanation for this behavior. While inferior 
results were found with Ni(cod)2 or DMSO (entries 9,10), 
no erosion in yield or selectivity was found when utilizing 
air- and moisture-stable NiBr2(L5)2, constituting an addi-
tional bonus from a user-friendly standpoint (entry 11).  
Table 1. Optimization of the Reaction Conditions.a  

 

a 1a (0.20 mmol), NiBr2·diglyme (10 mol%), L5 (20 mol%), 
MnCr alloy (0.25 mmol) in DMF (0.2 M) at 15 ºC under CO2 
(1 atm). b Determined by 1H NMR analysis using trimethox-
ybenzene as internal standard. c Isolated yield 

Encouraged by these findings, we turned our attention to 
studying the generality of our cascade process with a host 
of unactivated alkyl bromides. As evident from the results 
compiled in Table 2, structures containing thioethers (2d), 
methoxy arenes (2b), trifluoromethylated derivatives (2c, 
2i) or heterocycles (2o) could perfectly be tolerated. Even 
aryl halides (2g, 2h and 2r) or organoboranes (2e) could 
be accommodated, thus constituting an orthogonal gate-
way for subsequent manipulation via cross-coupling re-
actions. Notably, acetylenes end-capped with either steri-
cally hindered arenes (2m) or aliphatic motifs (2j-2l) 
posed no problems. Equally relevant was the observation 

that the targeted carboxylation occurred regardless of the 
steric properties at the acetylene backbone or the employ-
ment of secondary unactivated alkyl bromides (2p, 2q). 
Interestingly, the inclusion of different substitution pat-
terns on the arene backbone did not interfere with produc-
tive 1,4-migration, albeit in lower yields (2r, 2s).23 The 
successful carboxylation of silicon-tethered alkyl bro-
mides is particularly important, as the corresponding car-
boxylic acids 2t-2w could be homologated via C–Si 
cleavage at later stages, thus easily accessing non-fused 
analogues (Scheme 4, bottom). 

Table 2. sp2 C-H Carboxylation of Alkyl Bromides.a,b 

 
a As Table 1, entry 11. b Isolated yields, average of two runs, 
2a-w:2a-w’ ³ 90:10. c 2i:2i’ = 87:13. d 2o:2o’ = 76:26. e L2 
(20 mol%) & MnCr (2.5 equiv). f NiBr2.diglyme (15 
mol%)/L2 (30 mol%) & MnCr (2.5 equiv), 2w:2w’ = 80:20. 

Scheme 3. sp2 C-H Carboxylation of Vinyl Bromides.a,b 

  

a As Table 1, entry 11, using DMA. b Isolated yields, average 
of two independent runs. c Z:E = 2.4:1. d Z:E = 3.3:1. 

The successful preparation of 2a-2w suggested that an 
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otherwise similar 1,4-Ni migration scenario could be 
within reach by using simple vinyl halides as substrates. 
As shown in Scheme 3, this turned out to be the case, and 
vinyl bromides containing either alkyl or aromatic sub-
stituents could trigger the targeted sp2 C–H carboxylation 
en route to 4a and 4b regardless of whether E/Z mixtures 
of 3a-b were utilized.24 While tentative, this observation 
suggests an initial E/Z-isomerization of the oxidative ad-
dition Ni(II) species prior to 1,4-Ni migration, probably 
via the intermediacy of carbene-type species.25 The pro-
spective impact of our 1,4-Ni migration technique is 
further illustrated in Scheme 4. As shown, complex 
molecular isochromanone or phthalide architectures 
could be accessed from 2a or 2b depending on the re-
action conditions utilized. Thus, bromolactonization 
can be easily accomplished by exposing 2a to NBS in 
TFA (5)26 whereas clean formation of phthalide 6 was 
observed with H2SO4 instead.27 Similarly, while iso-
chromenone 7 could be obtained via Pd-catalyzed oxi-
dative regimes,28 the saturated isochromanone ana-
logue 8 was within reach from 2b instead. More im-
portantly, the successful preparation of 9 in an unopti-
mized 43% yield tacitly indicates that the presence of 
silicon fragments can be turned into a strategic ad-
vantage for accessing functionalized polyhydroxylated 
carboxylic acids, thus expanding the application pro-
file of our technology.29 

Scheme 4. Application Profile. 

 

Intrigued by the favorable reactivity profile shown in Ta-
ble 2 and Schemes 2-3, we conducted experiments with 
isotopically labelled substrates (Scheme 5, top). As 
shown, full deuterium incorporation at the vinyl position 
(>95%D) was observed in 4c upon exposing 3c to our op-
timized NiBr2/L5 regime, thus corroborating that a [1,4]–

Ni migration occurs at the ortho sp2 C–H bond prior to 
CO2 insertion. Interestingly, while a significant intramo-
lecular kinetic isotope effect was observed in the reduc-
tive carboxylation of 3d (kH/kD = 5:1; Scheme 5, top right), 
no intermolecular kinetic isotope effect was found by 
comparing the rates of 3a and 3c.19 Although tentative, 
this observation suggests a rate-determining step occur-
ring before or after the 1,4-migration event.30 Still, how-
ever, there was a reasonable doubt on whether [1,4]–Ni 
migration and the subsequent CO2 insertion occurred at 
Ni(I) or Ni(II) centers. To such end, we turned our atten-
tion to unravel such mechanistic intricacies by isolating 
the putative oxidative addition species at either the vinyl 
or aryl terminus. Interestingly, 10 and 11 could be pre-
pared by reacting the aryl (vinyl) halide with Ni(cod)2 and 
TMEDA or L2 in THF.31 The structure of these com-
plexes in the solid state is depicted in Scheme 4 (bot-
tom).32 As anticipated, the carboxylation of 10 only oc-
curred in the presence of L5, thus illustrating the im-
portance of 2,2’-bipyridine ligands in the targeted carbox-
ylation reaction. More importantly, 4a could be obtained 
from 10 or 11 in the absence of external metal reductant,  
strongly suggesting that both 1,4–Ni migration and CO2 
insertion occurs at Ni(II) centers.33 This observation can 
hardly be underestimated, as it challenges the prevailing 
perception that CO2 insertion occurs at Ni(I)–carbon 
bonds34 and that a 1,4-shift should take place at Ni(I) cen-
ters,9 thus opening up new knowledge in catalyst design, 
particularly in the reductive cross-coupling arena.17 
Whether CO2 insertion occurs at four-coordinated or six-
coordinated species via octahedral complexes is subject 
of ongoing studies in this laboratory.35	

Scheme 5. Preliminary Mechanistic Studies. 

	

In summary, we have documented the first catalytic 1,4-
nickel migration as a vehicle to enable CO2 insertion at 
remote and previously unfunctionalized sp2 C–H reaction 
sites, an unrecognized opportunity in both the carboxyla-
tion and reductive cross-coupling arena. The salient 
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features of this protocol are the exquisite chemo- and site-
selectivity, mild conditions and application profile. Fur-
ther extensions to other cross-couplings initiated by 1,4-
Ni migration are currently underway in our laboratories. 
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